MIIFPS

MIPS64® Architecture for Programmers
Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS64®
Architecture

Document Number: M DO0077
Revision 2.60
June 25, 2008

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Copyright © 2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
thisinformation (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24K c, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About ThiS BOOK .o, 11
1.1: TypOgraphiCal CONVENTIONSttt e e e e e e e ettt et e e e e e e e s s s e nabe b be e e e e eeaaeeeeaaannbbsbreeeaaaaeas 11
R | =1 o I ST PP TR PPPPPRPRR 11
O = 1o o =Y PR UPPPRRORPPRR 11
G O 0o U 1Y g I 4 AT PP TR PPPRRRPRR 12
1.2: UNPREDICTABLE and UNDEFINEDcccoiiiiiiiiiiiiiiie ettt ettt etee e e e s sstae e e e s ssbaa e e e s ensaeeeeanees 12
1.2.2: UNPREDICTABLE ...ttt ettt e ettt e e e ettt e e e e sttt e e e e snbe e e e e e abbeeeeeeantaeeeeaasbaaeaenas 12
L.2.2: UNDEFINEDiiiiie ettt ettt e e e sttt e e e e ekttt e e e e aa bt e e e e e e anbb e e e e e atbeeeeeeanbaeaeeeansbeaeaenas 12
L2 31 UNSTABLE ...ttt ettt e e e et e e e e ettt e e e e e bt et e e e e as bt e e e e e atbeeeeeeasbaeeeeeasbeaeaenas 13
1.3: Special Symbols in PSeudoCode NOTATIONuuuiiiiiiiieee ettt e e e e e e e eeeaeaaeas 13
S o |V (o (=N [a1 {o] T 1 1 o] o BT T TP PPPTPTPP 15
Chapter 1. Guide to the INSITUCHION Stcooeuiiiiii e e 17
1.1: Understanding the INSrUCtION FIEIASeoiiiiiiiiie e 17
0 O | 1S3 1 0T o I i = [£ SPREERR 19
1.1.2: Instruction Descriptive Name and MNEMONIC..........ccoiiiiiiiiiiiiiiie et 19
0 SO o 11 = L = o P SPREERR 19
L1041 PUMPOSE FIEIA ...ttt ettt e ettt e e e h bt e e e e bt e e e e bbb e e e e e abbneee e 20
1.1.5: DESCHIPLION FIEIA ...eiieiieeee ettt e et e e ettt e e e ekt e e e et e e e e e abbneee e 20
O G SR = =2 o 1T S T o O PPEEERR 20
A O] o1 =1 1o o I = o PP PTRUPPPRPOPRPRRN 21
I C T o Cot=T o] 1T o 3N = o PP PPTPUPPPRPOPPPRRN 21
1.1.9: Programming Notes and Implementation NOtesS FieldS..........cuviiiiiiiiiiiiiiic e 22
1.2: Operation Section Notation and FUNCHIONScoiiiiiiiieiiiiiee e 22
1.2.1: INStruction EXECULION OFAEINGcciitiiiiieiiiiiie ettt e et e e e st e e e st e e e e abbeeea e 22
1.2.2: PSEUAOCOUE FUNCLIONS.eeiiiiieeee e ittt e e e e e e e e ettt e e e aee e e e e s et e e e eeaeeeeesanannnsesseeeeeaaaeeeneaanns 22
1.3: Op and Function SUDfIeld NOTATION.uuiiiiiiiiiee e 32
S e I 1S 1 o 1o OSSN 32
Chapter 1: The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture............. 33
1.1: Base ArChiteCtUre REOUITEMIENTS ...uuuuiiiiiieeeeiieiiitiiee e e e e e e e e e s e e st r e e e e e eae s s e s sa b et ae e e eeeaeeaessaasnsrntreareeeeens 33
1.2: Software DeteCtion Of tNE ASEooi it e e e e 33
1.3: ComplianCe and SUDSEIING........uuuiiiiiiiiiiee e e e e e e e e e e e s e s et eeeeeaeeeesaasnsnsbnrraareeaaeas 33
L4 MIPSLEE OVEIVIEWeeeieeeiiiitee ettt e e e ettt e e e ettt e e e e e sttt e e e ekttt e e e e anbb e e e e e e R be e e e e e anbbe e e e e e s be e e e e e anbbeeeeeanbeeeeeanees 33
1.5: MIPSLEE ASE FRALUIESciiiiiieittiee ettt ettt e e oo oottt ettt e e e e o4 e e ek b bbb e ettt e e e e e e e e nnbbnbr e e e e eaeeas 34
1.6: MIPSLEE REGISIEI Slciiiiiii ittt ettt e e e e e e et e e et e et e e e eae e s e e e nb e taeeaeeeeeeeeessaasnsentreneeeaeens 34
L1.7: MIPSLEE ISA IMOUES ...ttt ettt ettt e e e ettt e e e e e a bt e e e e e bbbt e e e e en bt et e e e e s be e e e e e anbbeeeeeanbeeeeeennees 36
1.7.1: Modes Available in the MIPS16€ ArChitECIUIEcciiiiiiiiiiiiiiie e 36
1.7.2: Defining the ISA MOAE FIEIcoiiieee e e e e e e e e e raeaaeae e e e 36
1.7.3: Switching Between Modes When an EXCEPION OCCUISuuviiieeeeeiiiiiiiiiiieeie e e e e e e e e seesiiivveeeaeeaee e e 36
1.7.4: Using MIPS16e Jump Instructions to SWItCh MOAES.........cuuviiiieiiiiiiiiiiee e 37
1.8: JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode............cccccvvvvreeeeeennn. 37
1.9: MIPS16€ INSIrUCLION SUMIMAIIES .. .ueiieeiiiiieeeeiiiite e e sttt e e e ettt e e e e sttt e e e e sttt e e e e sntb e e e e e asbeeeeeeansbeaeesannbeeeeeannees 38
1.10: MIPS16€ PC-Relative INSIIUCLIONSciiviiiiei ittt e et e e e et e e e e st e e e e e nbeeeeeanees 41
1.11: MIPS16€ EXIENSIDIE INSIIUCTIONSceeiiiiiiie ettt e e et e e e et ee e e e e nbeeeeeennees 42
1.12: MIPS16e Implementation-Definable Macro INSIrUCHIONSuuviiiiiiiieeeiiiiie e e 43
1.13: MIPS16€e Jump and BranCh INSITUCHIONSc..uuiiiiiiiiiiei ettt s e e e e e e e e e e e e ereeaeeas 44

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 3

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.14: MIPS16€ INSITUCHION FOIMMALSciieeiiiiee et e e e e e e et e e et e e e e e e s et e s e eaa e s eaaeeseraans 44

1.14.2: I-type INSTIUCTION FOMMIAL.ciiiiiiei ittt ettt e e e e e e e e bbb e e e e e e e e e e e aann 45
1.14.2: RI-type INSTrUCTION FOIMAL......cii ittt e e e e e e s e e e e e e e e e e e 45
1.14.3: RR-type INSIUCHION FOIMALooiiiiiiiii ettt e e e e e e e bbbt e e e e e e e e e e e 45
1.14.4: RRI-type INSrUCHION FOMMALooiiiiiiee ettt e e e e e e e e bbb e e e e e e e e e e e e 45
1.14.5: RRR-type iINSIrUCION TOMMI@L.ciiiiiiiiiie ettt e e e e e e e e e e e e 45
1.14.6: RRI-A type INSrUCHION FOIMAL.......oiiiiiiiie it e e e e e e e e e e e 45
1.14.7: Shift INSTUCTION FOIMALeeiiiiiiee ettt e e e e e e s e bbb e e e e e e e e e e e aana 45
1.14.8: 18-type INSTIUCION TOMMIAL.ciii ittt ettt e e e e e e et e e e e e e e e e e e aanns 45
1.14.9: 18_MOVR32 instruction format (used only by the MOVR32 inStruction)cccccceeeeeeeeeeeeiiiiiieennns 46
1.14.10: 18_MOV32R instruction format (used only by MOV32R iNStruction)cccceeeeeieieiieeeeeeeiiiiiieenees 46
1.14.11: 18_SVRS instruction format (used only by the SAVE and RESTORE instructions)..................... 46
1.14.12: 164-type INSLUCTION TOIMMAL.cii ittt e e e e e e e s bbb e e e e e e e e e e e e 46
1.14.13: RIBA-type INSIUCHION FOIMAL ...t e e e e bbb e e e e e e e e e e 46
1.14.14: JAL and JALX INSrUCTION TOIMMAL........uueiiiiiiieieiii ittt e e e e e e e 46
1.14.15: EXT-INSIrUCHON FOIMALoiiiiiiiiiee ettt e e e e e e et e e e e e e e e e e e e 46
1.14.16: ASMACRO INSTIUCLION TOMMIAL ...ttt e e et e e e e e e e e e 46
1.14.27: EXT-RIINSIIUCHION FOMMIAL. ittt ettt e e e e e ettt e e e e e e e e e e e e a7
1.14.18: EXT-RRIINSIIUCLION TOMMAL ..ottt e e e e et e e e e e e e e e a7
1.14.19: EXT-RRI-A INSIUCHON FOIMAL.........eiiiiiiiiiiiii ettt e e e e e e e e a7
1.14.20: EXT-SHIFT INSrUCHON FOMMAL........eiiiiiiiiiiiiiee ettt e e e et e e e e e e e e e a7
1.14.21: EXT-I8 INSIIUCHION FOIMALoiiiiiiiitit ettt e e e e e e ettt e e e e e e e e e e e a7
1.14.22: EXT-18_SVRS instruction format (used only by the SAVE and RESTORE instructions)............. 47
1.14.23: EXT-164 INSrUCHON FOMMAL ..ottt ettt e e e e e e et e e e e e e e e e e a7
1.14.24: EXT-RIBA INSIIUCION TOMMIAL.....ciiiiiiiiie ettt ettt e e e et e e e e e e e e e 47
1.14.25: EXT-SHIFTG64 INSIrUCION FOMMIALuuiiiiiiiiieeei ittt e e e e e e e e 48
S 1 £S] (W o 1o =L =t oo Yo L] o 48
1.16: MIPS16e Instruction Stream Organization and ENAIANNESSuuuuueiiiiiiiiiiiiie e 51
1.17: MIPS16e Instruction FEtCh RESIFCHIONSuuiiiiiiiiiiie ettt e e e e e e 51
Chapter 1: The MIPS16e™ ASE INStruction Set.........cccooiiiii 53
1.1: MIPS16€™ INStruCtioN DESCIIPIIONSuviiii ettt ettt e et e e e e e e 53
1.1.1: Pseudocode Functions SPecCific t0 MIPSLOE™ottt 53

F T O OO PR UPPPRTOPRRPR 54
F T O OO PR UPPPRTOPRRPR 55
F T O OO PR UPPPRTOPRRPR 56
T O PSP UPPPRTROPRRSR 57
T O PSP UPPPRTROPRRSR 58
T O PSP UPPPRTROPRRSR 59
T O PSP UPPPRTROPRRSR 60
T O PSP UPPPRTROPRRSR 61
T O PSP UPPPRTROPRRSR 62
T O PSP UPPPRTROPRRSR 63
AADDU L.ttt et — e e e e ——— e e e e e —— et ee e e ot ——eee e e R b e tee e e o tteteeeeanEtaeee e et teeeeeeantrteeeearraeeeeaas 64
N 1 PR OUPPPRRRPPPPPR 65
F] 1Y A @1 = { @ PR UPPPRROPPPPR 66
2 TSSO PPST 67
2 TSSO PPST 68
2] 1 2 OSSP PPSP 69
2] 1 2 OSSP PPSP 70
2 N OSSP 71
2 N OSSP 72
2] A OSSP PRSP 73

4 MIPS64® Archi
tecture, Revision

tecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

BT EQZ e e e e r e e e e e 75
BTINEZ ... e e e et e e e e 76
BTINEZ ... e e e et e e e e 77
L0 | PO PP PP PTPT TP 78
L0 | PP PP PTP TP 79
L0 | PP PP PTP TP 80
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 81
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 82
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 83
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 84
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 85
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 86
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 87
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 88
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 89
DADDIU. ..ttt et e e e e e e e et r et e e e e e e 90
DADDWUL ...ttt e et e e e e e e e e e et e e e e e e 91
DDV et e e e et at e e e e e e 92
DIDIVU ettt e e e e e e e e e e e 93
[PP PP P PO PTPPN 94
DIV U et e e e et r e e e e e e e e 96
9] 1 PP P PO PPTP TP 97
DIMIULTU oottt e e e e e e s ettt e e e e e e e e s e s e bbb e e e e e e e e e e e e s s e s aabbare e 98
[PP PP TP P PO PPN 99
D] PO PP P PPN 100
DS LV e e e e e e r e e e e e 101
DO R A e e e et a e e e e 102
DO R A e e e et a e e e e 103
DS RAV e et r e e 104
1] o PO PP P PP T PPN 105
1] o PO PP P PP T PPN 106
DS RLY e e et r e e 107
DSUBU ..o e e e et r e e e e 108
T L e e e e e e e e e e e e e 109
JA L R L e e e 110
JALR C e e r e e e 111
T K e e e e e e e e e e e e e e e 112
T K e e e e e e e e e e e e e e e 113
TR e e e e r e e e e 114
TR e e e e r e e e e 115
TR C e e e e e e e 116
TR C e e e e e e e 117
PO PP P PPN 118
PO PP P PPN 119
LB et e e e e e e e et e e r e e e e e 120
LB et e e e e e e e et e e r e e e e e 121
5 OO PP PPN 122
5 OO PP PPN 123
5 OO PP PPN 124
5 PO PO P PPN 125
5 TP PP PO P PPN 126
5 TP PP PO P PPN 127

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 5

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

o PP PP P PPN 129
LU e e e e e e e e et e e a e e e e 130
LU e e e e e e e e et e e a e e e e 131
PP PP TP PPN 132
PP PP TP PPN 133
YO PP PO PP T PPN 134
YO PP PO PP T PPN 135
YO PP PO PP T PPN 136
YO PP PO PP T PPN 137
YO PP PO PP T PPN 138
YO PP PO PP T PPN 139
L VU e et e e e e e e e s et e e e e e e e e e 140
L VU e et e e e e e e e s et e e e e e e e e e 141
L | PO PP PO P PPN 142
IVIFLO et e oot e e e e e e e et e e r e e e e e 143
VIOV E .ttt e e e e e e e et e e e e e et e e e e e e e 144
VIOV E .ttt e e e e e e e et e e e e e et e e e e e e e 145
171 PO PP P PP PPN 146
IVIULTU ettt oottt e e e e oo e e e o bbb e ettt e e e e e e e s e e s bbb e e e e e e e e e e e e e s e aeebbnne e 147
N PO PP PPN 148
N[O PO PP PPN 149
N[PO PP P PPN 150
L0] o PP PP PP T PP PPTRPTTPPR 151
RESTORE ...ttt e e e e e e e bbbttt e e e e e e e s s s s er e e a e e e e e e 152
RESTORE ...ttt e e e e e e e bbbttt e e e e e e e s s s s er e e a e e e e e e 154
S AV E e e e e e 157
S AV E e e e e e 159
= TP PP PP TP 163
= TP PP PP TP 164
S B e e e e e e 165
S H e e a e e 166
S N e e e e e e e e 167
] PP PP PP PP TP 168
] PP PP PP PP TP 169
] PP PP PP PP TP 170
] PP PR PP TP 171
] PP PP PP PP TP 172
] PP PP PP PP TP 173
SDBBP ..t r e e e e e e 174
SH e e e e e e e e e e e 175
SH e e e e e e e e e e e 176
I PP PP PP TR 177
I PP PP PP TR 178
I PP PP PP TP 179
1) PP PP PP TP 180
1Y I PP PP PP TP 181
1Y I PP PP PP TP 182
ST et e e e e e e e e e e e eae s 183
ST et e e e e e e e e e e e eae s 184
ST e e e e e et e e e e e e et e e 185
SR A e e e e e e e e e e e 186
SR A e e e e e e e e e e e 187

6 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

] o PO 189
] o PO 190
] T SRR 191
1 U] L PO 192
1) PP 193
1) PP 194
1) PP 195
1) PP 196
1) PP 197
1) PP 198
D = PP RUUPPPTT RPN 199
A L = PRSPPI 200
A = o PRSPPI 201
A Y PSPPSRI 202
APPENAIX A: REVISION HISTOIY ..uuuiiiiiiiiiiiiiiisitisiiesisssssesrsssrrserssrersreesrres —e..—e..—...——.—————————————————————————————— 203

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 7

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 1.8:
Figure 1.9:

Figure 1.10:
Figure 1.11:
Figure 1.12:
Figure 1.13:
Figure 1.14:
Figure 1.15:
Figure 1.16:
Figure 1.17:
Figure 1.18:
Figure 1.19:
Figure 1.20:
Figure 1.21:
Figure 1.22:
Figure 1.23:
Figure 1.24:
Figure 1.25:
Figure 1.26:
Figure 1.27:
Figure 1.28:
Figure 1.29:
Figure 1.30:
Figure 1.31:
Figure 1.32:

Figure 1-1:

Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiit ettt e ettt e e e et e e e e e e e e e e aeeeeeeas 18
Example of INStrUCTION FIEIAS..........uuiiiiiiiiii et e e e e e 19
Example of Instruction Descriptive Name and MNEMONICuuuiiiiiiiiiaeiiiiiiiiieie et 19
Example of INStrUCTION FOIMAL.........uuiiiiiiiiiiie ittt e e e e e st e e e e e e e e e s eaebeeeees 19
Example Of INSTIUCTION PUIPOSEueeiiiiiiieeii ittt e e e e ettt e e e e e e e e e bbbneeeeeeas 20
Example of INStruCtion DESCIIPLIONeeiiiiiiiiiiiitetee ettt e e e e e e e e e e e e b e eeeeas 20
Example of INStruCtioN RESIICIONS.oiiiiiiiiiii ettt e e e e e e e e eeeeas 21
Example of INStrUCTION OPEIALION.ciiiiiiiiii ittt e e e e et e e e e e e e e s e bb e e eeeeas 21
Example of INStrUCTION EXCEPLION.ciiiiiiiiiiiiiti ettt e et e e e e e e e e e aeeeeeeas 21
Example of Instruction Programming NOTESuuiiiiiiiiiiieiiiii it e e e e 22
COP_LW PSeUAOCOUE FUNCHIONuutttititieeeee s e e e e e e e e e e e e e e et ee ettt s e s e s e e s e e e e eeaaaaaeeeeeesesasnssrnnnnes 23
COP_LD PSUAOCOTE FUNCLION.......utuieieiiiiiei e e ee e e e e e e e e e e e ettt s e s e s e e e e e eaaeaeaeeeeaeeereensessrnnnnes 23
COP_SW PSeUAOCOUE FUNCHION.tttiitiiiee e e e e s e e e e e e e e et s s s e s e e e e e e aaeaaaeeeeeeeeeeeasersrnnnnes 23
COP_SD PSeUdOCOUE FUNCLIONuuteiiiiiiieiei e e e e e e e e e e e e e e et s s s e e e e e e e e e aeaeaaeeeeeeeeeeasessrnnnnes 24
CoprocessorOperation PSEUdOCOTE FUNCHIONuuuiiiiiiiiiieee ittt e e 24
AddressTranslation PSEUAOCOAE FUNCHIONuuiiiiiiiiiiei ittt e e 24
LoadMemory PSeudoCOde FUNCHIONuuuiiiiiciee et e s e e e e e e e e e e e aaaaaaaaaees 25
StoreMemory PSeUdOCOAE FUNCHON. i e e e e e e e e e e e e e e e e e e eeeeeeaeeraranaaas 25
Prefetch PSeUdOCOOE FUNCLION.........uiiiiiiiee ettt e e e e e e e e 26
SyncOperation PSeUdOCOAE FUNCLIONoiiiiiiiiiiiiiie ittt e e e e e e e e s enaeees 27
ValueFPR PSEUAOCOUE FUNCHON.......iiiiiiiiiiititie ettt e e e e e e e e et eeeeeeas 27
StoreFPR PS@UAOCOTE FUNCHON ...ttt e e et e e e e e e e 28
CheckFPException PSeudoCode FUNCLON. ...ttt a e 29
FPConditionCode PSeudocOde FUNCHON.........ooiiiiiiiiiiiiiie ettt e e e e e 29
SetFPConditionCode PSeudoCOde FUNCHIONcuuuiiiiiiiiiieiee et e e e 29
SignalException PSEUdOCOAE FUNCLIONiiiiiiiiiiiiiiee ettt e e e e e e e eaneees 30
SignalDebugBreakpointException Pseudocode FUNCLON...........cccuiiiiiiiiiiiieei e 30
SignalDebugModeBreakpointException Pseudocode FUNCHION...........uuviiiiiiiiiiieiiiiiiiieeieeeee e 30
NullifyCurrentinstruction PSeudoCode FUNCHONccociiiiii i e e e e e e e e e aaaans 31
JumpDelaySIlot PSEUAOCOUIE FUNCHONuuiiiiiiiiieeeii e e e e e 31
NotWordValue PSEUAOCOTE FUNCHON.........cciiiiiiiiiiee ettt e e e e e e e e e s eeeeees 31
PolyMult PSEUdOCOAE FUNCLIONcoiiiiiiiiiiiie s e et e e e n e e e e e e e aeaeaaaeees 31
Xlat PSEUAOCOTE FUNCHON ...ttt e e e e et e e e e e e e e e e e e nnebeeeees 53

8 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1:
Table 1.1:
Table 1.1:
Table 1.2:
Table 1.3:
Table 1.4:
Table 1.5:
Table 1.6:
Table 1.7:
Table 1.8:
Table 1.9:

Table 1.10:
Table 1.11:
Table 1.12:
Table 1.13:
Table 1.14:
Table 1.15:
Table 1.16:
Table 1.17:
Table 1.18:
Table 1.19:
Table 1.20:
Table 1.21:
Table 1.22:
Table 1.23:
Table 1.24:
Table 1.25:
Table 1.26:
Table 1.27:
Table 1.28:

MIPS64® A

Symbols Used in Instruction Operation State@mMENTS........coooiiiiiiiiiiiiii e 13
AccessLength Specifications for LOAAS/STIOIESuviiiiiiiiiie et 26
MIPS16€ General-PUrpOSE REGISIEISttt e e e e e e e e e e e e e e e 35
MIPS16€ Special-PUrpOSE REGISIEISttt e e e e e e e e e e e e e e as 35
ISA MOAE Bit ENCOGINGS ...eeiiieieiiiiteittiititee s s s s st e s e e e e e e e e e e e e e et e e et eeeeeaete b e s e e s e s e e e e aeaaeaeaeaeaeeeaesessnnssnsnrnnes 36
MIPS16e Load and Store INSIIUCHIONSouiiiiiiiiieiiiiei ettt 38
MIPS16e Save and ReStOre INSIIUCLIONScoiuriiiiiiiiiiie ettt 38
MIPS16e ALU Immediate INStrUCHIONSoviiiiiiiiieiiiie ettt 39
MIPS16e Arithmetic One, Two or Three Operand Register INStrUCHONSccoevieeiiiiiiiiiiiiiiiiieeeeeeen 39
MIPS16€ SPECIAl INSIIUCLIONSeeiiiieiiiiiit ettt e ettt e e e e e e e e b bbb e e e e e aaeeeaaaann 39
MIPS16e Multiply and Divide INSIIUCTIONSeuiiiiiiieeiiiiiiiite ettt e e e e e e e 40

MIPS16e Jump and BranCh INSIIUCTIONSuiiiiiiiaiiiiiiiiee it e e e e e 40
MIPS16€ Shift INSTIUCTIONScuteieiiiiieeee ettt ettt e e e e e e e bbbt e et e e e e e e e e bbb e e eaeaeeas 40
Implementation-Definable Macro INSIIUCLIONS........c.oi i 41
PC-Relative MIPSL16€ INSIIUCLIONSciiiiiiiiiiiiie ettt e e e e e e et e e e e e e e e e e an 41
PC-Relative Base Used for Address CalCUulationcc.uuuiiiiiiiiiiiiiiiie e 41
MIPS16€ EXteNnsIDIE INSITUCHIONScoiiiiiiiiiee ettt e e e e r e e e e e e e e e aan 42
MIPS16€ INSIIUCHON FIRIAS ...ttt e e e e e e reeeeeas 44
Symbols Used in the Instruction ENcoding TableS........ccoooiii oo 48
MIPS16e Encoding of the OpCode FIeldoooiiiiiiiiiiie e 49
MIPS16e JAL(X) Encoding Of the X Field.........oooriieeei e 49
MIPS16e SHIFT Encoding Of the f FIeldoooviiieee e 49
MIPS16e RRI-A Encoding of the f Field..........oooriireeeee e 49
MIPS16e 18 Encoding of the fUNCE FIeld...........oooiiiirieee e 50
MIPS16e RRR Encoding of the f Field..........ooorriiiieee e 50
MIPS16e RR Encoding of the FUNCE FI€ldoooveiiiiiicee e 50
MIPS16e 164 Encoding of the FUNCE FIeld...........ooovriiiiiie e 50
MIPS16e I8 Encoding of the s Field when fUNCI=SVRS ... 51
MIPS16e RR Encoding of the ry Field when funCt=J(AL)R(C)ccceeeeiiiiiiii e 51
MIPS16e RR Encoding of the ry Field when fuNCt=CNVT ... 51

rchitecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60 9

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

10MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS64® Architecture for Programmers Volume 1V-a: The MIPS16e™ A pplication-Specific Extension to the
Ml Architecture comes as a multi-volume set.

* Volume| describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

* Volumell provides detailed descriptions of each instruction in the MIPS64® instruction set

* Volume Il describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of
the privileged resources included in a MIPS64® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture
* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS64® Architecture

* Volume IV-d describes the SmartM | PS®A ppli cation-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.
1.1.1 Italic Text
* isused for emphasis
» isusedfor bits, fields, registers, that are important from a software perspective (for instance, address bits used by
:;gv;ege, and programmabl e fields and registers), and various floating point instruction formats, suchas S D,

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* represents aterm that is being defined

* isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 11

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

About This Book

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABL E and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, it isUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that isonly accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

12MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABL E values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
=% Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
0oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless
than z, this expression is an empty (zero length) bit string.
+, — 2's complement or floating point arithmetic: addition, subtraction
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwiselogical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwise logical OR

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 13

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general -purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR([x] is ashort-hand notation for SGPR[SRSCtlcgs, X].
SGPR[s,X] In Release 2 of the Architecture, multiple copies of the CPU general -purpose registers may be implemented.
SGPR([s,X] refersto GPR set s, register x.
FPR{X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[7] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifiesthe endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian-
ness of Kernel and Supervisor mode execution.

BigEndianCPU The endiannessfor |oad and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this endi-
anness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigendianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when astore to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, Thisoccurs as aprefix to Operation description lines and functions as alabel. It indicates the instruction time
I+n:, during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.
The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statementsfor dif-
ferent instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

14MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

Inthe MIPS Architecture, the PC valueisonly visibleindirectly, such aswhen the processor storesthe restart
addressinto a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 64-bit address al of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension, the ISA Mode isasingle-hit reg-
ister that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,
SEGBITS The number of virtual address bitsimplemented in a segment of the address space is represented by the sym-

bol SEGBITS. Assuch, if 40 virtual address bits are implemented in a segment, the size of the segment is
2SEGBITS = 240 ptes

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32
32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32
64-bit FPRs in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32Register sMode is aways a 0. MIPS64 implementations have a compati-
bility mode in which the processor references the FPRs as if it were a MI1PS32 implementation. In such a
case FP32Register M ode is computed from the FR bit in the Satus register. If thisbit isa 0, the processor
operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay ot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL:

http://www.mips.com

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 15

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/

About This Book

Comments or questions on the MIPS64® Architecture or this document should be directed to

MIPS Architecture Group
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

16MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

mailto:architecture@mips.com

Chapter 1

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

1.1 Understanding the Instruction Fields

Figure 1.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 19

* “Instruction Descriptive Name and Mnemonic” on page 19

e “Format Field” on page 19

» “Purpose Field” on page 20

» “Description Field” on page 20

* “Restrictions Field” on page 20

e “Operation Field” on page 21

+ “Exceptions Field” on page 21

» “Programming Notes and Implementation Notes Fields’ on page 22

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 17

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

Figure 1.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name —————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
e 0 . a 0 | exaune
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \A

Format: EXAMPLE fd,rs,rt MI1PS32
Assembler format(s) for each /7
definition)
/D Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic descriptio ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of ———————>> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction = Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language. ——J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ¢ GPR[rs] exampleop GPR[rt]

GPR[rd] ¢ sign_extend(temps;)

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction
Notes for programmers _ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ——J~ [Implementation Notes:

Like Programming Notes, except for processor implementors

18MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.1 Understanding the Instruction Fields

1.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 1.2).
Constant values in afield are shown in binary below the symbolic or hexadecimal value.

e All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
1.2).

e Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 1.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 1.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs ft rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

1.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
13.

Figure 1.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

1.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The origina assembler formats are valid for the
extended architecture.

Figure 1.4 Example of Instruction Format

Format: ADD fd,rs,rt MI1PS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 19

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

1.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 1.5 Example of Instruction Purpose

Purpose: Add Word
To add 32-hit integers. If an overflow occurs, then trap.

1.1.5 Description Field

If aone-line symbolic description of the instruction is feasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 1.6 Example of Instruction Description

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

e |If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |If the addition does not overflow, the 32-bit result is signed-extended and placed into
GPRrd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs" is the floating point operand register specified by theinstruction field fs. “ CP1 register
fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control
/Status register.

1.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Validvaluesfor instruction fields (for example, see floating point ADD.fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)

» Valid values of operands (for example, see DADD)

20MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.1 Understanding the Instruction Fields

» Valid operand formats (for example, see floating point ADD.fmt)

» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

» Vaid memory access types (for example, see LL/SC)

Figure 1.7 Example of Instruction Restrictions

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits g3 31 equal),
then the result of the operation iSs UNPREDICTABLE.

1.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 1.8 Example of Instruction Operation

Operation:

if NotWordvalue (GPR[rs]) or NotWordvValue (GPR[rt]) then
UNPREDICTABLE
endif
temp < (GPR[rslj;q||GPRIlrsls; o) + (GPR[rtlsqi||GPRIrtlsy g)
if temp;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« sign_extend(temps; q)
endif

See 1.2 “Operation Section Notation and Functions” on page 22 for more information on the formal notation used
here.

1.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 1.9 Example of Instruction Exception
Exceptions:

Integer Overflow

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 21

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

1.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 1.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

1.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 22

» “Pseudocode Functions’ on page 22
1.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

1.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

» “Coprocessor General Register Access Functions’ on page 22
e “Memory Operation Functions’ on page 24
* “Floating Point Functions’ on page 27
» “Miscellaneous Functions’ on page 30
1.2.2.1 Coprocessor General Register Access Functions
Defined coprocessors, except for CPO, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and

how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. Thisbehavior is abstracted into
the functions described in this section.

22MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 1.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 1.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 1.13 COP_SW Pseudocode Function

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 23

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

Figure 1.14 COP_SD Pseudocode Function
datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 1.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

1.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 1.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceisto Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 1.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

24MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the datais not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 1.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will actu-
ally be changed.

Figure 1.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 25

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/

/* pAddr: physical address */

/* VvAddr: virtual address */

endfunction StoreMemory

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 1.19 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 1.1 lists the data access lengths and their labels for loads and stores.

Table 1.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

26MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and storesindicated by stype occur in the same order for all
processors.

Figure 1.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

1.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 1.21 ValueFPR Pseudocode Function

value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* 1s not known as, for example, in SWC1l and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR < UNPREDICTABLE®” || FPR[fprls;. g

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprgq # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR < FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR < FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 27

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 1.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] < UNPREDICTABLE’? || value;;

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then

UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR[fpr+l] < UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« value
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] <« value
endif

endcase

28MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException
Figure 1.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq. . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 1.24 FPConditionCode Pseudocode Function
tf «FPConditionCode (cc)

/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then

FPConditionCode ¢« FCSRj3
else

FPConditionCode ¢ FCSRjg,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 1.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc)
if cc = 0 then

FCSR ¢ FCSR3; 24 || tf || FCSRy;. g
else
FCSR ¢ FCSR31. 254cc | | tf | | FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 29

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

1.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignhalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 1.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignhalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from
non-Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 1.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 1.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException

NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

30MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.2 Operation Section Notation and Functions

Figure 1.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-rélative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 1.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* vAddr:Virtual address */

endfunction JumpDelaySlot

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such avalue has bits 63..32 equa to bit 31.

Figure 1.31 NotWordValue Pseudocode Function

result <« NotWordvalue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */

NotWordValue ¢« valueg; 35 # (value31)32

endfunction NotWordvalue
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.

Figure 1.32 PolyMult Pseudocode Function

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(3i-iy..o || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 31

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

1.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

1.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a
variable subfield.

Bit encodings for mnemonics are given in Volume , in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 32 for a description of the op and function subfields.

32MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

The MIPS16e™ Application-Specific Extension to the
MIPS64® Architecture

This chapter describes the purpose and key features of the M1PS16e™ A pplication-Specific Extension (ASE) to the
Ml Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides addi-
tional instructions to improve the compaction of the code.

1.1 Base Architecture Requirements

The MI1PS16e ASE requires the following base architecture support:

e TheMIPS32or MIPS64 Architecture: The MIPS16e A SE requires acompliant implementation of the MIPS32
or MIPS64 Architecture.

1.2 Software Detection of the ASE

Software may determineif the MIPS16e ASE isimplemented by checking the state of the CA bit in the Configl CPO
register.

1.3 Compliance and Subsetting

There are no instruction subsets of the MIPS16e ASE to the MIPS64 Architecture — all MIPS16e instructions must
be implemented. Specifically, this means that the original MIPS16 ASE is not an allowable subset of the MIPS16e
ASE. For the MIPS16e ASE to the MIPS32 Architecture, the instructions which require a 64-bit processor are not
implemented and execution of such an instruction must cause a Reserved Instruction exception.

1.4 MIPS16e Overview

The MIPS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16e
ASE.

The MIPS16e ASE must be implemented as part of a MIPS based host processor that includes an implementation of
the MIPS Privileged Resource Architecture, and the other componentsin atypical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hardware imple-
mentation such as processor-specific details, because these details may vary with implementation. For thisinforma-
tion, please refer to the specific processor’s user manual.

This chapter presents specific information about the following topics:

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 33

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

“MIPS16e ASE Features’ on page 34

“MIPS16e Register Set” on page 34

“MIPS16e |SA Modes’ on page 36

“JALX, JR, JR.HB, JALR and JALR.HB Operationsin MIPS16e and MIPS32 Mode” on page 37
“MIPS16e Instruction Summaries’” on page 38

“MIPS16e PC-Relative Instructions’ on page 41

“MIPS16e Extensible Instructions’ on page 42

“MIPS16e I mplementation-Definable Macro Instructions” on page 43
“MIPS16e Jump and Branch Instructions’ on page 44

“MIPS16e Instruction Formats’ on page 44

“Instruction Bit Encoding” on page 48

“MIPS16e Instruction Stream Organization and Endianness’ on page 51

“MIPS16e Instruction Fetch Restrictions’ on page 51

1.5 MIPS16e ASE Features

The MIPS16e ASE includes the following features:

The MIPS16e ASE contains some instructions that are available on M1PS64 host processors only. These instructions
must cause a Reserved | nstruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations

allows MIPS16e instructions to be intermixed with existing MIPS instruction binaries
is compatible with the MIPS32 and MIPS64 instruction sets

allows switching between M1PS16e and 32-bit MIPS Mode

supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)
defines eight general-purpose registers, as well as a number of special-purpose registers

defines special instructions to increase code density (Extend, PC-relative instructions)

have not been enabled.

1.6 MIPS16e Register Set

The MIPS16eregister setislisted in Table 1.1 and Table 1.2. Thisregister set isatrue subset of the register set avail-

able in 32-bit mode; the MIPS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

34MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.6 MIPS16e Register Set

In addition to the eight general -purpose registers, 0-7, listed in Table 1.1, specific instructionsin the MIPS16e ASE

reference the stack pointer register (sp), the return address register (ra), the condition code register (t8), and the pro-
gram counter (PC). Of these, Table 1.1 lists sp, ra, and t8, and Table 1.2 lists the M1PS16e special -purpose registers,
including PC.

The MI1PS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers.

Table 1.1 MIPS16e General-Purpose Registers

MIPS16e 32-Bit MIPS | Symbolic Name
Register Register (From
Encoding?! Encoding? ArchDefs.h)3 Description
0 16 0 General-purpose register
1 17 sl General-purpose register
2 2 vO General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General -purpose register
6 6 a2 General-purpose register
7 7 a3 General -purpose register
N/A 24 t8 MIPS16e Condition Code register;
implicitly referenced by the BTEQZ,
BTNEZ, CMP, CMPI, SLT, SLTU,
SLTI, and SLTIU instructions
N/A 29 p Stack pointer register
N/A 31 ra Return address register

1.“0-7" correspond to the register's MIPS16e binary encoding and show how that encoding
relatesto the MIPS registers. “0-7" never refer to the registers, except within the binary
MIPS16e instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or the
symbolic names (S0, s1, VO, etc.) refer to the registers. For example, to access register num-
ber 17 in the register file, the programmer references $17 or s1, even though the MIPS16e
binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the MIPS16e
instruction set, except by using the Move instructions. The MIPS16e Move instructions can
access al 32 general-purpose registers.

3. The MIPS16e condition code register isreferred to as T, t8, or $24 throughout this docu-
ment, depending on the context. All three names refer to the same physical register.

Table 1.2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative Add and Load instruc-
tions can access this register as an operand.

HI Contains high-order word of multiply or divide result.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 35

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 1.2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

LO Contains low-order word of multiply or divide result.

1.7 MIPS16e ISA Modes

This section describes the following:

» thelSA modes available in the architecture, page 36

» thepurpose of the |SA Mode field, page 36

* how to switch between 32-bit MIPS and MIPS16e modes, page 36
» therole of the jJump instructions when switching modes, page 37

1.7.1 Modes Available in the MIPS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as follows:
e MIPS 32-bit mode (32-hit instructions)
e MIPS16e mode (16-hit instructions)

1.7.2 Defining the ISA Mode Field

The | SA Mode hit controls the type of code that is executed, as follows:

Table 1.3 ISA Mode Bit Encodings

Encoding Mode

0b0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.

Obl MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can change the |SA
Mode bit, as described in Section 1.7.4, "Using MIPS16e Jump Instructions to Switch Modes".

1.7.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception), the | SA Mode bit is cleared so that exceptions are handled

by 32-bit code.

36MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.8 JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode

The ISA Mode in which the processor was running at the time that the exception occurred is visible to software as bit
0 of the Coprocessor O register in which the restart addressis stored (EPC, ErrorEPC, or DEPC). See the descrip-
tion of these instructionsin Volume I11 for a complete description of this process.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

1.7.4 Using MIPS16e Jump Instructions to Switch Modes

The M1PS16e application-specific extension supports procedure calls and returns from both MIPS16e and 32-hit
MIPS code to both M1PS16e and 32-bit MIPS code. The following instructions are used:

» TheJAL instruction supports callsto the same ISA.

e TheJALX instruction supports calls that change the ISA.

e TheJALR, JALR.HB and JALRC instructions support callsto either ISA.

* TheJR, JR.HB and JRC instructions support returns to either ISA.

The AL, JALR, JALR.HB, JALRC, and JALX instructions save the | SA Mode bit in bit O of the general register con-
taining the return address. The contents of this general register may be used by afuture JR, JR.HB, JRC, JALR, or
JALRC instruction to return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes 0b0 — Obl and Ob1 — 0b0).

TheJR, JR.HB, JALR and JALR.HB instructionsin both modes |oad the | SA Mode bit from bit O of the general regis-
ter holding the target address. Bit O of the general register is not part of the target address; bit 0 of PC isloaded with a
0 so that no address exceptions can occur.

The JRC and JALRC instructionsin M1PS16e mode |oad the | SA Mode bit from bit 0 of the general register holding

the target address. Bit 0 of the general register isnot part of the target address; bit 0 of PC isloaded with a0 so that no
address exceptions can occur.

1.8 JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and
MIPS32 Mode

The behavior of five of the 32-bit MIPS instructions—JALX, JR, JR.HB, JALR, JALR.HB —differs between those
processors that implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the five instructions behave as follows:
* TheJALX instruction executes a JAL and switches to the other mode.

* JR,JR.HB, JALR and JALR.HB instructions load the | SA Mode hit from bit O of the source register. Bit 0 of PC
isloaded with a 0, and no Address exception can occur when bit 0 of the source register isa 1 (MIPS16e mode).

In CPUs that do not implement the M1PS16e A SE, the five instructions behave as follows:

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 37

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

» JALX instructions cause a Reserved Instruction exception.

* JR,JR.HB, JALR and JALR.HB instructions cause an Address exception on the target instruction fetch when bit
0 of the source register isa 1.

1.9 MIPS16e Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e instructionsincluded in
each category. Extensible instructions are also identified.

There are six instruction categories.

» Loadsand Stores—These instructions move data between memory and the GPRs.

* Saveand Restore—These instructions create and tear down stack frames.

e Computational—These instructions perform arithmetic, logical, and shift operations on valuesin registers.

» Jump and Branch—These instructions change the control flow of a program.

» Special—This category includes the Break and Extend instructions. Break transfers control to an exception han-
dler, and Extend enlarges the immediate field of the next instruction.

* Implemention-Definable Macro I nstructions—This category includes the capability of defining macros that
are replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.

Tables 1.4 through 1.12 list the MIPS16e instruction set.

Table 1.4 MIPS16e Load and Store Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
LB Load Byte Yes No
LBU Load Byte Unsigned Yes No
LD Load Doubleword Yes Yes
LH Load Halfword Yes No
LHU Load Halfword Unsigned Yes No
LW Load Word Yes No
Lwu Load Word Unsigned Yes Yes
SB Store Byte Yes No
SD Store Doubleword Yes Yes
SH Store Halfword Yes No
SW Store Word Yes No

Table 1.5 MIPS16e Save and Restore Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
RESTORE Restore Registers and Deallocate Stack Frame Yes No

38MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.9 MIPS16e Instruction Summaries

Extensible Implemented Only on
Mnemonic Instruction Instruction? MIPS64 Processors?
SAVE Save Registers and SetUp Stack Frame Yes No

Table 1.6 MIPS16e ALU Immediate Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
ADDIU Add Immediate Unsigned Yes No
CMPI Compare Immediate Yes No
DADDIU Doubleword Add Immediate Unsigned Yes Yes
LI Load Immediate Yes No
SLTI Set on Less Than Immediate Yes No
SLTIU Set on Less Than Immediate Unsigned Yes No

Table 1.7 MIPS16e Arithmetic One, Two or Three Operand Register Instructions

Extensible

Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
ADD Add Unsigned No No
AND AND No No
CMP Compare No No
DADDU Doubleword Add Unsigned No Yes
DSUBU Doubleword Subtract Unsigned No Yes
MOVE Move No No
NEG Negate No No
NOT Not No No
OR OR No No
SEB Sign-Extend Byte No No
SEH Sign-Extend Halfword No No
SEW Sign-Extend Word No Yes
SLT Set on Less Than No No
SLTU Set on Less Than Unsigned No No
SUBU Subtract Unsigned No No
XOR Exclusive OR No No
ZEB Zero-extend Byte No No
ZEH Zero-Extend Halfword No No
ZEW Zero-Extend Word No Yes

Table 1.8 MIPS16e Special Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
BREAK Breakpoint No No
EXTEND Extend No No

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

39

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

Table 1.9 MIPS16e Multiply and Divide Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
DDIV Doubleword Divide No Yes
DDIVU Doubleword Divide Unsigned No Yes
DIV Divide No No
DIVU Divide Unsigned No No
DMULT Doubleword Multiply No Yes
DMULTU Doubleword Multiply Unsigned No Yes
MFHI Move From HI No No
MFLO Move From LO No No
MULT Multiply No No
MULTU Multiply Unsigned No No

Table 1.10 MIPS16e Jump and Branch Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
B Branch Unconditional Yes No
BEQZ Branch on Equal to Zero Yes No
BNEZ Branch on Not Equal to Zero Yes No
BTEQZ Branch on T Equal to Zero Yes No
BTNEZ Branch on T Not Equal to Zero Yes No
nLl Jump and Link No No
JALR Jump and Link Register No No
JALRC Jump and Link Register Compact No No
JALX1 Jump and Link Exchange No No
JR Jump Register No No
JRC Jump Register Compact No No

1. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Table 1.11 MIPS16e Shift Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
DSLL Doubleword Shift Left Logical Yes Yes
DSLLV Doubleword Shift Left Logical Variable No Yes
DSRA Doubleword Shift Right Arithmetic Yes Yes
DSRAV Doubleword Shift Right Arithmetic Variable No Yes
DSRL Doubleword Shift Right Logical Yes Yes
DSRLV Doubleword Shift Right Logical Variable No Yes
SRA Shift Right Arithmetic Yes No
SRAV Shift Right Arithmetic Variable No No
SLL Shift Left Logical Yes No

40MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.10 MIPS16e PC-Relative Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
SLLV Shift Left Logical Variable No No
SRL Shift Right Logical Yes No
SRLV Shift Right Logical Variable No No

Table 1.12 Implementation-Definable Macro Instructions

Extensible Implemented Only on
Mnemonic Instruction Instruction? MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instructions Yes! No

1. The Implementation-Definable Macro I nstructions are always extended instructions. There are no 16-bit
macro instruction

1.10 MIPS16e PC-Relative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended ver-
sions. The four instructions are listed in Table 1.13.

Table 1.13 PC-Relative MIPS16e Instructions

Instruction Use
Load Word LW rx, offset(pc)
Load Doubleword LD ry, offset(pc)
Add Immediate Unsigned ADDIU rx, pc, immediate

Doubleword Add Immediate Unsigned DADDIU ry, pc, immediate

These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address cal culation.

Table 1.14 summarizes the address calcul ation base used for the various instruction combinations.

Table 1.14 PC-Relative Base Used for Address Calculation

Instruction BasePC Value

Non-extended PC-relative instruction not in Jump Address of instruction

Delay Slot

Extended PC-relative instruction Address of Extend instruction
Non-extended PC-relativeinstruction in JR or JALR Address of JR or JALR instruction
jump delay slot

Non-extended PC-relative instruction in JAL or Address of first JAL or JALX half-
JALX jump delay slot word

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calcul ated for
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in Tables 1.13 and 1.14, the PC value used as the
basisfor calculating the addressis referred to as the BasePC value. The BasePC equals the Exception Program
Counter (EPC) value associated with the PC-relative instruction.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 41

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

1.11 MIPS16e Extensible Instructions

This section explains the purpose of an Extend instruction, how to use it, and which MIPS16e instructions are exten-
sible.

The Extend instruction allows you to enlarge the immediate field of any MI1PS16e instruction whose immediate field
issmaller than theimmediate field in the equivalent 32-bit MIPS instruction. The Extend instruction is a prefix which
modifies the behavior of the instruction which followsit, and must alwaysimmediately precede the instruction whose
immediate field you want to extend. Every extended instruction uses 4 bytesin program memory instead of 2 bytes (2
bytesfor Extend and 2 bytes for the instruction being extended), and it can cross aword boundary. The PC value of an
extended instruction is the address of the halfword containing the Extend.

For example, the following MIPS16e instruction contains a five-bit immediate.

LW ry, offset(rx)

The immediate expands to 16 bits (ObOO000000O0 || offset || Ob00) before execution in the pipeline. This alows 32
different offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, thisinstruction can hold any
of the 65,536 valuesin the range -32768 through 32767 that are al so available with the 32-bit MIPS version of the LW
instruction.

Shift instructions are extended to unsigned immediates of 5 bits. All other immediate instructions expand to either
signed or unsigned 16-bit immediates. There are only two exceptions which can be extended to a 15-bit signed imme-
diate:

ADDIU ry, rx, immediate
DADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both alarger frame
size adjustment, and the ability to save and restore more registers than the non-extended version.

Once both halves of an extended instruction have been fetched and the instruction starts flowing down the pipeline,
the instruction istreated as a single entity, not as independent instructions. Thisimplies that an exception or interrupt
never reports an EPC value between the EXTEND and the instruction being extended, and that EJTAG single step
treats an instruction step as the execution of the entire extended instruction, not the components.

Thereis only one restriction on the location of extensible instructions. They may not be placed in jump delay slots.
Doing so causes UNPREDICTABLE results.

Table 1.15 lists the MIPS16e extensible instructions, the size of their immediate, and how much each immediate can
be extended when preceded with an Extend instruction. Executing an instruction which is not extensible (those which
are maked No in the “Extensible Instruction?’ column of Table 1.4 through Table 1.12, including the EXTEND
instruction itself) must cause a Reserved Instruction Exception.

Table 1.15 MIPS16e Extensible Instructions

Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
ADDIU Add Immediate Unsigned 4 (ADDIU ry, rx, imm) 15 (ADDIU ry, rx, imm)
8 16
B Branch Unconditional 11 16
BEQZ Branch on Equal to Zero 8 16
BNEZ Branch on Not Equal to Zero 8 16

42MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.12 MIPS16e Implementation-Definable Macro Instructions

Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
BTEQZ Branch on T Equal to Zero 8 16
BTNEZ Branch on T Not Equal to Zero 8 16
CMPI Compare Immediate 8 16
DADDIU Doubleword Add Immediate Unsigned 4 (DADDIU ry, rx, imm) 15 (DADDIU ry, rx, imm)

5 (or 8) 16
DSLL Doubleword Shift Left Logical 3
DSRA Doubleword Shift Right Arithmetic 3
DSRL Doubleword Shift Right Logical 3
LB Load Byte 5 16
LBU Load Byte Unsigned 5 16
LD Load Doubleword 5 16
LH Load Halfword 5 16
LHU Load Halfword Unsigned 5 16
LI Load Immediate 8 16
Lw Load Word 5(or 8) 16
Lwu Load Word Unsigned 5 16
RESTORE Restore Registers and Deallocate Stack 4 8

Frame

SAVE Save Registers and Set Up Stack Frame 4 8
SB Store Byte 5 16
SD Store Doubleword 5 (or 8) 16
SH Store Halfword 5 16
SLL Shift Left Logical 3 5
SLTI Set on Less Than Immediate 8 16
SLTIU Set on Less Than Immediate Unsigned 8 16
SRA Shift Right Arithmetic 3
SRL Shift Right Logical 3
SW Store Word 5 (or 8) 16

1.12 MIPS16e Implementation-Definable Macro Instructions

Previous revisions of the MIPS16e ASE assumed that most M1PS16e instructions mapped to a single 32-bit MIPS
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS
instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that asingle
MIPS16e instruction expand to a fixed sequence of multiple 32-bit instructions. The obvious extension to this capa-
bility isthe ability to define a Macro capability in which asingle extended M1PS16e instruction can be expanded into
a sequence of 32-bit MIPS instructions, with parameter substitution done between fields of the macro instruction and
fields of the expanded instructions. This is the concept behind the addition of Implementation-Definable Macro
Instructions to the MIPS16e ASE.

The term “Implementation-Definable” refers to the fact that the macro definitions are created when the processor is
implemented, rather than viaa programmabl e mechanism that is available to the user of the processor. The macro def-
initions, expansions, and parameter substitutions are defined when the processor isimplemented, and is therefore

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 43

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the next chapter.

1.13 MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with aone-instruction delay. That is, the instruction immediately
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have a delay slot. If abranch or jump is taken,
the instruction immediately following the branch or jump is never executed. If the branch or jump is not taken, the
instruction following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing so causes UNPREDICTABLE
results.

1.14 MIPS16e Instruction Formats

This section defines the format* for each M1PS16e instruction type and includes formats for both normal and
extended instructions.

Every MIPS16einstruction consists of 16 bits aligned on a halfword boundary. All variable subfieldsin an instruction
format (such as rx, ry, rz, and immediate) are shown in lowercase | etters.

The two instruction subfields op and funct have constant values for specific instructions. These values are given in
their uppercase mnemonic names. For example, op isLB in the Load Byte instruction; op isRRR and function is
ADDU in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized in Table 1.16.

Table 1.16 MIPS16e Instruction Fields

Field Definition
funct or f Function field
immediate 4-,5-, 8-, or 11-bit immediate, branch displacement, or
orimm address displacement
op 5-bit major operation code
rx 3-hit source or destination register specifier
ry 3-bit source or destination register specifier
rz 3-hit source or destination register specifier
sa 3- or 5-bit shift amount

1. Asused here, the term format means the layout of the MIPS16e instruction word.

44MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.141

1.14.2

1.14.3

1.14.4

1.14.5

1.14.6

1.14.7

1.14.8

1.14 MIPS16e Instruction Formats

I-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| op | immediate

RI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| op immediate

|

RR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
RR

X

ryt funct

1. When the funct field is either CNVT or J(AL)R(C), thery field encodes a
sub-function to be performed rather than a register number

RRI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| op | ry immediate

X

RRR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RRR | ry

X

RRI-A type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| RRI-A | ry | f | immediate

X

Shift instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
SHIFT ry 1 f

X

1. The three-bit sa field can encode a shift amount of O through 7. 0 bit shifts
(NOPs) are not possible; a0 value trandlates to a shift amount of 8.

I8-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 18 | immediate

funct

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

45

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

1.14.9 18 MOVRS32 instruction format (used only by the MOVR32 instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 18 | funat | ry | 3240 |

1.14.10 18_MOV32R instruction format (used only by MOV32R instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
18 funct r32[2:0,4:3]* rz

1. The r32 field uses specia bit encoding. For example, the encoding for $7
(00111) is 11100 in the r32 field.

1.14.11 I18_SVRS instruction format (used only by the SAVE and RESTORE instruc-
tions)

15 14 13 12 11 10 9 8 7 6 5 4 3 0
| 18 | SVRS |s|ra|so|sl| framesize

1.14.12 164-type instruction format

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 164 | funct immediate

1.14.13 RI64-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 164 | funct | ry immediate

1.14.14 JAL and JALX instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
JAL x1| immediate 20:16 immediate 25:21 immediate 15:0

1. If x=0, instruction isJAL. If x=1, instructionis JALX.
1.14.15 EXT-l instruction format

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND | immediate105 | immediate15:11 op | o|of[of[o]o]o] immediate4:0

1.14.16 ASMACRO instruction format

31 30 290 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND | sdet | p4a | p3 RRR R | p | po

46MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.14 MIPS16e Instruction Formats

1.14.17 EXT-RI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND | immediate 10:5 | immediate 15:11 op rx | O| O| O| immediate 4.0

1.14.18 EXT-RRI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND | immediate 10:5 | immediate 15:11 op rx | ry | immediate 4.0

1.14.19 EXT-RRI-A instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| ExTEND | immediate 10:4 | immia11 RRI-A x | oy [f] imm3o

1.14.20 EXT-SHIFT instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND sa4.0 s 0[0]0[0]|O0 SHIFT rx ry 0/0]|0 f

1. s5isequivalent to sab, the most significant bit of the 6-bit shift amount (sa) field. For extended DSLL shifts, this bit may be either O
or 1. For all 32-bit extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts
are possible using the extended format.

1.14.21 EXT-I8 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 15:11 | 18 | funct |o|o|o| immediate 4:0 |

1.14.22 EXT-18 _SVRS instruction format (used only by the SAVE and RESTORE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | XSregs | framesize 7:4 | O| aregs | 18 | SVRS | s|ra|90|sl| framesizeS:0|

instructions)
1.14.23 EXT-164 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 15:11 164 funct |o|o|o| immediate 4:0

1.14.24 EXT-RI64 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| EXTEND | immediate 10:5 | immediate 15:11 164 funct | ry | immediate 4:0

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 47

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

1.14.25 EXT-SHIFT64 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND sa4:.0 sl 0[0| 0|00 RR 0|0|o0 ry function

1. s5isequivalent to sab, the most-significant bit of the 6-bit shift amount (sa) field. None of the extended shift instructions perform the
0-to-8 mapping, so 0 bit shifts are possible using the extended format.

1.15 Instruction Bit Encoding

Table 1.18 through Table 1.26 describe the encoding used for the MIPS16e ASE. Table 1.17 describes the meaning
of the symbols used in the tables.

Table 1.17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

1 Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-hit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction Excep-
tion (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to which
accessis allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a
coprocessor to which access is not allowed).

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technol ogies when one of these encodingsis used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of thisencoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

(] Operation or field codes marked with this symbol are obsolete and will be removed from a future

revision of the MIPS64 | SA. Software should avoid using these operation or field codes.

48MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

1.15 Instruction Bit Encoding

Table 1.17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

® Operation or field codes marked with this symbol are not extensible (see Section 1.11, "MIPS16e
Extensible Instructions’ on page 42). Executing such an instruction with an EXTEND prefix must
cause a Reserved Instruction Exception.

Table 1.18 MIPS16e Encoding of the Opcode Field

opcode | bits13..11
0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0| 00 | ADDIUSP! | ADDIUPC2 B JAL(X) & BEQZ BNEZ SHIFT S LD L
1] 01| RRI-AS | ApDIUg® | SLTI SLTIU 185 LI CMPI DL
2| 10 LB LH W LW LBU LHU LWPC5 | LWU L
3| 11 SB SH SWSPP Sw RRR RRS |[EXTEND 6¢| 164581

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS8 opcode is used by the ADDIU rx, immediate instruction

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

Table 1.19 MIPS16e JAL(X) Encoding of the x Field

X bit 26

0 1
JAL ¢ JALX ¢

Table 1.20 MIPS16e SHIFT Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
SLL DSLL L SRL SRA

Table 1.21 MIPS16e RRI-A Encoding of the f Field
f bit 4
0 1
ADDIU' [DADDIU? L

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 49

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

2. The DADDIU function is used
by the DADDIU ry, rx, immedi-
ate instruction

Table 1.22 MIPS16e 18 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ | BTNEZ | swRrASP!| ADJSP? | SVRSS |IMOV32R3¢ * MOVR32* ¢

1. The SWRASP function is used by the SW ra, offset(sp) instruction

2. The ADJSP function is used by the ADDIU sp, immediate instruction

3. The MOV 32R function is used by the MOVE r32, rz instruction

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 1.23 MIPS16e RRR Encoding of the f Field
f bits 1..0
0 1 2 3
00 01 10 11
DADDU l¢ | ADDU¢ |DSUBU ¢ SUBU ¢
Table 1.24 MIPS16e RR Encoding of the Funct Field
funct bits2..0
0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 | JAL)R(C)S | SDBBPeg SLT ¢ SLTU ¢ SLLV ¢ BREAK ¢ SRLV ¢ SRAV ¢
1| 01 DSRL L * CMP ¢ NEG ¢ AND ¢ OR¢ XOR ¢ NOT ¢
21 10 MFHI ¢ CNVT $ MFLO ¢ DSRA L DSLLV l¢ * DSRLV 1¢ DSRAV 1¢
3| 11 MULT ¢ MULTU ¢ DIV ¢ DIVU ¢ DMULT l¢ |DMULTU e DDIV l¢g DDIVU ¢
Table 1.25 MIPS16e 164 Encoding of the funct Field
funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
LDSP' L | SDSP’ 1 |SDRASP® L|DADJSP* L| LDPC® L |DADDIUS® |pADDIUPC!| DADDI-
1 1 USP® L

1. The LDSP function is used by the LD ry, offset(sp) instruction
2. The SDSP function is used by the SD ry, offset(sp) instruction
3. The SDRASP function is used by the SD ra, offset(sp) instruction

4. The DADJSP function is used by the DADDIU sp, immediate instruction

5. The LDPC function is used by the LD ry, offset(pc) instruction

6. The DADDIUS function is used by the DADDIU ry, immediate instruction
7. The DADDIUPC function is used by the DADDIU ry, pc, immediate instruction

8. The DADDIUSP function is used by the DADDIU ry, sp, immediate instruction

50MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Table 1.27 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

Table 1.26 MIPS16e 18 Encoding of the s Field when funct=SVRS

1.16 MIPS16e Instruction Stream Organization and Endianness

S bit 7
0 1
RESTORE SAVE

ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JRrxe JRrag JALR¢ JRCrx ¢ JRCrag¢ | JALRC¢
Table 1.28 MIPS16e RR Encoding of the ry Field when funct=CNVT
ry bits 7.5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ¢ ZEH ¢ ZEW lg * SEB ¢ SEH ¢ SEW L¢ *

1.16 MIPS16e Instruction Stream Organization and Endianness

Theinstruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

* Ona32-hit processor in big-endian mode, thefirst instruction is read from bits 31..16 and the second instruction
isread from bits 15..0

* Ona32-hit processor in little-endian mode, thefirst instruction is read from bits 15..0 and the second instruction
isread from bits 31..16

The aboverule also appliesto all extended instructions, since they consist of two 16-bit halfwords. Similarly, JAL and
JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to
them.

For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an argu-
ment fetches the instruction independent of system endianness.

1.17 MIPS16e Instruction Fetch Restrictions

When the processor is running in MIPS16e mode and fetch address is in uncacheable memory, certain restrictions
apply to the width of each instruction fetch. Under these circumstances, the processor never fetches more than an
aligned word during each instruction fetch. It is UNPREDICTABLE whether the processor fetches asingle aligned
word, or two aligned halfwords during each instruction fetch.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 51

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

52MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

The MIPS16e™ ASE Instruction Set

1.1 MIPS16e™ Instruction Descriptions

This chapter provides an alphabetical listing of theinstructionslisted in Table 1.4 through Table 1.12.

1.1.1 Pseudocode Functions Specific to MIPS16e™

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are used in the
Operation section of each MIPS16e instruction description.

1.1.1.1 Xlat

The Xlat function translates the MIPS16e register field index to the correct 32-bit MIPS physical register index. Itis
used to assure that a value of 0b000 in a M1PS16e register field mapsto GPR 16, and a value of 0b001 mapsto GPR
17. All other values (0b010 through 0b111) map directly.

Figure 1-1 Xlat Pseudocode Function
PhyReg ¢~ Xlat (i)
/* PhyReg: Physical register index, in the range 0..7 */
/* 1: Opcode register field index */
if (1 < 2) then
Xlat < 1 + 16
else

Xlat < i
endif

endfunction Xlat

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 53

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand) ADDIU

15 11 10 8 7 0
ADDIU8 . .
01001 rx immediate
5 3 8
Format: ADDIU rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand)
To add a constant to a 32-bit integer.

Description: GPR[rx] <« GPR[rx] + immediate

The 8-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)])) then
UNPREDICTABLE

endif

temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)

GPR[Xlat (rx)] ¢ sign_extend(tempsz;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

54MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU

31 27 26 21 20 16 15 1 10 8 7 5 4 0
EXTEND .) . . ADDIU8 0 . .
11110 imm 10:5 imm 15:11 01001 rx 000 imm 4.0
5 6 5 5 3 3 5
Format: ADDIU rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
To add a constant to a 32-bit integer.

Description: GPR[rx] <« GPR[rx] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)])) then
UNPREDICTABLE

endif

temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)

GPR[Xlat (rx)] ¢ sign_extend(tempsz;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 55

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand) ADDIU

15 11 10 8 7 5 4 3 0
RRI-A ADDIU . .
01000 rx ry 0 immediate
5 3 3 1 4
Format: ADDIU ry, rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand)
To add a constant to a 32-bit integer.

Description: GPR[ry] < GPR[rx] + immediate

The 4-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)])) then
UNPREDICTABLE

endif

temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)

GPR[Xlat(ry)] ¢ sign_extend(temps;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

56MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND . . imm RRI-A ADDIU . .
11110 imm 10:4 14:11 01000 rx ry 0 imm 3.0
5 7 4 5 3 3 1 4
Format: ADDIU ry, rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, Extended)
To add a constant to a 32-bit integer.

Description: GPR[ry] < GPR[rx] + immediate

The 15-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
sign-extended and placed into GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR rx does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(rx)])) then
UNPREDICTABLE

endif

temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)

GPR[Xlat(ry)] ¢ sign_extend(temps;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 57

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU

15 11 10 8 7 0
ADDIUPC . .
00001 rx immediate
5 3 8
Format: ADDIU rx, pc, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative)

To add a constant to the program counter.

Description: GPR[rx] <« PC + (immediate << 2)

The 8-bit immediate is shifted left two bits, zero-extended, and added to either the address of the ADDIU instruction
or the address of the jump instruction in whose delay slot the ADDIU is executed. Thisresult (with its two lower bits
cleared) is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

If the base PC is outside the 32-bit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the opera-
tionis UNPREDICTABLE.

Operation:

I-1: base_pc ¢ PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢« PC
endif
if NotWordValue (base_pc) then
UNPREDICTABLE
endif
temp ¢ (base_DCgpripn-1. 2 + zZero_extend (immediate)) || 02)
GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. Thisis because the final PC valueis required to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not also a sign-
extended value. In such cases, DADDIUPC should be used instead.

Since the 8-bit immediate is shifted | eft two bits before being added to the PC, the rangeis 0, 4, 8..1020.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

58MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . , . _ ADDIUPC 0 o
11110 imm 10:5 imm 15:11 00001 rx 000 imm 4.0
5 6 5 5 3 3 5
Format: ADDIU rx, pc, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
To add a constant to the program counter.

Description: GPR[rx] <« PC + immediate

The 16-bit immediate is sign-extended and added to the address of the ADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared.

Theresult of the addition is sign-extended and placed in GPR rx.
No integer overflow exception occurs under any circumstances.

Restrictions:
A PC-relative, extended ADDIU may not be placed in the delay slot of ajump instruction.

If the PC is outside the 32-bit Compatibility Address Space (i.e., bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if NotWordvalue(PC) then
UNPREDICTABLE
endif
temp ¢ (PCgprrmn-1..2 || 0%) + sign_extend(immediate)

GPR[Xlat (rx)] ¢ sign_extend(tempsq)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The use of the ADDIUPC instruction on a MIPS64 processor in which the PC is outside the 32-bit Compatibility
Address Space will not produce the expected result. Thisis because the final PC value isrequired to be sign-extended
from the least-significant 32 bits, and such a value will not generate the correct address if PC is not also a sign-
extended value. In such cases, DADDIUPC should be used instead.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add (using ADDIUPC for
MIPS32 or DADDIUPC for MIPS64 code).

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 59

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU

15 11 10 8 7 0
18 ADJSP . .
01100 011 mmegiiate
5 3 8
Format: ADDIU sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative)
To add a constant to the stack pointer.

Description: GPR[sp] < GPR[sp] + immediate

The 8-bit immediate is shifted left three bits, sign-extended, and then added to the contents of GPR 29 to form a 32-bit
result. The result is sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if (NotWordvalue (GPR[29])) then
UNPREDICTABLE
endif
temp ¢ GPR[29] + sign_extend(immediate || 03)

GPR[29] ¢« sign_extend(temps;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

60MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND .) . . 18 ADJSP 0 . .
11110 imm 10:5 imm 15:11 01100 011 000 imm 4.0
5 6 5 5 3 3 5
Format: ADDIU sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
To add a constant to the stack pointer.

Description: GPR[sp] <« GPR[sp] + immediate

The 16-bit immediate is sign-extended, and then added to the contents of GPR 29 to form a 32-bit result. Theresult is
sign-extended and placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

If GPR 29 does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[29])) then
UNPREDICTABLE

endif

temp ¢ GPR[29] + sign_extend(immediate)

GPR[29] ¢« sign_extend(temps;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 61

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Add Immediate Unsigned Word (3-Operand, SP-Relative)

15 11 10

ADDIU

ADDIUSP
00000

(D¢

immediate

5

Format: ADDIU rx, sp, immediate

Purpose: Add Immediate Unsigned Word (3-Operand, SP-Relative)

To add a constant to the stack pointer.

Description: GPR[rx] < GPR[sp] + immediate

3

8

MIPS16e

The 8-bit immediate is shifted |eft two bits, zero-extended, and then added to the contents of GPR 29 to form a 32-bit

result. The result is sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None
Operation:
if (NotWordvalue (GPR[29])) then
UNPREDICTABLE
endif
temp ¢ GPR[29] + zero_extend(immediate || 02)

GPR[Xlat (rx)] ¢ sign_extend(tempsz;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-

ments that ignore overflow, such as C language arithmetic.

62MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended)

ADDIU

31 27 26 21 20 16 15 11 10 0
EXTEND . , . _ ADDIUSP 0 o
11110 imm 10:5 imm 15:11 00000 rx 000 imm 4.0
5 6 5 5 3 3 5
Format: ADDIU rx, sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended)

To add a constant to the stack pointer.

Description: GPR[rx] <« GPR[sp] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The result is
sign-extended and placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

if (NotWordValue (GPR[29]))

UNPREDICTABLE

endif

temp ¢ GPR[29] + sign_extend(immediate

GPR[Xlat (rx)] ¢ sign_extend(tempsz;)

Exceptions:
None

Programming Notes:

then

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

63

Add Unsigned Word (3-Operand) ADDU

15 11 10 8 7 5 4 2 1 0
RRR x ; rz ADDU
11100 y o1
5 3 3 3 2
Format: ADDU rz, rx, ry M| PS16e

Purpose: Add Unsigned Word (3-Operand)
To add 32-hit integers.

Description: GPR[rz] < GPR[rx] + GPR[ry]

The contents of GPR rx and GPR ry are added together to form a 32-bit result. The result is sign-extended and
placed into GPR rz

No integer overflow exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[Xlat (rx)]) or NotWordValue (GPR[Xlat(ry)]) then
UNPREDICTABLE

endif

temp ¢ GPR[Xlat(rx)] + GPR[Xlat(ry)]

GPR[Xlat (rz)] ¢ sign_extend(tempsz;)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

64MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

AND AND
15 11 10 8 7 5 4 0
RR " r AND
11101 y 01100
5 3 3 5
Format: AND rx, ry M| PS16e

Purpose: AND

To do abitwise logical AND.

Description: GPR[rx] < GPR[rx] AND GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical AND operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)]

Exceptions:
None

¢ GPR[Xlat(rx)] and GPR[Xlat(ry)]

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

65

Application-Specific Macro Instructions ASMACRO

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
EXTEND RRR
11110 slect P4 P3 11100 b2 pl PO
5 3 3 5 5 3 3 5
Format: ASMACRO select,p0,pl,p2,p3,pd M| PS16e

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specific macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose: Application-Specific Macro Instructions

To execute an implementati on-definable macro instruction.

Description:

The ASMACRO instruction is the programming interface to the implementation-definable macro instruction facility
that is defined by the M1PS16e architecture.

The select field specifies which of 8 possible macros is expanded. The definition of each macro specifies how the
parameters p0, p1, p2, p3, and p4 are substituted into the 32-hit instructions with which the macro is defined. The exe-
cution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definable macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.
Restrictions:

The 32-bit instructions with which the macro is defined must by chosen with care. Issues of atomicity, restartability of
the instruction sequence, and similar factors must be considered when using the implementation-definable macro
instruction facility. Failure to do so can cause UNPREDICTABLE behavior.

If implementation-definable macro instructions are not implemented by the processor, or if the select field references
a specific macro which is not implemented by the processor, a Reserved Instruction exception is signaled.
Operation:

ExecuteMacro (sel,p0,pl,p2,p3,p4)

Exceptions:

Reserved Instruction
Others as may be generated by the 32-bit instructions included in each macro expansion.

Programming Notes:

Implementations may impose certain restrictions on 32-bit instructions are supported within an ASMACRO instruc-
tion. For instance, many implementations may not allow loads, stores, branches or jumps within an ASMACRO defi-
nition. Refer to the Users Guide for each processor which implements this capability for alist of macros defined and
implemented by that processor, and for any specific restrictions imposed by that processor.

66MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Unconditional Branch B

15 11 10 0
B
00010 offset
5 11
Format: B offset MIPS16e

Purpose: Unconditional Branch
To do an unconditional PC-relative branch.

Description: branch

The 11-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ¢~ PC + 2 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit M1PS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 67

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Unconditional Branch (Extended) B

31 27 26 21 20 16 15 11 10 5 4 0
EXTEND _ . B 0 .
11110 offset 10:5 offset 15:11 00010 000000 offset 4:0
5 6 5 5 6 5
Format: B offset MIPS16e

Purpose: Unconditional Branch (Extended)
To do an unconditional PC-relative branch.

Description: branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ¢~ PC + 4 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit M1PS mode, which inter-
prets the offset value as word-aligned.

68MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Branch on Equal to Zero BEQZ

15 11 10 8 7 0
BEQZ
00100 rx offset
5 3 8
Format: BEQZ rx, offset M| PS16e

Purpose: Branch on Equal to Zero
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] = 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[Xlat (rx)] = QCPRLEN)
if condition then

PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 69

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Equal to Zero (Extended) BEQZ
31 27 26 21 20 16 15 11 10 0
EXTEND !) BEQZ 0)
11110 offset 10:5 offset 15:11 00100 rx 000 offset 4.0
5 6 5 5 3 3 5
Format: BEQZ rx, offset M| PS16e

Purpose: Branch on Equal to Zero (Extended)
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx]

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:

None

0) then branch

tgt_offset ¢ sign_extend(offset || 0)

condition ¢ (GPR[Xlat (rx)] = QCPRLEN)

if condition then
PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

70MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Branch on Not Equal to Zero BNEZ

15 11 10 8 7 0
BNEZ
00101 rx offset
5 3 8
Format: BNEZ rx, offset M| PS16e

Purpose: Branch on Not Equal to Zero
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[Xlat (rx)] # 0CFRLEN)
if condition then

PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 71

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Branch on Not Equal to Zero (Extended) BNEZ
31 27 26 21 20 16 15 11 10 0
EXTEND _ . BNEZ 0 .
11110 offset 10:5 offset 15:11 00101 rx 000 offset 4.0
5 6 5 5 3 3 5
Format: BNEZ rx, offset M| PS16e

Purpose: Branch on Not Equal to Zero (Extended)
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)

condition ¢ (GPR[Xlat (rx)] # 0CFRLEN)

if condition then
PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

72MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Breakpoint

15

11 10 8 7 5 4

BREAK

RR
11101

code

BREAK
00101

5

Format.: BREAK immediate

Purpose: Breakpoint

To cause a Breakpoint exception.

Description:

MIPS16e

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:
None

Operation:

SignalException (Breakpoint)

Exceptions:
Breakpoint

Programming Notes:

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory halfword containing the instruction.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

73

Branch on T Equal to Zero BTEQZ

15 11 10 8 7 0
18 BTEQZ
01100 000 offset
5 3 8
Format. BTEQZ offset MIPS16e

Purpose: Branchon T Equal to Zero
To test specia register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] = OCFRLEN)
if condition then
PC ¢« PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

74AMIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Branch on T Equal to Zero (Extended) BTEQZ
31 27 26 21 20 16 15 11 10 8 0
EXTEND !) 18 BTEQZ 000)
11110 offset 10:5 offset 15:11 01100 000 0 offset 4.0
5 6 5 5 3 3 5
Format: BTEQZ offset MIPS16e

Purpose: Branch on T Equal to Zero (Extended)
To test specia register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] = OCFRLEN)
if condition then

PC ¢« PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

75

Branch on T Not Equal to Zero BTNEZ

15 11 10 8 7 0
18 BTNEZ
01100 001 offset
5 3 8
Format. BTNEZ offset MIPS16e

Purpose: Branchon T Not Equal to Zero
To test specia register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

The 8-hit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] # 0CFRLEN)
if condition then
PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

76MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Branch on T Not Equal to Zero (Extended) BTNEZ
31 27 26 21 20 16 15 11 10 8 0
EXTEND !) 18 BTNEZ 000)
11110 offset 10:5 offset 15:11 01100 001 0 offset 4.0
5 6 5 5 3 3 5
Format: BTNEZ offset MIPS16e

Purpose: Branch on T Not Equal to Zero (Extended)
To test specia register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

The 16-bit offset is shifted |eft 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] # 0CFRLEN)
if condition then

PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset isinterpreted as halfword-aligned. Thisis unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

77

15 11 10

RR
11101

rx

CMP
01010

5

Format: cMP rx, ry

Purpose: Compare
To compare the contents of two GPRs.

Description: T « GPR[rx] XOR GPR[ry]
The contents of GPR ry are Exclusive-ORed with the contents of GPR rx. The result is placed into GPR 24.

Restrictions:
None

Operation:

GPR[24] « GPR[Xlat(ry)] xor GPR[Xlat (rx)]

Exceptions:
None

MIPSl6e

78MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-

tecture, Revision 2.60

Compare Immediate

CMPI

15 11 10 8 0
CMPI . .
01110 rx immediate
5 3 8
Format: cMPI rx, immediate

Purpose: Compare Immediate

To compare a constant with the contents of a GPR.

Description: T < GPR[rx] XOR immediate
The 8-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. Theresult is placed into GPR

24,

Restrictions:
None

Operation:

GPR[24] ¢« GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:
None

MIPS16e

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

79

Compare Immediate (Extended) CMPI

31 27 26 21 20 16 15 1 10 8 7 5 4 0
EXTEND .) . . CMPI 000 . .
11110 imm 10:5 imm 15:11 01110 rx 0 imm 4.0
5 6 5 5 3 3 5
Format: cMPI rx, immediate M| PS16e

Purpose: Compare Immediate (Extended)
To compare a constant with the contents of a GPR.

Description: T < GPR[rx] XOR immediate

The 16-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into
GPR 24.

Restrictions:

None

Operation:

GPR[24] ¢« GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:
None

80MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Immediate Unsigned (2-Operand) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUS . .
11111 101 ry immediate
5 3 3 5
Format: DADDIU ry, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (2-Operand)
To add a constant to a 64-bit integer.

Description: GPR[ry] <« GPR[ry] + immediate

The 5-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat(ry)] <« GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 81

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (2-Operand, Extended) DADDIU

31 27 26 21 20 16 15 1 10 8 7 5 4 0
EXTEND . ! . . 164 DADDIU5S . .
11110 imm 10:5 imm 15:11 11111 101 ry imm 4:0
5 6 5 5 3 3 5
Format: DADDIU ry, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (2-Operand, Extended)
To add a constant to a 64-bit integer.

Description: GPR[ry] <« GPR[ry] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR ry to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat(ry)] <« GPR[Xlat(ry)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

82MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Immediate Unsigned (3-Operand) DADDIU

15 11 10 8 7 5 4 3 0
RRI-A DADDIU . .
01000 rx ry 1 immediate
5 3 3 1 4
Format: DADDIU ry, rx, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand)
To add a constant to a 64-hit integer.

Description: GPR[ry] ¢« GPR[rx] + immediate

The 4-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat(ry)] <« GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 83

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, Extended) DADDIU

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND . i . . RRI-A DADDIU| . .
11110 imm 10:4 imm 14:11 01000 rx ry 1 imm 3.0
5 7 4 5 3 3 1 4
Format: DADDIU ry, rx, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand, Extended)
To add a constant to a 64-bit integer.

Description: GPR[ry] ¢« GPR[rx] + immediate

The 15-bit immediate is sign-extended to 64 bits and then added to the contents of GPR rx to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat(ry)] <« GPR[Xlat(rx)] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

84MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUPC . .
11111 110 ry immediate
5 3 3 5
Format: DADDIU ry, pc, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand, PC-Relative)
To add a constant to the program counter.

Description: GPR[ry] « PC + (immediate << 2)

The 5-bit immediate is shifted left 2 bits, zero-extended, and added either to the address of the DADDIU instruction
or to the address of the jump instruction in whose delay slot the DADDIU is executed. This result (with its 2 lower
bits cleared) isplaced in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:

Operation:
I-1: base_pc & PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢ PC
endif
GPR[Xlat (ry)] ¢ (base_pCgprigy-1..2 + zero_extend(immediate)) || 02
Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 85

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, PC-Relative, Extended) DADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . , . _ 164 DADDIUPC o
11110 imm 10:5 imm 15:11 11111 110 ry imm 4:0
5 6 5 5 3 3 5
Format: DADDIU ry, pc, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand, PC-Relative, Extended)

To add a constant to the program counter.

Description: GPR[ry] < PC + immediate

The 16-bit immediate is sign-extended and added to the address of the DADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared. The result of the addition is placed in GPR ry.

No integer overflow exception occurs under any circumstances.

Restrictions:
A PC-relative extended DADDIU may not be placed in the delay slot of ajump instruction.

Operation:
temp ¢ (PCqprren-1..2 || 0?) + sign_extend(immediate)
GPR[Xlat (ry)] " tempgs, o

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

86MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative) DADDIU

15 11 10 8 7 0
164 DADJSP . .
11111 011 immediate
5 3 8
Format: DADDIU sp, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (2-Operand, SP-Relative)
To add a constant to the stack pointer.

Description: GPR[sp] ¢« GPR[sp] + immediate

The 8-bit immediate is shifted left 3 bits, sign-extended to 64 bits, and then added to the contents of GPR 29 to form
a 64-hit result. Theresult is placed in GPR 29.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[29] ¢ GPR[29] + sign_extend(immediate || 03)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 87

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (2-Operand, SP-Relative, Extended) DADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 164 DADDJSP 000 . .
11110 imm 10:5 imm 15:11 11111 011 0 imm 4.0
5 6 5 5 3 3 5
Format: DADDIU sp, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (2-Operand, SP-Rel ative, Extended)
To add a constant to the stack pointer.

Description: GPR[sp] <« GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and then added to the contents of GPR 29 to form a 64-bit result. The
result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[29] ¢ GPR[29] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

88MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative) DADDIU

15 11 10 8 7 5 4 0
164 DADDIUSP . .
11111 111 ry immediate
5 3 3 5
Format: DADDIU ry, sp, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand, SP-Relative)
To add a constant to the stack pointer.

Description: GPR[ry] < GPR[sp] + immediate

The 5-bit immediate is shifted |eft 2 bits, zero-extended to 64 bits, and added to the contents of GPR 29 to form a
64-bit result. Theresult isplaced in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat (ry)] ¢ GPR[29] + zero_extend(immediate || 02)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 89

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Add Immediate Unsigned (3-Operand, SP-Relative, Extended) DADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . , . , 164 DADDIUSP o
11110 imm 10:5 imm 15:11 11111 111 ry imm 4:0
5 6 5 5 3 3 5
Format: DADDIU ry, sp, immediate M | PS16e (64-bit only)

Purpose: Doubleword Add Immediate Unsigned (3-Operand, SP-Rel ative, Extended)
To add a constant to the stack pointer.

Description: GPR[ry] < GPR[sp] + immediate

The 16-bit immediate is sign-extended to 64 bits and added to the contents of GPR 29 to form a 64-bit result. The
resultis placed in GPR ry.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[Xlat (ry)] ¢ GPR[29] + sign_extend(immediate)

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

90MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Add Unsigned (3-Operand) DADDU

15 11 10 8 7 5 4 2 1 0
RRR x ; rz DADDU
11100 y 00
5 3 3 3 2
Format: DaADDU rz, rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Add Unsigned (3-Operand)
To add 64-hit integers.

Description: GPR[rz] < GPR[rx] + GPR[ry]
The contents of GPR ry are added to the contents of GPR rx. The 64-bit result is placed into GPR rz.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation:
GPR[Xlat (rz)] ¢ GPR[Xlat(rx)] + GPR[Xlat(ry)]

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 91

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Divide DDIV

15 11 10 8 7 5 4 0
RR " r DDIV
11101 y 11110
5 3 3 5
Format: DDIV rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Divide
To divide 64-hit signed integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as signed
values. The 64-bit quotient is placed into specia register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If thedivisor in GPR ry is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
LO ¢ GPR[Xlat(rx)] div GPR[Xlat(ry)]
HI < GPR[Xlat(rx)] mod GPR[Xlat(ry)]
Exceptions:
Reserved Instruction

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS |V and MIPS32 and all
subsequent levels of the architecture.

92MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Divide Unsigned DDIVU

15 11 10 8 7 5 4 0
RR " r DDIVU
11101 y 11111
5 3 3 5
Format: DDIVU rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Divide Unsigned
To divide 64-hit unsigned integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 64-bit doubleword in GPR rx is divided by the 64-bit doubleword in GPR ry, treating both operands as unsigned
values. The 64-bit quotient is placed into specia register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If thedivisor in GPR ry is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
g « (0 || GPRI[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r « (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])

LO < de3..0
HI < r63__o

Exceptions:
Reserved Instruction

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS |V and MIPS32 and all
subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 93

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Divide Word DIV

15 11 10 8 7 5 4 0
RR " r DIV
11101 y 11010
5 3 3 5
Format: DIV rx, ry M| PS16e

Purpose: Divide Word
To divide 32-hit signed integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as signed values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-bit remainder is sign-extended
and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-hit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

if (NotWordValue (GPR[Xlat (rx)]) or NotWordValue (GPR[Xlat(ry)])) then
UNPREDICTABLE

endif

a ¢ GPR[Xlat(rx)] div GPR[Xlat (ry)]

r ¢ GPR[Xlat(rx)] mod GPR[Xlat (ry)]

LO ¢ sign_extend(qgsqi.)

HI < sign_extend(rsz; g)

Exceptions:
None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

Where the size of the operands are known, software should place the shorter operand in GPR ry. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance

94MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Divide Word DIV

improvement by scheduling the divide so that other instructions can executein parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 95

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Divide Unsigned Word DIVU

15 11 10 8 7 5 4 0
RR " r DIVU
11101 y 11011
5 3 3 5
Format: DIVU rx, ry M| PS16e

Purpose: Divide Unsigned Word
To divide 32-hit unsigned integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as unsigned values.
The 32-bit quotient is sign-extended and placed into special register LO, and the 32-bit remainder is sign-extended
and placed into special register HI.

Restrictions:

If either GPR rx or GPR ry does not contain sign-extended 32-hit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

If thedivisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:
if (NotWordValue (GPR[Xlat (rx)]) or NotWordValue (GPR[Xlat(ry)])) then
UNPREDICTABLE
endif
g < (0 || GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r < (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])

)]
)]
LO ¢ sign_extend(ds;. g)
HI < sign_extend(rszq)
Exceptions:
None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS |V and
MIPS32 and all subsequent levels of the architecture.

96MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Multiply DMULT

15 11 10 8 7 5 4 0
RR " r DMULT
11101 y 11100
5 3 3 5
Format: DMULT rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Multiply
To multiply 64-bit signed integers.

Description: (Lo, HI) < GPR[rx] X GPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as signed
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into specia register LO,
and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.
Restrictions:

Operation:

prod ¢« GPR[Xlat(rx)] X GPR[Xlat(ry)]
LO « prodgs. g
HI < prodij;. .64

Exceptions:
Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subsequent instruc-
tions that write to them by two or moreinstructions. This restriction was removed in MIPS 1V and all subsequent lev-
els of the architecture.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 97

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Multiply Unsigned DMULTU

15 11 10 8 7 5 4 0
RR " r DMULTU
11101 y 11101
5 3 3 5
Format: DMULTU rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Multiply Unsigned
To multiply 64-bit unsigned integers.

Description: (Lo, HI) ¢~ GPR[rx] X GPR[ry]

The 64-bit doubleword value in GPR rx is multiplied by the 64-bit value in GPR ry, treating both operands as
unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special reg-
ister LO, and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.
Restrictions:

Operation:

prod « (0] |GPR[Xlat(rx)]) X (0] |GPR[Xlat (ry])
LO < prodgs. g
HI « prodiz;. 64

Exceptions:
Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO specia register must be separated from subsequent instruc-
tions that write to them by two or moreinstructions. This restriction was removed in MIPS 1V and all subsequent lev-
els of the architecture.

98MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Archi-
tecture, Revision 2.60

Doubleword Shift Left Logical

15 11 10 8

1

DSLL

0

SHIFT

00110 X

ry

DSLL
01

5 3

Format: DSLL rx, ry, sa

Purpose: Doubleword Shift Left Logical

To execute a left-shift of a doubleword by afixed amount—1 to 8 hits.

Description: GPR[rx] ¢« GPR[ry] << sa

2

MIPS16e (64-bit only)

The 64-bit doubleword contents of GPR ry are shifted |eft, and zeros are inserted into the emptied low-order bits. The
3-bit sa field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The 64-bit result is

placed into GPR rx.
Restrictions:

Operation: 64-bit processors

if sa = 0° then
s < 8
else
s « 03 || sa
endif

GPR[Xlat (rx)] <« GPR[Xlat(ry)](6}s)'

Exceptions:

Reserved Instruction

o | 0®

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

99

Doubleword Shift Left Logical (Extended) DSLL

31 27 26 22 21 20 16 15 11 10 8 7 5 4 2 1 0
EXTEND 40 < 0 SHIFT N r 0 |DSLL
11110 : 00000 00110 y 000 01
5 5 1 5 5 3 3 3 2
Format: DsLL rx, ry, sa M | PS16e (64-bit only)

Purpose: Doubleword Shift Left Logical (Extended)
To execute a left-shift of a doubleword by afixed amount—O to 63 bits.

Description: GPR[rx] ¢« GPR[ry] << sa

The 64-bit doubleword contents of GPR ry are shifted |eft, and zeros are inserted into the emptied low-order bits. The
s5 hit and the 5-bit sa field specify the effective 6-bit-shift amount. The 64-hit result is placed into GPR rx.

Restrictions:
None

Operation: 64-bit processors

s « s5 || sa
GPR[Xlat (rx)] ¢ GPR[Xlat(ry)] e3-g)..0 || 0°
Exceptions:

Reserved Instruction

Programming Notes:

For DSLL only, the s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. For al 32-bit extended shifts,
s5 must be zero. None of the extended shift instructions perform the zero-to-eight mapping, so zero-bit shifts are pos-
sible using the extended format.

100 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Doubleword Shift Left Logical Variable DSLLV

15 11 10 8 7 5 4 0
RR " r DSLLV
11101 y 10100
5 3 3 5
Format: DsSLLV ry, rx M | PS16e (64-bit only)

Purpose: Doubleword Shift Left Logical Variable
To execute a left-shift of a doubleword by a variable number of bits.

Description: GPR[ry] < GPR[ry] << GPR[rx]

The 64-bit doubleword contents of GPR ry are shifted |eft, inserting zeros into the emptied bits; the result is placed
back into GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ¢ GPR[Xlat(rx)ls o
GPR[Xlat (ry)] ¢ GPR[Xlat(ry)] s3-s)..0 || 0°

Exceptions:
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 101

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Right Arithmetic

DSRA

15 11 10 0
RR - r DSRA
11101 y 10011
5 3 3 5

Format: DSrRA ry, sa

Purpose: Doubleword Shift Right Arithmetic
To execute an arithmetic right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] <« GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The 3-hit sa field specifies the shift amount. A shift amount of O isinterpreted asa

shift amount of 8.
Restrictions:

Operation:

if sa = 0° then
s < 8
else
s « 03 || sa
endif

GPR[Xlat (ry)] <« (GPR[Xlat(ry)le3)® || GPR[Xlat(ry)les. ¢

Exceptions:

Reserved Instruction

MIPS16e (64-bit only)

102 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Doubleword Shift Right Arithmetic (Extended) DSRA

31 27 26 22 21 20 16 15 11 10 8 7 5 4 0
EXTEND 40 < 0 RR 0 r DSRA
11110 : 00000 11101 000 y 10011
5 5 1 5 5 3 3 5
Format: DSRA ry, sa MIPS16e (64-bit only)

Purpose: Doubleword Shift Right Arithmetic (Extended)
To execute an arithmetic right-shift of a doubleword by a fixed amount—o0 to 63 hits.

Description: GPR[ry] <« GPR[ry] >> sa (arithmetic)

The 64-bit doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in back in GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.
Restrictions:

Operation:

s « s5 || sa

GPR[Xlat (ry)] ¢ (GPR[Xlat(ry)les)® || GPR[Xlat(ry)les. s
Exceptions:
Reserved Instruction

Programming Notes:

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 103

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Shift Right Arithmetic Variable

15

11 10

DSRAV

RR
11101

X

ry

DSRAV
10111

5

Format: DSRAV ry, rx

Purpose: Doubleword Shift Right Arithmetic Variable
To execute an arithmetic right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] < GPR[ry] >> GPR[rx]

(arithmetic)

5

MIPS16e (64-bit only)

The doubleword contents of GPR ry are shifted right, duplicating the sign bit (63) into the emptied bits; the result is

placed back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation:

s ¢ GPR[Xlat(rx)ls o

GPR[Xlat(ry)] <« (GPR[Xlat(ry)les)® || GPRIXlat(ry)les. s
Exceptions:

Reserved Instruction

104 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Doubleword Shift Right Logical

15 11 10 8
RR - r DSRL
11101 y 01000
5 3 3 5

Format: DSRL ry, sa

Purpose: Doubleword Shift Right Logical

To execute alogical right-shift of a doubleword by a fixed amount—1 to 8 bits.

Description: GPR[ry] <« GPR[ry] >> sa (logical)

DSRL

MIPS16e (64-bit only)

The doubleword contents of GPR ry are shifted right, inserting zerosinto the emptied bits; the result is placed back in

GPR ry.The 3-hit sa field specifies the shift amount. A shift amount of O is interpreted as a shift amount of 8.

Restrictions:

Operation:

if sa = 0° then
s < 8
else
s « 03 || sa
endif

GPR[Xlat (ry)] <« 0° || GPR[Xlat(ry)les. .

Exceptions:

Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

105

Doubleword Shift Right Logical (Extended) DSRL

31 27 26 22 21 20 16 15 11 10 8 7 5 4 0
EXTEND . 0 RR 0 DSRL
11110 s84.0 $ 00000 11101 000 Y 01000
5 5 1 5 5 3 3 5
Format: DSRL ry, sa M | PS16e (64-bit only)

Purpose: Doubleword Shift Right Logical (Extended)
To execute alogical right-shift of adoubleword by a fixed amount—oO to 63 bits

Description: GPR[ry] <« GPR[ry] >> sa (logical)

The doubleword contents of GPR ry are shifted right, inserting zerosinto the emptied bits; the result is placed back in
GPR ry. The s5 bit and the 5-bit sa field specify the effective 6-bit-shift amount.

Restrictions:

Operation: 64-bit processors

s « s5 || sa

GPR[Xlat (ry)] < 0° || GPR[Xlat(ry)les. ¢
Exceptions:
Reserved Instruction

Programming Notes:

The s5 bit is the most-significant bit of the 6-bit-shift amount (sa) field. None of the extended shift instructions per-
form the zero-to-eight mapping, so zero-bit shifts are possible using the extended format.

106 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Doubleword Shift Right Logical Variable DSRLV

15 11 10 8 7 5 4 0
RR " r DSRLV
11101 y 10110
5 3 3 5
Format: DSRLV ry, rx M | PS16e (64-bit only)

Purpose: Doubleword Shift Right Logical Variable
To execute alogical right-shift of a doubleword by a variable number of bits.

Description: GPR[ry] ¢« GPR[ry] >> GPR[rx] (logical)

The 64-bit doubleword contents of GPR ry are shifted right, inserting zeros into the emptied bits; the result is placed
back in GPR ry. The 6 low-order bits of GPR rx specify the shift amount.

Restrictions:

Operation: 64-bit processors

s ¢ GPR[Xlat(rx)ls o
GPR[Xlat (ry)] ¢ 0° || GPRIXlat(ry)les. ¢

Exceptions:
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 107

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Doubleword Subtract Unsigned DSUBU

15 11 10 8 7 5 4 2 1 0
RRR x ; rz DSuBU
11100 y 10
5 3 3 3 2
Format: DSUBU rz, rx, ry M | PS16e (64-bit only)

Purpose: Doubleword Subtract Unsigned
To subtract 64-bit integers.

Description: GPR[rz] ¢« GPR[rx] - GPR[ry]

The 64-bit doubleword value in GPR ry is subtracted from the 64-bit value in GPR rx and the 64-bit arithmetic result
isplaced into GPR rz.

No integer overflow exception occurs under any circumstances.
Restrictions:

Operation: 64-bit processors
GPR[Xlat(rz)] ¢ GPR[Xlat(rx)] - GPR[Xlat(ry)]

Exceptions:
Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

108 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Jump and Link JAL

31 27 26 25 21 20 16 15 0
AL X target target ,
00011 0 2016 25:21 target 150
5 1 5 5 16
Format: JAL target M| PS16e

Purpose: Jump and Link
To execute a procedure call within the current 256 MB-aligned region and preserve the current ISA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of the | SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay dlot (not the branch itself).

Jump to the effective target address, preserving the ISA Maode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jJump-and-link operation, with the x field as a variable. The individua instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-haf of an instruction to be exe-
cuted.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] ¢ (PC + 6)gprrmn-1..1 || ISAMode
I+l: PC < PCuprien-1. .28 || target || 02
Exceptions:
None

Programming Notes:

Forming the jJump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if al program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative off-
Set.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jJump only to the following 256 MB region containing the jump delay sot.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 109

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Register JALR

15 11 10 8 7 6 5 4 0
RR x nd | ra JAL)R(C)
11101 0 1 0 00000
5 3 1 1 1 5
Format: JALR ra, rx MIPS16e

Purpose: Jump and Link Register
To execute a procedure call to an instruction address in aregister.

Description: GPR[ra] ¢« return_addr, PC ¢ GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with adelay of oneinstruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

The address of the instruction following the delay dot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current value of the |SA Mode bit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dlot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit O is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] ¢ (PC + 4)gprrEn-1..1 || ISAMode
I+l: PC ¢ GPR[Xlat (rx)lgprren-1..1 || O

ISAMode <— GPR[Xlat(rx)]j

Exceptions:
None

110 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Jump and Link Register, Compact JALRC

15 11 10 8 7 6 5 4 0
RR x nd | ra JAL)R(C)
11101 1 1 0 00000
5 3 1 1 1 5
Format: JALRC ra, rx MIPS16e

Purpose: Jump and Link Register, Compact
To execute a procedure call to an instruction address in aregister

Description: GPR[ra] < return_addr, PC ¢ GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with no delay dlot instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit O reflects the
current value of the | SA Mode bit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit O is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: GPR[31] ¢ (PC + 2)GprrEN-1.. SAMode
PC <« GPR[Xlat (rx)lgprren-1..

ISAMode < GPR[Xlat(rx)]j

1T
1|l o

Exceptions:
None.

Programming Notes:
Unlike most “jump” instructions in the MIPS instruction set, JALRC does not have a delay slot.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 111

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump and Link Exchange (MIPS16e Format) JALX

31 27 26 25 21 20 16 15 0
AL X target target .
00011 1 2016 25:21 target 150
5 1 5 5 16
Format: JALX target M| PS16e

Purpose: Jump and Link Exchange (MIPS16e Format)

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS16e to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of the | SA Mode hit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target field shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay dlot (not the branch itself).

Jump to the effective target address, toggling the |SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jJump-and-link operation, with the x field as a variable. The individua instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in ajump delay slot, because this causes one-half an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:
I: GPR[31] « (PC + 6)gprren-1..1 || ISAMode
I+l: PC < PCqprrmn-1. .28 || target || 02

ISAMode <« (not ISAMode)

Exceptions:
None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows ajump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jJump only to the following 256 MB region containing the jump delay sot.

112 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Jump and Link Exchange (32-bit MIPS Format) JALX

31 26 25 0
JALX . .
011101 instr_index
6 26
Format: JaALX target MI1PS64 with M| PS16e

Purpose: Jump and Link Exchange (32-bit MIPS Format)

To execute a procedure call within the current 256 M B-aligned region and change the | SA Mode from 32-bit MIPS to
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 hit O reflects the current
value of the |SA Mode bit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
Thelow 28 hits of the target addressistheinstr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the | SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: GPR[31] « PC + 8
I+1: PC ¢« PCgprrey..2s8 || instr_index || 02
ISAMode ¢« (not ISAMode)
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 113

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump Register Through Register ra JR

15 11 10 8 7 6 5 4 0
RR 000 nd | ra JAL)R(C)
11101 0 0 1 00000
5 3 1 1 1 5
Format: JRrR ra MIPS16e

Purpose: Jump Register Through Register ra
To execute a branch to the instruction address in the return address register.

Description: pC « GPR[ra]

The program unconditionally jumps to the address specified in GPR 31, with a delay of one instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR 31 bit O.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subseguently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:

I+1: PC ¢ GPRI[31]gprrEn-1..1 Il o
ISAMode <« GPR[31],

Exceptions:
None

114 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Jump Register Through MIPS16e GPR JR

15 11 10 8 7 6 5 4 0
RR x nd | ra JAL)R(C)
11101 0 0 0 00000
5 3 1 1 1 5
Format: JRrR rx MIPS16e

Purpose: Jump Register Through MIPS16e GPR
To execute a branch to an instruction address in aregister.

Description: PC « GPR[rx]

The program unconditionally jumps to the address specified in GPR rx, with a delay of one instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit O.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subseguently fetched as an instruction.

An extended instruction should not be placed in ajump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if abranch or jump instruction is placed in the delay slot of ajump.

Operation:

I+l: PC « GPR[Xlat(rx)lgprien-1..1 || O
ISAMode <« GPR[Xlat(rx)]j

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 115

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Jump Register Through Register ra, Compact

15 11

10

JRC

RR
11101

000

JAL)R(C)
00000

5

Format. JRC ra

Purpose: Jump Register Through Register ra, Compact

To execute a branch to the instruction address in the return address register.

Description: pC < GPR[ra]

5

MIPS16e

The program unconditionally jumps to the address specified in GPR 31, with no delay dlot instruction. The instruction

sets the | SA Mode bit to the value in GPR 31 bit O.

Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific

values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address

Error exception occurs when the jump target is subseguently fetched as an instruction.

Operation:

I: PC ¢ GPR[31lgpprey-1..1 || 0

ISAMode < GPR[31],

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

116 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Jump Register Through MIPS16e GPR, Compact

JRC

15 11 10 8 7 6 5 4 0
RR x nd | ra JAL)R(C)
11101 1 0 0 00000
5 3 1 1 5

Format. JRC rx

Purpose: Jump Register Through MIPS16e GPR, Compact

To execute a branch to an instruction address in a register

Description: pC < GPR[rx]

MIPS16e

The program unconditionally jumps to the address specified in GPR rx, with no delay slot instruction. The instruction
sets the 1SA Mode bit to the value in GPR rx bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with the nd (no delay dlot), | (link),
and ra (sourceregister isra) fields as variables. Theindividua instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subseguently fetched as an instruction.

Operation:

I: PC ¢« GPR[Xlat(rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)],

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

117

LB

Load Byte
15 11 10 8 7 5 4 0
LB
10000 rx ry offset
5 3 3 5

Format: 1B ry, offset(rx)

Purpose: Load Byte
To load a byte from memory as asigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

MIPS16e

The 5-hit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.

Restrictions:
None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr < pPAddrpgrgg.1. .3 || (pAddr, , xor ReverseEndian?)
memdoubleword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)] ¢« sign_extend(memdoublewordy,gspyte..g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

118 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Load Byte (Extended)

LB

31 27 26 21 20 16 15 11 10 8 7 0
EXTEND _ _ LB _
11110 offset 10:5 offset 15:11 10000 rx ry offset 4.0
5 6 5 5 3 3 5
Format: 1B ry, offset(rx) M| PS16e

Purpose: Load Byte (Extended)
To load a byte from memory as asigned value.

Description: GPR[ry] < memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loaded into GPR ry.

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrze-1. .3 || (PAddr, , xor ReverseEndian?)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU’

GPR[Xlat (ry)] ¢ sign_extend(memdoublewords,gspyte..g+byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

119

Load Byte Unsigned

LBU

15 11 10 8 7 5 4 0
LBU
10100 rx ry offset
5 3 3 5

Format: LBU ry, offset(rx)

Purpose: Load Byte Unsigned
To load a byte from memory as an unsigned value

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

MIPS16e

The 5-hit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.

Restrictions:
None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr < pPAddrpgrgg.1. .3 || (pAddr, , xor ReverseEndian?)
memdoubleword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, , xor BigEndianCPU?

GPR[Xlat (ry)] ¢« zero_extend(memdoublewordy,gspyte..g*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

120 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Load Byte Unsigned (Extended) LBU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ LBU _
11110 offset 10:5 offset 15:11 10100 rx ry offset 4.0
5 6 5 5 3 3 5
Format: LBU ry, offset(rx) M| PS16e

Purpose: Load Byte Unsigned (Extended)
To load a byte from memory as an unsigned value

Description: GPR[ry] < memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loaded into GPR ry.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrze-1. .3 || (PAddr, , xor ReverseEndian?)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU’

GPR[Xlat (ry)] ¢« zero_extend(memdoublewords,gspyte..g+byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 121

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword

15 11 10 8 7

LD

LD

00111 X

ry

offset

5 3

Format: 1D ry, offset(rx)

Purpose: Load Doubleword
To load a doubleword from memory.

Description: GPR[ry] < memory[GPR[rx] + offset]

MIPS16e (64-bit only)

The 5-bit offset is shifted left 3 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are

loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 03) + GPR[Xlat (rx)]

if vAddr, o # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr,

GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

DATA, LOAD)
memdoubleword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr,

122 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Load Doubleword (Extended)

31 27 26

21 20

16 15

11 10

LD

EXTEND
11110

offset 10:5

offset 15:11

LD
00111

X

ry

offset 4.0

5

6

Format: 1D ry, offset(rx)

5

Purpose: Load Doubleword (Extended)
To load a doubleword from memory.

Description: GPR[ry] < memory[GPR[rx] + offset]

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR

ry.

Restrictions:

5

MIPS16e (64-bit only)

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢ sign_extend(offset)
if vAddr, o # 0° then

SignalException (AddressError)

endif
(pAddr,

memdoubleword ¢ LoadMemory

GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:

CCa)

¢« AddressTranslation

(vAddr,

+ GPR[Xlat (rx)]

DATA, LOAD)

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

(CCcA, DOUBLEWORD, pAddr, vAddr,

DATA)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

123

Load Doubleword (PC-Relative) LD

15 11 10 8 7 5 4 0
164 LDPC
11111 100 Y offset
5 3 3 5
Format: 1D ry, offset (pc) M | PS16e (64-bit only)

Purpose: Load Doubleword (PC-Relative)
To load a PC-relative doubleword from memory.

Description: GPR[ry] < memory[PC + offset]

The 5-bit offset is shifted |eft 3 bits, zero-extended to 64 bits, and added either to the address of the LD instruction or
to the address of the jump instruction in whose delay slot the LD is executed. The 3 lower bits of this result are
cleared to form the effective address. The contents of the 64-bit doubleword at the memory location specified by the
effective address are loaded into GPR ry.

Restrictions:

Operation:
I-1: base_pc « PC
I: if not (JumpDelaySlot (PC)) then
base_pc < PC
endif
vAddr ¢ (base_DpCgprien-1. 3 + zero_extend(offset)) || 03

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memdoubleword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

124 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Doubleword (PC-Relative, Extended) LD

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ 164 LDPC _
11110 offset 10:5 offset 15:11 11111 100 ry offset 4.0
5 6 5 5 3 3 5
Format: 1D ry, offset (pc) M | PS16e (64-bit only)

Purpose: Load Doubleword (PC-Relative, Extended)
To load a PC-relative doubleword from memory.

Description: GPR[ry] < memory[PC + offset]

The 16-bit offset is sign-extended and added to the address of the LD instruction; this forms the effective address.
Before the addition, the 3 lower bits of the instruction address are cleared. The contents of the 64-bit doubleword at
the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

A PC-relative, extended LD may not be placed in the delay slot of ajump instruction.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr ¢ (PCqppren-1. .3 || 0°) + sign_extend(offset)
if vAddr, o # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword < LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢ memdoubleword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 125

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Doubleword (SP-Relative)

15 11 10

LD

164
11111

LDSP
000

ry

offset

5

Format: 1D ry, offset (sp)

Purpose: Load Doubleword (SP-Relative)

To load a doubleword from memory.

Description: GPR[ry] ¢ memory[GPR[sp] + offset]

MIPS16e (64-bit only)

The 5-bit offset is shifted |eft 3 bits, zero-extended to 64 bits, then added to the contents of GPR 29 to form the effec-
tive address. The contents of the 64-bit doubleword at the memory location specified by the effective address are

loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« zero_extend(offset || 0%) + GPR[29]

if vAddr, o # 0% then

SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation

memdoubleword <« LoadMemory

GPR[Xlat (ry)] ¢ memdoubleword

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

DATA, LOAD)
(CCcA, DOUBLEWORD, pAddr,

126 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Load Doubleword (SP-Relative, Extended)

31 27 26

21 20

16 15

11 10

LD

EXTEND
11110

offset 10:5

offset 15:11

164
11111

LDSP
000

ry

offset 4.0

5

6

Format: 1D ry, offset (sp)

5

Purpose: Load Doubleword (SP-Relative, Extended)
To load an SP-relative doubleword from memory.

Description: GPR[ry] < memory[GPR[sp] + offset]

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into GPR

ry.

Restrictions:

5

MIPS16e (64-bit only)

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢ sign_extend(offset)
if vAddr, o # 0° then

SignalException (AddressError)

endif
(pAddr, CCA)

memdoubleword ¢ LoadMemory

GPR[Xlat (ry)

Exceptions:

¢« AddressTranslation

] < memdoubleword

+ GPR[29]

(vAddr,
(CCcA, DOUBLEWORD, pAddr, vAddr,

DATA, LOAD)

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

DATA)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

127

Load Halfword LH

15 11 10 8 7 5 4 0
LH
10001 rx ry offset
5 3 3 5
Format: LH ry, offset(rx) M| PS16e

Purpose: Load Hafword
To load a halfword from memory as asigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp1. .3 || (PAddr, o xor (ReverseEndian? || 0))
memdoubleword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU? || 0)
GPR[Xlat (ry)] ¢« sign_extend(memdoubleword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

128 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Halfword (Extended) LH

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ . LH .
11110 offset 10:5 offset 15:11 10001 rx ry offset 4.0
5 6 5 5 3 3 5
Format: LH ry, offset(rx) M| PS16e

Purpose: Load Halfword (Extended)
To load a halfword from memory as asigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are sign-extended and loaded into GPR

ry.
Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp1. .3 || (PAddr, o xor (ReverseEndian? || 0))

memdoubleword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU2||O)
GPR[Xlat (ry)] ¢« sign_extend(memdoubleword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 129

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Halfword Unsigned LHU

15 11 10 8 7 5 4 0
LHU
10101 rx ry offset
5 3 3 5
Format: LHU ry, offset(rx) M| PS16e

Purpose: Load Halfword Unsigned
To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and loaded
into GPR ry.

Restrictions:
The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < zero_extend(offset ” 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrszp1. .3 || (PAddr, o xor (ReverseEndian® || 0))
memdoubleword < LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat (ry)] ¢ zero_extend(memdoubleword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

130 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Halfword Unsigned (Extended)

LHU

31 27 26 21 20 16 15 11 10 0
EXTEND _ . LHU .
11110 offset 10:5 offset 15:11 10101 rx ry offset 4.0
5 6 5 5 3 3 5
Format: LHU ry, offset(rx) M| PS16e

Purpose: Load Halfword Unsigned (Extended)
To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are zero-extended and loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

+ GPR[Xlat (rx)]

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pPAddr ¢« pAddrpgrzp1. .3 || (PAddr, o xor (ReverseEndian? || 0))
memdoubleword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU? || 0)

GPR[Xlat(ry)] ¢ zero_extend(memdoubleword;s,gspyte..8*byte)

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

131

15

11

10

LI
01101

rx

immediate

5

Format: LI rx,

Purpose: Load Immediate
To load a constant into a GPR.

Description: GPR[rx] <« immediate
The 8-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢ zero_extend(immediate)

Exceptions:
None

immediate

8

MIPSl6e

132 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Load Immediate (Extended) LI

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND) ' ! . .) LI 0 . o
11110 immediate 10:5 immediate 15:11 01101 rx 000 iummediate 4.0
5 6 5 5 3 3 5
Format: LI rx, immediate M| PS16e

Purpose: Load Immediate (Extended)
To load a constant into a GPR.

Description: GPR[rx] <« immediate
The 16-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢« zero_extend(immediate)

Exceptions:
None

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 133

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word LW

15 11 10 8 7 5 4 0
LW
10011 rx ry offset
5 3 3 5
Format: 1w ry, offset(rx) M| PS16e

Purpose: Load Word
To load aword from memory as asigned value.

Description: GPR[ry] ¢« memory[GPR[rx] + offset]

The 5-hit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the word at the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[Xlat (rx)]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte < vAddr, o xor (BigEndianCPU || 0?)
GPR[Xlat (ry)] ¢« sign_extend(memdoublewordsq,gspyte..8s*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

134 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Word (Extended)

LW

31 27 26 21 20 16 15 11 10 8 7 0
EXTEND _ _ LW _
11110 offset 10:5 offset 15:11 10011 rx ry offset 4.0
5 6 5 5 3 3 5
Format: 1w ry, offset(rx) M| PS16e

Purpose: Load Word (Extended)
To load aword from memory as asigned value.

Description: GPR[ry] ¢« memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat(rx)]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU||O2)
GPR[Xlat (ry)] ¢« sign_extend(memdoublewordsq,gspyte..8s*byte)

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

135

Load Word (PC-Relative) LW

15 11 10 8 7 0
LWPC
10110 rx offset
5 3 8
Format: 1Lw rx, offset (pc) M| PS16e

Purpose: Load Word (PC-Relative)
To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or to the
address of the jJump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are cleared to
form the effective address. The contents of the 32-bit word at the memory location specified by the effective address
are loaded into GPR rx.

Restrictions:

None
Operation:
I-1: base_pc & PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢ PC
endif
vAddr ¢ (base_pCgprimy-1..2 + zero_extend(offset)) | 02
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte < vAddr, , xor (BigEndianCPU||O2)
GPR[Xlat (rx)] ¢« sign_extend(memdoublewordsq,gspyte..8*byte)

Exceptions:
TLB Ré€fill, TLB Invalid, Bus Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be adata, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

136 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Word (PC-Relative, Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ LWPC 0 _
11110 offset 10:5 offset 15:11 10110 rx 000 offset 4.0
5 6 5 5 3 3 5
Format: 1Lw rx, offset (pc) M| PS16e

Purpose: Load Word (PC-Relative, Extended)
To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 16-hit offset is sign-extended and added to the address of the LW instruction; this forms the effective address.
Before the addition, the 2 lower bits of the instruction address are cleared. The contents of the 32-bit word at the
memory location specified by the effective address are loaded into GPR rx.

Restrictions:

A PC-relative, extended LW may not be placed in the delay slot of ajump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAAdr ¢« (PCgprin-1..2 || 0%) + sign_extend(offset)
if vAddr, o # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte < vAddr, , xor (BigEndianCPU||O2)
GPR[Xlat (rx)] ¢« sign_extend(memdoublewordsq,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be adata, rather than an instruction reference. That is, the watchpoint or break-
point istriggered only if enabled for data references.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 137

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word (SP-Relative) LW

15 11 10 8 7 0
LWSP
10010 rx offset
5 3 8
Format: 1w rx, offset (sp) M| PS16e

Purpose: Load Word (SP-Relative)
To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU||O2)
GPR[Xlat (ry)] ¢« sign_extend(memdoublewordsq,gspyte..8s*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

138 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Word (SP-Relative, Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ LWSP 0 _
11110 offset 10:5 offset 15:11 10010 rx 000 offset 4.0
5 6 5 5 3 3 5
Format: 1w rx, offset (sp) M| PS16e

Purpose: Load Word (SP-Relative, Extended)
To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU||O2)
GPR[Xlat (ry)] ¢« sign_extend(memdoublewordsq,gspyte..8s*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 139

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Load Word Unsigned LwWu

15 11 10 8 7 5 4 0
LWU
10111 rx ry offset
5 3 3 5
Format: LwU ry, offset(rx) M | PS16e (64-bit only)

Purpose: Load Word Unsigned
To load aword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 2 bits, zero-extended to 64 bits, then added to the contents of GPR rx to form the effec-
tive address. The contents of the word at the memory location specified by the effective address are zero-extended and
loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[Xlat (rx)]
if vAddr, o # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, o xor (BigEndianCPU || 02)
GPR[Xlat (ry)] « 032 | memdoublewordsy gspyte. . 8*byte

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

140 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Load Word Unsigned (Extended)

31 27 26

21 20

16 15

11 10

LwWu

EXTEND
11110

offset 10:5

offset 15:11

Lwu
10111

X

ry

offset 4.0

5

Format. Lwu ry,

6

5

offset (rx)

Purpose: Load Word Unsigned (Extended)
To load aword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The contents of the word at the memory location specified by the effective address are zero-extended and loaded into

GPRy.

Restrictions:

5

MIPS16e (64-bit only)

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddr, o # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))
memdoubleword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

byte « vAddr, o xor (BigEndianCPU || 02)
N memdoublewords;,gspyte. . 8*byte

GPR[Xlat(ry)] <«

Exceptions:

032

+ GPR[Xlat (rx)]

TLB R€fill, TLB Invalid, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

141

Move From HI Register MFHI

15 11 10 8 7 5 4 0
RR x 0 MFHI
11101 000 10000
5 3 3 5
Format: MFHI rx MIPS16e

Purpose: Move From HI Register
To copy the specia purpose HI register to a GPR.

Description: GPR[rx] <« HI

The contents of special register HI are loaded into GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] <« HI

Exceptions:
None

Historical Information:

Inthe MIPSI, I1, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

142 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Move From LO Register MFLO
15 11 10 8 7 0
RR x 0 MFLO
11101 000 10010
5 3 3 5
Format: MFLO rx MIPS16e

Purpose: Move From LO Register
To copy the specia purpose LO register to aGPR.

Description: GPR[rx] < LO

The contents of special register LO are loaded into GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] <« LO

Exceptions:
None

Historical Information:

Inthe MIPSI, I1, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS

IV and MIPS32, and all subsequent levels of the architecture.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

143

Move

15

11

10

MOVE

18
01100

MOV32R
101

r32
2.0

r32
4.3

Iz

5

Format. MOVE r32,

Purpose: Move

rz

3

To move the contents of a GPR to a GPR.

Description: GPR[r32] « GPR[rz]

The contents of GPR rz are moved into GPR r32, and r32 can specify any one of the 32 GPRs.

Restrictions:
None

Operation:

GPR[r32] ¢ GPR[Xlat(rz)]

Exceptions:
None

Programming Notes:

The instruction word of 0x6500

denote no operation.

MIPS16e

(move $0,$16), expressed as NOP, is the assembly idiom used to

144 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Move

15

11 10

MOVE

18
01100

MOVR32
111

ry

r32

5

3

Format. MOVE ry, r32

Purpose: Move

To move the contents of a GPR to a GPR.

Description: GPR[ry] < GPR[r32]

The contents of GPR r32 are moved into GPR ry, and r32 can specify any one of the 32 GPRs.

Restrictions:
None

Operation:

GPR[Xlat (ry)]

Exceptions:
None

< GPR[r32]

MIPS16e

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

145

Multiply Word MULT

15 11 10 8 7 5 4 0
RR " r MULT
11101 y 11000
5 3 3 5
Format: MULT rx, ry M| PS16e

Purpose: Multiply Word
To multiply 32-bit signed integers.

Description: (Lo, HI) < GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into specia register
LO, and the high-order 32-hit word is sign-extended and placed into specia register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordvalue(GPR[rs]) or NotWordvValue(GPR[rt])) then
UndefinedResult ()

endif

prod ¢ GPR[Xlat(rx)] * GPR[Xlat(ry)]

LO ¢ sign_extend(prods; g)

HI < sign_extend(prodgs 33)

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

146 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Multiply Unsigned Word MULTU

15 11 10 8 7 5 4 0
RR " r MULTU
11101 y 11001
5 3 3 5
Format: MULTU rx, ry M| PS16e

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers.

Description: (Lo, HI) < GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as unsigned val-
ues, to produce a 64-hit result. The low-order 32-bit word of the result is sign-extended and placed into special regis-
ter LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) or NotWordValue(GPR[rt]) then

UndefinedResult ()
endif
prod < (0 || GPR[Xlat(rx)]) * (0 | GPR[Xlat(ry)])

LO ¢ sign_extend(prods; g)
HI < sign_extend(prodgs 33)
Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 147

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Negate NEG

15 11 10 8 7 5 4 0
RR " r NEG
11101 y 01011
5 3 3 5
Format: NEG rx, ry M| PS16e

Purpose: Negate
To negate an integer value.

Description: GPR[rx] < 0 - GPR[ry]

The contents of GPR ry are subtracted from zero to form a 32-bit result. The result is placed in GPR rx.

Restrictions:

If GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(ry)])) then
UNPREDICTABLE

endif

temp < 0 - GPR[Xlat(ry)]

GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

148 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

No Operation NOP

15 11 10 8 7 5 4 3 2 0
18 MOV32R 0 0 0
01100 101 000 00 000
5 3 3 2 3
Format: wnop MIPS16e Assembly Idiom

Purpose: No Operation
To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actua instruction is interpreted by the hardware as
MOVE $0,$16.

Restrictions:
None
Operation:
None

Exceptions:
None

Programming Notes:

The 0x6500 instruction word, which representsMOVE $0, $16, isthe preferred NOP for software to use to fill jump
delay slots and to pad out alignment sequences.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 149

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

15 11 10 8 7 0
RR N NOT
11101 ry 01111
5 3 3 5

Format: NOT rx, ry

Purpose: Not
To complement an integer value

Description: GPR[rx] ¢« (NOT GPR[ryl)

The contents of GPR ry are bitwise-inverted and placed in GPR rx.

Restrictions:
None

Operation:
GPR[Xlat (rx)] <« (not GPR[Xlat(ry)])

Exceptions:
None

MIPSl6e

150 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Or OR
15 11 10 0
RR " r OR
11101 y 01101
5 3 3 5
Format: OrR rx, ry M| PS16e

Purpose: Or
To do abitwise logical OR.

Description: GPR[rx] < GPR[rx] OR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical OR operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)] ¢ GPR[Xlat (rx)]

Exceptions:
None

or GPR[Xlat (ry)]

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

151

Restore Registers and Deallocate Stack Frame RESTORE

15 11 10 8 7 5 4 0
18 SVRS s .
01100 100 0 ra s0 sl framesize
5 3 1 1 1 1 4
Format: RESTORE {ra, }{s0/sl1l/s0-1,}{framesize} (All args are optional) MIPS16e

Purpose: Restore Registers and Deallocate Stack Frame

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and adjusting
stack

Description: GPR[ra] <« Stack and/or GPR[17]¢« Stack and/or GPR[16]« Stack,
sp « sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) registers from the stack
if the corresponding ra, SO, or sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize
value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack addresses. A
framesize value of O isinterpreted as a stack adjustment of 128. On a MIPS64 implementation, words are loaded from
the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

The opcode and function field describe a general save/restore operation, with the sfields as a variables. The individ-
ual instructions, RESTORE and SAV E have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, SO, or sl hits are set, then an
Address Error exception will occur.

Operation:

if framesize = 0 then

temp < GPR[29] + 128
else

temp < GPR[29] + (0 || (framesize << 3))
endif
temp2 <« temp
if ra = 1 then

temp < temp — 4

GPR[31] ¢« LoadStackWord (temp)
endif
if s1 = 1 then

temp ¢« temp - 4

GPR[17] ¢« LoadStackWord (temp)
endif
if s0 = 1 then

temp ¢« temp — 4

GPR[16] ¢« LoadStackWord(temp)
endif
GPR[29] ¢« temp2

LoadStackWord (vaddr)
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

152 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Restore Registers and Deallocate Stack Frame RESTORE

byte « vAddr, , xor (BigEndianCPU | 0?)
LoadStackWord « sign_extend(memdoublewords;,g+pyte..8*byte)
enfunction LoadStackWord
Exceptions:
TLB réfill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 153

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND . : 18 SVRS | s .)
11110 xsregs | framesize 7:4 aregs 01100 100 0 ra|s0|sl| framesize 3.0
5 3 4 4 5 3 1 1 1 1 4
Format. RESTORE {ra, }{xsregs, }{aregs, }{framesize} (All arguments optional) MIPS16e

Purpose: Restore Registers and Deallocate Stack Frame (Extended)

To dedllocate a stack frame before exit from a subroutine, restoring return address and static registers from an
extended static register set, and adjusting the stack

Description: GPR[ra] < Stack and/or GPR[18-23,30] « Stack and/or GPR[17] ¢« Stack
and/or GPR[16] « Stack and/or GPR[4-7] « Stack, sp < sp + (framesize * 8)

Restore the ra register from the stack if the ra bit is set in the instruction. Restore from the stack the number of regis-
tersin the set GPR[18-23,30] indicated by the value of the xsregs field. Restore from the stack GPR 16 and/or GPR
17 (sO and sl in the MIPS ABI calling convention) from the stack if the corresponding sO and sl bits of the instruc-
tion are set, restore from the stack the number of registers in the range GPR[4-7] indicated by the aregs field, and
adjust the stack pointer by 8 times the 8-bit concatenated framesize value. Registers are loaded from the stack assum-
ing higher numbered registers are stored at higher stack addresses. On a MIPS64 implementation, words are |oaded
from the stack, sign-extended and loaded into the corresponding GPR, using the equivalent of load word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need not be
restored on subroutine exit. In other MIPS16e calling sequences, however, it is possible that some of the registers
GPR[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restored before
return from the subroutine. The encoding used for the aregs field of an extended RESTORE instruction is the same as
that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTORE, only
the registers treated as static need be handled. The following table shows the RESTORE encoding of the aregsfield.

aregs Encoding Registers Restored as Static
(binary) Registers
0000 None
0001 GPR[7]
0010 GPR[6], GPR[7]
0011 GPR[5], GPR[6], GPR[7]
0100 None
0101 GPR[7]
0110 GPR[6], GPR[7]
0111 GPR[5], GPR[6], GPR[7]
1000 None
1001 GPR[7]
1010 GPR[6], GPR[7]

154 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

aregs Encoding Registers Restored as Static
(binary) Registers
1011 GPR[4], GPR[5], GPR[6]. GPR[7]
1100 None
1101 GPR[7]
1110 None
1111 Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, O, s1, or xsregs fields are
non-zero or the aregs field contains an encoding that implies a register load, then an Address Error exception will
occur.

Operation:

temp < GPR[29] + (0 | (framesize << 3))
temp2 « temp
if ra = 1 then
temp < temp — 4
GPR[31] ¢« LoadStackWord(temp)
endif
if xsregs > 0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp < temp — 4
GPR[30] ¢« LoadStackWord (temp)
endif
temp ¢ temp — 4
GPR[23] ¢« LoadStackWord (temp)
endif
temp < temp — 4
GPR[22] ¢ LoadStackWord (temp)
endif
temp ¢ temp — 4
GPR[21] ¢« LoadStackWord (temp)
endif
temp < temp — 4
GPR[20] ¢« LoadStackWord (temp)
endif
temp ¢« temp — 4
GPR[19] ¢« LoadStackWord (temp)
endif
temp < temp — 4
GPR[18] ¢« LoadStackWord (temp)
endif
if s1 = 1 then
temp ¢ temp — 4
GPR[17] ¢« LoadStackWord (temp)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 155

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

endif
if s0 = 1 then
temp ¢ temp — 4
GPR[16] ¢« LoadStackWord (temp)
endif
case aregs of
0b0000 0b0100 01000 0b1100 0b1110: astatic « 0
0b0001 0b0101 0b1001 0b1101l: astatic « 1
0b0010 0b0110 0b1010: astatic <« 2
0b0011 0b0111l: astatic « 3
0b1011: astatic « 4
otherwise: UNPREDICTABLE
endcase

if astatic > 0 then
temp < temp — 4
GPR[7] <« LoadStackWord (temp)
if astatic > 1 then
temp ¢« temp — 4
GPR[6] ¢« LoadStackWord (temp)
if astatic > 2 then
temp < temp — 4
GPR[5] ¢« LoadStackWord (temp)
if astatic > 3 then
temp ¢« temp — 4
GPR[4] ¢« LoadStackWord (temp)
endif
endif
endif
endif
GPR[29] < temp2

LoadStackWord (vaddr)
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrzp.q. 3 || (PAddr, o xor (ReverseEndian | 02))

memdoubleword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

byte « vAddr, , xor (BigEndianCPU | 0?)

LoadStackWord ¢« sign_extend (memdoublewords,gspyte. . 8*byte)
enfunction LoadStackWord

Exceptions:
TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

156 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Save Registers and Set Up Stack Frame SAVE

15 11 10 8 7 5 4 0
18 SVRS s .
01100 100 1 ra s0 sl framesize
5 3 1 1 1 1 4
Format: SAVE {ra,}{s0/sl/s0-1,}{framesize} (All arguments are optional) MIPS16e

Purpose: Save Registers and Set Up Stack Frame
To set up astack frame on entry to a subroutine, saving return address and static registers, and adjusting stack

Description: stack « GPR[ra] and/or Stack « GPR[17] and/or Stack <« GPR[16],
sp < sp — (framesize * 8)

Save the ra and/or GPR 16 and/or GPR 17 (sO and sl in the MIPS ABI calling convention) on the stack if the corre-
sponding ra, SO, and sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize value. Reg-
isters are stored with higher numbered registers at higher stack addresses. A framesize value of 0O is interpreted as a
stack adjustment of 128. On a MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the
equivalent of store word.

The opcode and function field describe a general save/restore operation, with the s fields as a variables. The individ-
ual instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, sO, or sl bits are set, then an
Address Error exception will occur.

Operation:

temp ¢ GPR[29]
if ra = 1 then
temp < temp — 4
StoreStackWord (temp, GPR[31])
endif
if s1 = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[17])
endif
if s0 = 1 then
temp < temp — 4
StoreStackWord (temp, GPR[16])

endif
if framesize = 0 then
temp < GPR[29] — 128
else
temp < GPR[29] — (0 | (framesize << 3))
endif

GPR[29] « temp

StoreStackWord (vaddr, value)
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel ¢« vAddr, , xor (BigEndianCPU | 07)
datadoubleword ¢ valuegs_g+pytesel..o |l p8*bytesel

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 157

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registers and Set Up Stack Frame SAVE

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endfunction StoreStackWord

Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

Thisinstruction executes for a variable number of cycles and performs a variable number of storesto memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

158 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Save Registers and Set Up Stack Frame (Extended) SAVE

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND . : 18 SVRS | s .)
11110 xsregs | framesize 7:4 aregs 01100 100 1 ra|s0|sl| framesize 3.0
5 3 4 4 5 3 1 1 1 1 4
Format: SAVE {ra, }{xsregs, }{aregs, } {framesize} (All arguments optional) MIPS16e

Purpose: Save Registers and Set Up Stack Frame (Extended)

To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and adjusting
the stack

Description: stack < GPR[ra] and/or Stack < GPR[18-23,30] and/or Stack <« GPR[17] and/or
Stack « GPR[16] and/or Stack <« GPR[4-7], sp <« sp - (framesize * 8)

Save registers GPR[4-7] specified to be treated as incoming arguments by the aregs field. Save the ra register on the
stack if the ra bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated by the
value of the xsregs field, and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) on the stack
if the corresponding sO and sl bits of the instruction are set. Save the number of registersin the range GPR[4-7] that
areto be treated as static registers as indicated by the aregsfield, and adjust the stack pointer by 8 times the 8-bit con-
catenated framesize value. Registers are stored with higher numbered registers at higher stack addresses. On a
MIPS64 implementation, only the lower 32 bits of each GPR are saved, using the equivalent of store word.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other MIPS16e
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static registers
on the local stack instead of on the caller stack. The encoding of the aregs field allows for 0-4 arguments, 0-4 statics,
and for mixtures of the two. Registers are bound to arguments in ascending order, a0, al, a2, and a3, and thus
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table shows the

encoding of the aregsfield.
aregs Encoding Registers Saved as Registers Saved as Static

(binary) Arguments Registers
0000O None None
0001 None GPR[7]
0010 None GPR[6], GPR[7]
0011 None GPR[5], GPR[6], GPR[7]
0100 a0 None
0101 a0 GPR[7]
0110 a0 GPR[6], GPR[7]
0111 a0 GPR[5], GPR[6], GPR[7]
1000 a0, al None
1001 a0, al GPR[7]
1010 a0, al GPR[6], GPR[7]

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 159

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registers and Set Up Stack Frame (Extended) SAVE

aregs Encoding Registers Saved as Registers Saved as Static
(binary) Arguments Registers
1011 None GPR[4], GPR[5], GPR[6], GPR[7]
1100 a0, al, a2 None
1101 a0, al, a2 GPR[7]
1110 a0, al, a2, a3 None
1111 Reserved Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of the ra, O, s1, or xsregs fields are
non-zero or the aregs field contains an value that implies aregister store, then an Address Error exception will occur.

Operation:

temp ¢ GPR[29]
temp2 ¢« GPR[29]
case aregs of
0b0000 0b0001 00010 0bO011 0b1011l: args « O
00100 0b0101 0b0110 0bO11l: args « 1
0b1000 0b1001 0b1010: args « 2
0b1100 0b1101l: args « 3
0b1110: args « 4
otherwise: UNPREDICTABLE
endcase
if args > 0 then
StoreStackWord (temp, GPR[4])
if args > 1 then
StoreStackWord(temp + 4, GPR[5])
if args > 2 then
StoreStackWord(temp + 8, GPRI[6])
if args > 3 then
StoreStackWord(temp + 12, GPRI[7])
endif
endif
endif
endif
if ra = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[31])
endif
if xsregs > 0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp < temp — 4
StoreStackWord (temp, GPR[30])
endif
temp < temp — 4
StoreStackWord (temp, GPR[23])

160 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Save Registers and Set Up Stack Frame (Extended) SAVE

endif
temp ¢« temp — 4
StoreStackWord(temp, GPR[22])
endif
temp < temp — 4
StoreStackWord (temp, GPR[21])
endif
temp ¢ temp — 4
StoreStackWord(temp, GPR[20])
endif
temp « temp — 4
StoreStackWord (temp, GPR[19])
endif
temp ¢« temp — 4
StoreStackWord (temp, GPR[18])
endif
if s1 = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[171])
endif
if s0 = 1 then
temp < temp — 4
StoreStackWord (temp, GPR[16])
endif
case aregs of
0b0000 0b0100 0b1000 0b1100 0b1110: astatic « 0
0b0001 0b0101 0b1001 0b1101: astatic « 1
0b0010 0b0110 0b1010: astatic « 2
0b0011 0b0111l: astatic « 3
0b1011: astatic « 4
otherwise: UNPREDICTABLE
endcase
if astatic > 0 then
temp < temp — 4
StoreStackWord (temp, GPR[7])
if astatic > 1 then
temp < temp — 4
StoreStackWord (temp, GPR[6])
if astatic > 2 then
temp < temp — 4
StoreStackWord (temp, GPR[5])
if astatic > 3 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[4])
endif
endif
endif
endif
temp < temp2 — (0 || (framesize << 3))
GPR[29] « temp

StoreStackWord (vaddr, wvalue)
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrzp.q. .3 || (PAddr, o xor (ReverseEndian | 02))

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 161

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Save Registers and Set Up Stack Frame (Extended) SAVE

bytesel <« vAddr, o xor (BigEndianCPU | 07)

datadoubleword < valueg;_gspytesel..o || o8 bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endfunction StoreStackWord

Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of storesto memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

162 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Store Byte SB
15 11 10 8 7 5 4 0
SB
11000 rx ry offset
5 3 3 5
Format: sB ry, offset(rx) M| PS16e

Purpose: Store Byte
To store a byte to memory.

Description: memory [GPR[rx] + offset] <« GPR[ry]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The least-signif-

icant byte of GPR ry is stored at the effective address.

Restrictions:
None

Operation:

vAddr < zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢ pAddrpgryg 1. .3 || (pPAddr, o xor ReverseEndian®)
bytesel ¢« vAddr, , xor BigEndianCPU’

datadoubleword ¢« GPRITrtlgs gepyresel..o || 08 PYEeset
StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

163

Store Byte (Extended) SB
31 27 26 21 20 16 15 11 10 0
EXTEND _ _ SB _
11110 offset 10:5 offset 15:11 11000 rx ry offset 4.0
5 6 5 5 3 3 5
Format: sB ry, offset(rx) M| PS16e

Purpose: Store Byte (Extended)
To store a byte to memory.

Description: memory [GPR[rx] + offset] <« GPR[ry]
The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The least-

significant byte of GPR ry is stored at the effective address.

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset)

(pAddr, CCA)

pAddr < pAddrpgryzg 1. .3 || (PAddr, o xor ReverseEndian

< AddressTranslation

bytesel ¢« vAddr, , xor BigEndianCPU’

datadoubleword < GPRI[rtlgs_gspytesel..o ||
(CCA, BYTE, datadoubleword, pAddr, vAddr,

StoreMemory

Exceptions:

+ GPR[Xlat (rx)]
(vAddr,

DATA, STORE)

OB*bytesel

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

3)

DATA)

164 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Sign-Extend Byte SEB
15 11 10 8 7 0
RR x SEB CNVT
11101 100 10001
5 3 3 5
Format: SEB rx MIPS16e

Purpose: Sign-Extend Byte
Sign-extend least significant byte in register rx.

Description: GPR[rx] ¢« sign_extend(GPR[rx]7..0)

The least significant byte of GPR rx is sign-extended and the value written back to rx.

Restrictions:

Operation:

if NotWordvValue (GPR[Xlat (rx)]) then
UNPREDICTABLE
endif
temp ¢« GPR[Xlat (rx)]
GPR[Xlat (rx)] ¢ sign_extend(temp,; g)
Exceptions:

None.

Programming Notes:
None.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

165

Sign-Extend Halfword SEH
15 11 10 8 7 0
RR x SEH CNVT
11101 101 10001
5 3 3 5
Format: SEH rx MIPS16e

Purpose: Sign-Extend Halfword
Sign-extend |least significant word in register rx.

Description: GPR[rx] <« sign_extend(GPR[rx]qis o)

Theleast significant halfword of GPR rx is sign-extended and the value written back to rx.

Restrictions:

Operation:

if NotWordValue (GPR[Xlat (rx)]) then
UNPREDICTABLE
endif
temp ¢« GPR[Xlat (rx)]
GPR[Xlat (rx)] ¢« sign_extend(temp;s. _g)
Exceptions:

None.

Programming Notes:

None.

166 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

SEW

15 1 10 8 7 5 4 0
RR x SEW CNVT
11101 110 10001
5 3 3 5

Format. SsEw rx

Purpose: Sign-Extend Word
Sign-extend |least significant word in register rx.

Description: GPR[rx] <« sign_extend(GPR[rx]l3; o)

Theleast significant word of GPR rx is sign-extended and the value written back to rx.
Restrictions:

Operation:

if NotWordValue (GPR[Xlat (rx)]) then
UNPREDICTABLE
endif
temp ¢« GPR[Xlat (rx)]
GPR[Xlat (rx)] ¢« sign_extend(temps; g)
Exceptions:

Reserved Instruction

Programming Notes:

None.

MIPS16e (64-bit only)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

167

Store Doubleword

15 11 10 8 7 5 4
SD
01111 rx ry offset
5 3 3

Format: sD ry, offset(rx)

Purpose: Store Doubleword
To store a doubleword to memory.

DeSCHpﬁoanemory[GPR[rx] + offset] « GPR[ry]

MIPS16e (64-bit only)

The 5-bit offset is shifted |eft 3 bits, zero-extended to 64 bits, and then added to the contents of GPR rx to form the

effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 03) + GPR[Xlat (rx)]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

168 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Store Doubleword (Extended) SD

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ . SD .
11110 offset 10:5 offset 15:11 01111 rx ry offset 4.0
5 6 5 5 3 3 5
Format: sD ry, offset(rx) M | PS16e (64-bit only)

Purpose: Store Doubleword (Extended)
To store a doubleword to memory.

DeSCHpﬁoanemory[GPR[rx] + offset] « GPR[ry]

The 16-bit offset is sign-extended to 64 bits and then added to the contents of GPR rx to form the effective address.
The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 169

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Doubleword ry (SP-Relative)

SD

15 11 10 8 7 0
164 SDSP
11111 001 ry offset
5 3 3 5

Format: sD ry, offset (sp)

Purpose: Store Doubleword ry (SP-Relative)
To store an SP-relative doubleword to memory.

DeSCHpﬁoanemory[GPR[sp] + offset] « GPR[ry]

MIPS16e (64-bit only)

The 5-hit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the

effective address. The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 03) + GPR[29]
if vAddr, o # 0% then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

datadoubleword < GPR[Xlat (ry)]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr,

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

DATA)

170 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Store Doubleword ry (SP-Relative, Extended)

SP

31 27 26 21 20 16 15 11 10 8 7 5
EXTEND !) 164 SDSP)
11110 offset 10:5 offset 15:11 11111 001 ry offset 4.0

5 6 5 5 3 3 5

Format: sp ry, offset (sp)

Purpose: Store Doubleword ry (SP-Relative, Extended)

To store an SP-relative doubleword to memory

DeSCHpﬁoanemory[GPR[sp] + offset] « GPR[ry]

MIPS16e (64-bit only)

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.

The 64-bit contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[Xlat (ry)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

171

Store Doubleword ra (SP-Relative) SD

15 11 10 8 7 0
164 SDRASP
11111 010 offset
5 3 8
Format: sD ra, offset (sp) M | PS16e (64-bit only)

Purpose: Store Doubleword ra (SP-Relative)
To store register ra SP-relative to memory.

Description: memory[sp + offset] <« ra

The 8-hit offset is shifted left 3 bits, zero-extended to 64 bits, and then added to the contents of GPR 29 to form the
effective address. The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr < GPR[29] + zero_extend(offset || 03)
if (vAddr, o) # 0% then
SignalException (AddressError)
endif
(pAddr,uncached) ¢« AddressTranslation (vAddr,DATA, STORE)
datadouble <« GPR[31]
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
Address Error, Reserved Instruction

172 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Store Doubleword ra (SP-Relative, Extended)

SD

31 27 26 21 20 16 15 11 10 8 7 5 4
EXTEND _ _ 164 SDRASP _
11110 offset 10:5 offset 15:11 11111 010 ra offset 4.0
5 6 5 5 3 3 5
Format: sD ra, offset (sp) M | PS16e (64-bit only)

Purpose: Store Doubleword ra (SP-Relative, Extended)

To store register ra SP-relative to memory.

Description: memory[sp + offset] « ra

The 16-hit offset is sign-extended to 64 bits and then added to the contents of GPR 29 to form the effective address.
The 64-bit contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation: 64-bit processors

vAddr < GPR[29] + sign_extend(offset)
if (vAddr, o) # 0% then

SignalException (AddressError)
endif

(pAddr,uncached)

datadouble <« GPR[31]
StoreMemory (uncached, DOUBLEWORD, datadouble, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

< AddressTranslation (vAddr, DATA, STORE)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

173

Software Debug Breakpoint

15 11 10

SDBBP

RR
11101

code

SDBBP
00001

5

Format: SDBBP code

Purpose: Software Debug Breakpoint
To cause a debug breakpoint exception

Description:

EJTAG

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed the exception is a Debug Mode Exception, which sets
the Debugpgyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word

containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else

SignalDebugModeBreakpointException ()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

174 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Store Halfword SH

15 11 10 8 7 5 4 0
SH
11001 rx ry offset
5 3 3 5
Format: sH ry, offset(rx) M| PS16e

Purpose: Store Halfword
To store a halfword to memory.

DeSCI’iptionZmemory[GPR[rXGPR[+ offset] « GPR[rvy]

The 5-bit offset is shifted left 1 bit, zero-extended, and then added to the contents of GPR rx to form the effective
address. The least-significant halfword of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0) + GPR[Xlat (rx)]
if vAddry # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAddr ¢« pPAddrpgrzpq. .3 || (PAddrl, o xor (ReverseEndian? || 0))

bytesel <« vAddrl, , xor (BigEndianCPU? || 0)
datadoubleword < GPR[Xlat (ry)]gs_gspyresel..o || 08 P¥Eeset
StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 175

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Halfword (Extended)

SH

31 27 26 21 20 16 15 11 10 0
EXTEND _ _ SH _
11110 offset 10:5 offset 15:11 11001 rx ry offset 4.0
5 6 5 5 3 3 5
Format: sH ry, offset(rx) M| PS16e

Purpose: Store Halfword (Extended)

To store a halfword to memory.

DeSCHpﬁoanemory[GPR[rx] + offset] « GPR[ry]

The 16-hit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The least-
significant halfword of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAddr ¢« pPAddrpgrzpq. .3 || (PAddrl, o xor (ReverseEndian? || 0))

+ GPR[Xlat (rx)]

bytesel <« vAddrl, , xor (BigEndianCPU? || 0)
0 ” OS*bytesel

datadoubleword <« GPR[Xlat(ry)lg3_gspytesel.

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr,

Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

vAddr,

DATA)

176 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Shift Word Left Logical

15 11

10

SLL

SHIFT
00110

X

ry

SLL

5

Format: sLL rx, ry, sa

Purpose: Shift Word Left Logical
To execute aleft-shift of aword by a fixed number of bits—1 to 8 bits.

Description: GPR[rx] ¢« GPR[ry] << sa

MIPS16e

The 32-hit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 isinterpreted as a shift amount of 8. The result is sign-extended

and placed into GPR rx.

Restrictions:

None
Operation:
if sa = 0% then
s < 8
else
s « 02| sa
endif

temp — GPR[Xlat(ry)](3l_s)__O ” OS
GPR[Xlat (rx)] ¢« sign_extend(temps;. g)

Exceptions:
None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination

register.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

177

Shift Word Left Logical (Extended) SLL

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND <ad:0 0 SHIFT x ; 0 SLL
11110 : 000000 00110 y 000 00
5 5 6 5 3 3 3 2
Format: sLL rx, ry, sa M| PS16e

Purpose: Shift Word Left Logical (Extended)
To execute a left-shift of aword by a fixed number of bits—0 to 31 hits.

Description: GPR[rx] <« GPR[ry] << sa

The 32-hit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 5-bit sa
field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

None

Operation:

S & sa

temp ¢« GPR[Xlat(ry)] 31-g)..0 || O°

GPR[Xlat (rx)] ¢ sign_extend(temps; g)
Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-hit destination
register.

178 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Shift Word Left Logical Variable SLLV

15 11 10 8 7 5 4 0
RR N . SLLV
11101 y 00100
5 3 3 5
Format: sLLv ry, rx MIPS16e

Purpose: Shift Word Left Logical Variable
To execute a left-shift of aword by a variable number of bits.

Description: GPR[ry] <« GPR[ry] << GPR[rx]

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is sign-extended and and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.
Restrictions:

None

Operation:

s < GPR[Xlat(rx)1l4. o
temp ¢« GPR[Xlat(ry)] 31-g)..0 || O°
GPR[Xlat (ry)] ¢ sign_extend(temps; g)

Exceptions:
None

Programming Notes:

Unlike nearly all other word operations, the input operand does not have to be a properly sign-extended word value to
produce avalid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination register;
thisinstruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 179

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than SLT
15 11 10 0
RR x ; SLT
11101 y 00010
5 3 3 5
Format: sLT rx, ry MIPS16e

Purpose: Set on Less Than

To record the result of aless-than comparison.

Description: T « (GPR[rx] < GPR[ryl)

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as signed integers, if
the contents of GPR rx are less than the contents of GPR ry, the result is set to 1 (true); otherwise, the result is set to 0
(false). Thisresult is placed into GPR 24.

Restrictions:
None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)]

GPR[24] « QCFREEN-L)7

else
GPR[24] ¢« (QCPRLEN
endif

Exceptions:

None

180 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Set on Less Than Immediate SLTI

15 11 10 8 7 0
SLTI . .
01010 rx immediate
5 3 8
Format: SLTI rx, immediate M| PS16e

Purpose: Set on Less Than Immediate
To record the result of aless-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx isless than the zero-extended immediate, the result is set to 1 (true); otherwise, theresult is
set to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then
GPR[24] « QCFREEN-L)7

else
GPR[24] ¢« (QCPRLEN

endif

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 181

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Set on Less Than Immediate (Extended)

SLTI

MIPS16e

31 27 26 21 20 16 15 1 10 0
EXTEND .) . . SLTI 0 . .
11110 imm 10:5 imm 15:11 01010 rx 000 imm 4.0
5 6 5 5 3 3 5
Format: SLTI rx, immediate

Purpose: Set on Less Than Immediate (Extended)
To record the result of aless-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx isless than the sign-extended immediate, the result is set to 1 (true); otherwise, theresult is
set to O (false). Theresult is placed into GPR 24.

Restrictions:
None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate) then

GPR[24] QGPRLEN-1 |1

else

GPR[24]

endif

Exceptions:

None

«—

«—

OGPRLEN

182 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Set on Less Than Immediate Unsigned SLTIU
15 11 10 0
SLTIU . "
01011 rx immediate
5 3 8
Format: SLTIU rx, immediate M| PS16e

Purpose: Set on Less Than Immediate Unsigned
To record the result of an unsigned less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx isless than the zero-extended immediate, the result is set to 1 (true); otherwise, the result

isset to O (false). Theresult is placed into GPR 24.

Restrictions:
None

Operation:

if (0 || GPRI[X1lat(rx)]) < (0 || zero_extend(immediate)) then

GPR[24] « QCFREEN-L)7
else

GPR[24] ¢« (QCPRLEN
endif

Exceptions:

None

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

183

Set on Less Than Immediate Unsigned (Extended) SLTIU

31 27 26 21 20 16 15 1 10 8 7 5 4 0
EXTEND .) . . SLTIU 0 . .
11110 imm 10:5 imm 15:11 01011 rx 000 imm 4.0
5 6 5 5 3 3 5
Format: SLTIU rx, immediate M| PS16e

Purpose: Set on Less Than Immediate Unsigned (Extended)
To record the result of an unsigned less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx isless than the sign-extended immediate, the result is set to 1 (true); otherwise, the result
isset to O (false). Theresult is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPRI[X1lat(rx)]) < (0 || sign_extend(immediate)) then
GPR[24] « QCFREEN-L)7

else
GPR[24] ¢« (QCPRLEN

endif

Exceptions:

None

184 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Set on Less Than Unsigned SLTU
15 11 10 0
RR x ; SLTU
11101 y 00011
5 3 3 5
Format: sLTU rx, ry MIPS16e

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: T « (GPR[rx] < GPR[ryl)

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as unsigned integers,
if the contents of GPR rx are less than the contents of GPR ry, set the result to 1 (true); otherwise, set the result to 0
(false). Theresult is placed into GPR 24.

Restrictions:
None

Operation:

if (0 || GPR[Xlat (rx)]
GPR[24] ¢« (QCPRLEN-

else
GPR[24] ¢« (QCPRLEN
endif

Exceptions:

None

| 1

< (0 || GPR[X1lat(ry)]l) then
|

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

185

Shift Word Right Arithmetic

15 11 10 8 7

SRA

SHIFT

00110 X

ry

11

5 3

Format: sra rx, ry, sa

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of aword by a fixed number of bits—1 to 8 hits.

Description: GPR[rx] <« GPR[ry] >> sa (arithmetic)

MIPS16e

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The 3-
bit sa field specifies the shift amount. A shift amount of O is interpreted as a shift amount of 8. The result is sign-

extended and placed into GPR rx.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of

the operation is UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(ry)]l)) then
UNPREDICTABLE

endif

s « 0° | sa

if (s = 0) then
s < 8

endif

temp « (GPR[Xlat(ry)ls3;)® || GPR[Xlat (ry)ls;.

GPR[Xlat (rx)] ¢ sign_extend(temps; _g)

Exceptions:

None

.S

186 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Shift Word Right Arithmetic (Extended) SRA
31 27 26 22 21 16 15 11 10 1 0
EXTEND 0 0 SHIFT N . 0 SRA
11110 ; 000000 00110 y 000 11
5 5 6 5 3 3 3 2
Format: sra rx, ry, sa M| PS16e

Purpose: Shift Word Right Arithmetic (Extended)

To execute an arithmetic right-shift of aword by a fixed number of bits—0 to 31bits.

Description: GPR[rx] <« GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The 5-

bit sa field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if (NotWordvValue (GPR[Xlat(ry)]1))
UNPREDICTABLE
endif

S & sa
temp < (GPR[Xlat(ry)ls;)® || GPR[Xlat(ry)ls;. ¢

GPR[Xlat (rx)]

Exceptions:

None

then

¢ sign_extend(temps; g)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

187

Shift Word Right Arithmetic Variable

15

11 10

SRAV

RR
11101

X

ry

SRAV
00111

5

Format. SrRav ry, rx

Purpose: Shift Word Right Arithmetic Variable
To execute an arithmetic right-shift of aword by a variable number of bits.

Description: GPR[ry] < GPR[ry] >> GPR[rx]

(arithmetic)

MIPS16e

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[ry]) then

UNPREDICTABLE

endif

s « GPR[Xlat(rx)l, o
temp « (GPR[Xlat(ry)]l3;)® || GPRIXlat(ry)ls; s

GPR[Xlat (ry)] ¢« sign_extend(temps; g)

Exceptions:
None

188 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Shift Word Right Logical

15 11

10

SRL

SHIFT
00110

X

ry

SRL
10

5

Format: SrRL rx, ry, sa

Purpose: Shift Word Right Logical

To execute alogical right-shift of aword by afixed number of bits—1 to 8 hits.

Description: GPR[rx] < GPR[ry] >> sa (logical)

MIPS16e

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 3-bit sa
field specifies the shift amount. A shift amount of 0 isinterpreted as a shift amount of 8. The result is sign-extended

and placed into GPR rx.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of

the operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[ry])
UNPREDICTABLE

endif

if sa = 0% then
s < 8

else
s « 0% sa

endif

then

temp « 0° || GPR[Xlat (ry)l3;, ¢

GPR[Xlat (rx)] ¢« sign_extend(tempsq.

Exceptions:

None

.0)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

189

Shift Word Right Logical (Extended)

SRL

31 27 26 22 21 16 15 11 10 8 1 0
EXTEND <ad:0 0 SHIFT x ; 0 SRL
11110 : 000000 00110 y 000 10
5 5 6 5 3 3 3 2
Format: SrRL rx, ry, sa M| PS16e

Purpose: Shift Word Right Logical (Extended)

To execute alogical right-shift of aword by afixed number of bits—O0 to 31 bits.

Description: GPR[rx] < GPR[ry] >> sa (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 5-bit sa

field specifies the shift amount. The result is sign-extended and placed into GPR rx.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[ry]) then

UNPREDICTABLE

endif
S ¢« sa

temp « 0° || GPR[Xlat(ry)l3;, ¢

GPR[Xlat (rx)]

Exceptions:
None

¢ sign_extend(temps; g)

190 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Shift Word Right Logical Variable

15

11 10

SRLV

RR
11101

X

ry

SRLV
00110

5

Format: SRLV ry, rx

Purpose: Shift Word Right Logical Variable
To execute alogical right-shift of aword by a variable number of bits.

Description: GPR[ry] < GPR[ry] >> GPR[rx]

(logical)

MIPS16e

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits; the word

result is sign-extended and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

On 64-hit processors, if GPR ry does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of
the operation is UNPREDICTABLE.

Operation:

if (NotWordvalue (GPR[Xlat(ry)]))

UNPREDICTABLE

endif

s « GPR[Xlat(rx)l, o
temp « 0° || GPR[Xlat(ry)l3;, ¢

GPR[Xlat (ry)]

Exceptions:
None

¢ sign_extend(temps; g)

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

191

Subtract Unsigned Word SUBU

15 11 10 8 7 5 4 2 1 0
RRR x ; rz SUBU
11100 y 11
5 3 3 3 2
Format: SuUBU rz, rx, ry M| PS16e

Purpose: Subtract Unsigned Word
To subtract 32-bit integers.

Description: GPR[rz] < GPR[rx] — GPR[ry]

The 32-bit word valuein GPR ry is subtracted from the 32-bit value in GPR rx and the 32-bit arithmetic result is sign-
extended and placed into GPR rz.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-hit processors, if GPR rx or GPR ry does not contain sign-extended 32-bit values (bits 63..31 equal), then the
result of the operation is UNPREDICTABLE.

Operation:
if (NotWordvValue (GPR[X1lat (rx)])or NotWordValue (GPR[Xlat(ry)]))then
UNPREDICTABLE
endif
temp ¢« GPR[Xlat(rx)] — GPR[Xlat(ry)]

GPR[Xlat (rz)] ¢« sign_extend(temps; g)

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

192 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Store Word SW

15 11 10 8 7 5 4 0
SW
11011 rx ry offset
5 3 3 5
Format: sw ry, offset(rx) M| PS16e

Purpose: Store Word
To store aword to memory.

DeSCI’iptionZmemory[GPR[rX] + offset] « GPR[ry]

The 5-bit offset is shifted |eft 2 bits, zero-extended, and then added to the contents of GPR rx to form the effective
address. The contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[Xlat (rx)]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)
datadoubleword < GPR[Xlat (ry)]gs_gspyresel..o || 08 P¥Eeset
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 193

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word (Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ . SW .
11110 offset 10:5 offset 15:11 11011 rx ry offset 4.0
5 6 5 5 3 3 5
Format: sw ry, offset(rx) M| PS16e

Purpose: Store Word (Extended)
To store aword to memory.

Description: memory [GPR[rx] + offset] « GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)

datadoubleword < GPR[Xlat (ry)]gs_gspyresel..o || 08 P¥Eeset

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

194 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Store Word rx (SP-Relative) SW

15 11 10 8 7 5 4 0
SWSP
11010 rx offset
5 3 8
Format: sw rx, offset (sp) M| PS16e

Purpose: Store Word rx (SP-Relative)
To store an SP-relative word to memory.

DeSCI’iptionZmemory[GPR[sp] + offset] « GPR[rx]

The 8-hit offset is shifted |eft 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)
datadoubleword < GPR[Xlat (rx)]gs_gspyresel..o || 08 P¥Eeset
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 195

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word rx (SP-Relative, Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ SWSP 0 _
11110 offset 10:5 offset 15:11 11010 rx 000 offset 4.0
5 6 5 5 3 3 5
Format: sw rx, offset (sp) MIPSl6e

Purpose: Store Word rx (SP-Relative, Extended)

To store an SP-relative word to memory.

DeSCI’iptionImemory[GPR[sp] + offset] « GPR[rx]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the addressis non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)
datadoubleword <« GPR[Xlat (rx)]g3_g+pytesel..
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

0 || OS*bytesel

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error

196 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Store Word ra (SP-Relative) SW

15 11 10 8 7 0
18 SWRASP
01100 010 offset
5 3 8
Format: sw ra, offset (sp) M| PS16e

Purpose: Store Word ra (SP-Relative)
To store register ra SP-relative to memory.

Description: memory[sp + offset] « ra

The 8-hit offset is shifted |eft 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)
datadoubleword < GPR[31]g3 gepyresel..o || 08 ¥Eeset
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-
ture, Revision 2.60 197

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

Store Word ra (SP-Relative, Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND _ _ 18 SWRASP| 0 _
11110 offset 10:5 offset 15:11 01100 010 000 offset 4.0
5 6 5 5 3 3 5
Format: sw ra, offset (sp) M| PS16e

Purpose: Store Word ra (SP-Relative, Extended)

To store register ra SP-relative to memory.

Description: memory[sp + offset] « ra

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp.1. .3 || (PAddr, o xor (ReverseEndian | 07))

bytesel « vAddr, , xor (BigEndianCPU | 07%)

datadoubleword < GPR[31]g3 gepyresel..o || 08 ¥Eeset

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

TLB R€fill, TLB Invalid, TLB Modified, Address Error

198 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Exclusive OR

15

11 10

XOR

RR
11101

X

ry

XOR
01110

5

Format. XOR rx,

ry

Purpose: Exclusive OR
To do a bitwise logical Exclusive OR.

Description: GPR[rx] < GPR[rx] XOR GPR[ry]

MIPS16e

The contents of GPR ry are combined with the contents of GPR rx in a bitwise Exclusive OR operation. The result is

placed in GPR rx.

Restrictions:
None

Operation:

GPR[Xlat (rx)]

Exceptions:
None

< GPR[Xlat(rx)] xor GPR[Xlat(ry)]

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

199

Zero-Extend Byte ZEB
15 11 10 8 7 5 4 0
RR x ZEB CNVT
11101 000 10001
5 3 3 5
Format: ZEB rx MIPSlé6e

Purpose: Zero-Extend Byte
Zero-extend least significant byte in register rx.

Description: GPR[rx] < zero_extend(GPR[rx]l; ,);

Theleast significant byte of GPR rx is zero-extended and the value written back to rx.
Restrictions:

Operation:

if NotWordValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat(rx)] « 0 || tempy

Exceptions:
None

Programming Notes:

None

200 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Zero-Extend Halfword ZEH
15 11 10 8 7 5 4 0
RR x ZEH CNVT
11101 001 10001
5 3 3 5
Format. ZzEH rx MIPS16e

Purpose: Zero-Extend Halfword

Zero-extend least significant halfword in register rx.

Description: GPR[rx] <« zero_extend(GPR[rx]qis o)

Theleast significant halfword of GPR rx is zero-extended and the value written back to rx.

Restrictions:

Operation:

if NotWordValue (GPR[Xlat (rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]
GPR[Xlat (rx)] <« 0 | temp;s. g

Exceptions:
None

Programming Notes:

None

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

201

Zero-Extend Word

ZEW

15 1 10 8 7 5 4 0
RR x ZEW CNVT
11101 010 10001
5 3 3 5

Format. ZzeEw rx

Purpose: Zero-Extend Word
Zero-extend least significant word in register rx.

Description: GPR[rx] <« zero_extend(GPR[rx]l3; o)

Theleast significant word of GPR rx is zero-extended and the value written back to rx.
Restrictions:

Operation:

if NotWordvalue (GPR[Xlat(rx)]) then
UNPREDICTABLE

endif

temp ¢« GPR[Xlat (rx)]

GPR[Xlat (rx)] « 032 || temps;

Exceptions:
Reserved Instruction

Programming Notes:

None

MIPS16e (64-bit only)

202 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-

chitecture, Revision 2.60

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision

Date

Description

0.90

November 1, 2000

External review copy of reorganized and updated architecture documentation.

0.91

November 15, 2000

Changesin thisrevision:

« Correct table 3-10 description of branch instructions (branchesredlly are
implemented in the 32-bit architecture and are extensible)

* Correct the pseudo code for all MIPS16 branches - the offset value thould be
added to the address of the instruction following the branch, not the branch
itself.

0.92

December 15, 2000

Changesin thisrevision:
* Add missing I8_MOVERS2 instruction format.

0.93

January 25, 2001

Changesin thisrevision:

« Correct minor typosin the previous version.

* Add the 32-bit MIPS version of JALX and update the instruction descrip-
tions of JAL and JALX.

0.95

March 12, 2001

Document cleanup for next external release.

0.96

November 12, 2001

Changesin thisrevision:

 Declassify the MIPS32 Architecture for Programmers volume.

* Fix PDF bookmarks for the MIPS16 instructions.

 Fix formatting in instruction translation section.

Correct the description of the shift count for extended SRA and SLL.
» Changeall uses of “MIPS16” to “MIPS16€”.

1.00

August 29, 2002

Changesin thisrevision:

» Update pseudo code for SAVE and RESTORE to be explicit about the mem-
ory operations inherent in the instructions.

* Correct extended PC-relative LW and LD to remove the implication that
they can be executed in the delay slot of ajump.

» Add section defining instruction fetch restrictions when the processor is
running in MIPS16e mode and the fetch addressis in uncached memory.

MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Architec-

ture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

203

Revision History

Revision Date Description

2.00 May 15, 2003 Changesin thisrevision:

» For MIPS64 processors, add a programming note to ADDIUPC to indicate
that thisinstruction will generate the expected result only when run in the
32-bit Compatibility Address Space.

» For MIPS64 processors, clean up the input operand sign-extension require-
ments for ADDIUPC, ADDIUSP, ADDU, NEG, SEB, SEH, SEW, ZEB,
ZEH, and ZEW.

* Add anoteto specify that the ISA Mode flag is made available to software
in EPC, ErrorEPC, or DEPC when an exception occurs.

* Clarify that for the purposes of Watchpoints and EJTAG Breakpoints, that
PC-releative load references are consider data, not instruction, references.

250 July 1, 2005 Changesin thisrevision:

» Makeit explicit that attempting to execute a non-extensible instruction must
cause a Reserved | nstruction exception. Thiswasimplied, but not explicitly
stated in the previous revision of the document.

» Update dl filesto FrameMaker 7.1.

2.60 June 25, 2008 Changesin thisrevision:
* JALR.HB and JR.HB act like JALR and JR.

204 MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS64® Ar-
chitecture, Revision 2.60

Copyright © 2005 MIPS Technologies Inc. All rights reserved.

	MIPS64® Architecture for Programmers Volume IV-a: The MIPS16e™ Application- Specific Extension to the MIPS64® Architecture
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	1.1 Understanding the Instruction Fields
	1.1.1 Instruction Fields
	1.1.2 Instruction Descriptive Name and Mnemonic
	1.1.3 Format Field
	1.1.4 Purpose Field
	1.1.5 Description Field
	1.1.6 Restrictions Field
	1.1.7 Operation Field
	1.1.8 Exceptions Field
	1.1.9 Programming Notes and Implementation Notes Fields

	1.2 Operation Section Notation and Functions
	1.2.1 Instruction Execution Ordering
	1.2.2 Pseudocode Functions
	1.2.2.1 Coprocessor General Register Access Functions
	1.2.2.2 Memory Operation Functions
	1.2.2.3 Floating Point Functions
	1.2.2.4 Miscellaneous Functions

	1.3 Op and Function Subfield Notation
	1.4 FPU Instructions

	The MIPS16e™ Application-Specific Extension to the MIPS64® Architecture
	1.1 Base Architecture Requirements
	1.2 Software Detection of the ASE
	1.3 Compliance and Subsetting
	1.4 MIPS16e Overview
	1.5 MIPS16e ASE Features
	1.6 MIPS16e Register Set
	1.7 MIPS16e ISA Modes
	1.7.1 Modes Available in the MIPS16e Architecture
	1.7.2 Defining the ISA Mode Field
	1.7.3 Switching Between Modes When an Exception Occurs
	1.7.4 Using MIPS16e Jump Instructions to Switch Modes

	1.8 JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode
	1.9 MIPS16e Instruction Summaries
	1.10 MIPS16e PC-Relative Instructions
	1.11 MIPS16e Extensible Instructions
	1.12 MIPS16e Implementation-Definable Macro Instructions
	1.13 MIPS16e Jump and Branch Instructions
	1.14 MIPS16e Instruction Formats
	1.14.1 I-type instruction format
	1.14.2 RI-type instruction format
	1.14.3 RR-type instruction format
	1.14.4 RRI-type instruction format
	1.14.5 RRR-type instruction format
	1.14.6 RRI-A type instruction format
	1.14.7 Shift instruction format
	1.14.8 I8-type instruction format
	1.14.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction)
	1.14.10 I8_MOV32R instruction format (used only by MOV32R instruction)
	1.14.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	1.14.12 I64-type instruction format
	1.14.13 RI64-type instruction format
	1.14.14 JAL and JALX instruction format
	1.14.15 EXT-I instruction format
	1.14.16 ASMACRO instruction format
	1.14.17 EXT-RI instruction format
	1.14.18 EXT-RRI instruction format
	1.14.19 EXT-RRI-A instruction format
	1.14.20 EXT-SHIFT instruction format
	1.14.21 EXT-I8 instruction format
	1.14.22 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	1.14.23 EXT-I64 instruction format
	1.14.24 EXT-RI64 instruction format
	1.14.25 EXT-SHIFT64 instruction format

	1.15 Instruction Bit Encoding
	1.16 MIPS16e Instruction Stream Organization and Endianness
	1.17 MIPS16e Instruction Fetch Restrictions

	The MIPS16e™ ASE Instruction Set
	1.1 MIPS16e™ Instruction Descriptions
	1.1.1 Pseudocode Functions Specific to MIPS16e™
	1.1.1.1 Xlat

	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDIU
	ADDU
	AND
	ASMACRO
	B
	B
	BEQZ
	BEQZ
	BNEZ
	BNEZ
	BREAK
	BTEQZ
	BTEQZ
	BTNEZ
	BTNEZ
	CMP
	CMPI
	CMPI
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDIU
	DADDU
	DDIV
	DDIVU
	DIV
	DIVU
	DMULT
	DMULTU
	DSLL
	DSLL
	DSLLV
	DSRA
	DSRA
	DSRAV
	DSRL
	DSRL
	DSRLV
	DSUBU
	JAL
	JALR
	JALRC
	JALX
	JALX
	JR
	JR
	JRC
	JRC
	LB
	LB
	LBU
	LBU
	LD
	LD
	LD
	LD
	LD
	LD
	LH
	LH
	LHU
	LHU
	LI
	LI
	LW
	LW
	LW
	LW
	LW
	LW
	LWU
	LWU
	MFHI
	MFLO
	MOVE
	MOVE
	MULT
	MULTU
	NEG
	NOP
	NOT
	OR
	RESTORE
	RESTORE
	SAVE
	SAVE
	SB
	SB
	SEB
	SEH
	SEW
	SD
	SD
	SD
	SP
	SD
	SD
	SDBBP
	SH
	SH
	SLL
	SLL
	SLLV
	SLT
	SLTI
	SLTI
	SLTIU
	SLTIU
	SLTU
	SRA
	SRA
	SRAV
	SRL
	SRL
	SRLV
	SUBU
	SW
	SW
	SW
	SW
	SW
	SW
	XOR
	ZEB
	ZEH
	ZEW

	Revision History

