




Foreword

John L. Hennessy,
Founder, MIPS Technolagies Inc.
Frederick Emmons Terman Dean of Engineering, Stanford University

I am very pleased to see this new book on the MIPS architecture at such an
interesting time in the 15-year history of the architecture. The MIPS archi-

tecture had its beginnings in 1984 and was first delivered in 1985. By the
late 1980s, the architecture had been adopteda variety of workstation and
server companies, including Silicon Graphics and Digital Equipment Corpo-
ration. The early 1990s saw the introduction of the R4000, the first 64-bit
microprocessor, while the mid 1990s saw the introduction of the R10000 —
at the time of its introduction, the most architecturally sophisticated CPU
ever built.

The end of the 1990s heralds a new era for the MIPS architecture: its
emergence as a leading architecture in the embedded processor market. To
date, over 100 million MIPS processors have been shipped in applications
ranging from video games and palmtops, to laser printers and network routers,
to emerging markets, such as set-top boxes. Embedded MIPS processors now
ournumber MIPS processors in general-purpose computers by more than
1,000 to 1. This growth of the MIPS architecture in the embedded space
and its enormous potential led to the spinout of MIPS Technologies (from
Silicon Graphics) as an independent company in 1998.

Thus, this book focusing on the MIPS architecture in the embedded mar-
ket comes at a very propitious time. Unlike the well-known MIPS architecture
handbook, which is largely a reference manual, this book is highly readable
and contains a wealth of sage advice to help the programmer to avoid pitfalls,
to understand some of the tradeoffs among MIPS implementations, and to
optimize performance on MIPS processors. The coverage is extreme.Iy broad,
discussing not only the basics of the MIPS architecture, but issues such
as memory management and systems instructions, cache organizations and
control, and the floating point instructions set. (Although some embedded
users will be uninterested in the floating point, such instructions are heav-
ily used in graphics-intensive applications, such as video games and set-top
boxes.)
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Several of the chapters are unique in that the author shares his experience
in programming the MIPS architecture. These chapters cover topics that are
critical to the embedded systems programmer, such as C programming con-
ventions (e.g., for register use and procedure linkage), how to write portable
MIPS code, and how to obtain the best performance. The coverage of excep-
tion handling guides the programmer, by the use of example code sequences,
while including a description of the complete exception architecture.

As important as the technical content of this book is its readability. Simply
stated, this is book fun to read. Dominic Sweetman’s insights and presenta-
tion help entice the reader. In my view, this book is the best combination of
completeness and readability of any book on the MIPS architecture, and is
far better than most on other architectures.

In closing, let me mention that Sweetman’s insights into the development
of the MIPS architecture are truly exceptional. As a 15-year contributor to the
MIPS architecture, I am astounded by the perceptiveness of the author in his
explanations of the rationale for both the MIPS architecture and the specific
implementations. I am confident that readers interested in understanding
or programming the MIPS architecture will learn what they need to know
from this book, and that they will enjoy reading it. As a founder of MIPS,
a contributor to both the first MIPS implementation (the R2000) and several
subsequent implementations, I’m delighted that the author became a MIPS
convert and chose to write this book!
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Preface

This book is about MIPS, the cult hit among the mid-80s crop of RISC
CPU designs. MIPS is the best-selling RISC CPU, found everywhere from

Sony and Nintendo games machines, through Cisco routers, up to Silicon
Graphics supercomputers. With the RISC architectures now under furious
assault from the ubiquitous and brilliantly developed x86, MIPS may be the
only one of those original RISC CPU designs to end the century turning a
healthy profit.

RISC is a useful acronym and not just marketing hype; it usefully en-
capsulates the many common features of a group of computer architectures
invented in the 80s and designed for efficient pipelined implementation. The
acronym CISC is much more troublesome, because it really refers to all that
is not RISC. I’ll use it in a narrower sense, to encapsulate the non-RISCness
of the 68000, x86, and other pre-1982 architectures that were designed with
microcoded implementations in mind.

This book is for programmers, and that’s the test we’ve used to decide what
gets included — if a programmer might see it, or is likely to be interested, it’s
here. That means we don’t get to discuss, for example, the strange system
interfaces with which MIPS has tortured two generations of hardware design
engineers. And your operating system may hide many of the details we talk
about here; there is many an excellent programmer who thinks that C is
quite low level enough, portability a blessing, and detailed knowledge of the
architecture irrelevant. But sometimes you do need to get down to the nuts
and bolts — and human beings are born curious as to how bits of the world
work.

A result of this orientation is that we’ll tend to be rather informal when
describing things that may not be familiar to a software engineer — partic-
ularly the inner workings of the CPU — but we’ll get much more terse and
technical when we’re dealing with the stuff programmers have met before,
such as registers, instructions, and how data is stored in memory.

We’ll assume some familiarity and comfort with the C language. Much of
the reference material in the book uses C fragments as a way of compress-
ing operation descriptions, particularly in the chapters on the details of the
instruction set and assembler language.

Some parts of the book are targeted at readers who’ve seen CISC (i.e.,

xv
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680x0 or x86) assembly language, because the ingenuity and peculiarity of
the MIPS architecture shows up best from that viewpoint. But if you are not
familiar with CISC assembly language, it’s not a disaster.

Mostly, the people who need to know a CPU at the level of detail described
here are either operating system gurus or are working with embedded sys-
tems. The broadest definition of the term embedded system is every use of
a computer that doesn’t look like a computer. The unifying feature of such
systems is that the operating system (if any) does not hide the workings of
the CPU from the programmer. MIPS CPUs are used for a huge range of ap-
plications, from writing games through industrial control. But that doesn’t
mean that this book is just a reference manual: to keep an architecture in
your head means coming to understand it in the round. I also hope the book
will interest students of programming (at college or enrolled in the school of
life) who want to understand a modern CPU architecture all the way through.

If you plan to read this book straight through from front to back, you
will expect to find a progression from overview to detail, and you won’t be
disappointed. But you’ll also find some progression through history; the first
time we talk about a concept we’ll usually focus on its first version. Hennessy
and Patterson call this “learning through evolution” and what’s good enough
for them is certainly good enough for me.

So we start in Chapter 1 with some history and background, and set
MIPS in context by discussing the technological concerns and ideas that
were upper-most in the minds of its inventors. Then in Chapter 2 we dis-
cuss the characteristics of the MIPS machine language that follow from their
approach.

To keep the instruction set simple, we leave out’the details of processor
control until Chapter 3, which introduces the ugly but eminently practical
system that allows MIPS CPUs to deal with their caches, exceptions and
startup, and memory management. Those last three topics, respectively, be-
came the subjects of Chapters 4 through 6.

The MIPS architecture has been careful to separate out the part of the
instruction set that deals with floating-point numbers. That separation al-
lows MIPS CPUs to be built with various levels of floating-point support, from
none at all through partial implementations to somewhere near the state of
the art using four generations of hardware. So we have also separated out
the floating-point functions, and we keep them back until Chapter 7.

Up to this point, the chapters follow a reasonable sequence for getting to
know MIPS. The remaining chapters change gear and are more like reference
manuals or example-based tutorials.

In Chapter 8 we go through the whole machine instruction set; the in-
tention is to be precise but much more terse than the standard MIPS refer-
ence works — we cover in ten pages what takes a hundred in other sources.
Chapter 9 describes assembly language programming and is more like a pro-
gramming manual. This is a change of style from the rest of the book, but
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there has never been a proper assembly language manual for MIPS. Anyone
programming at the assembler level will find the rest of the book relevant.

Chapter 10 is written for people who are already familiar with program-
ming in C and focuses on aspects of C programming where the MIPS architec-
ture shows through; examples include memory organization and parameter
passing as implemented by MIPS compilers. Chapter 11 is a checklist with
helpful hints for those of you who have to port software between another CPU
and a MIPS CPU.

Chapter 12 is a collection of annotated pieces of real software, picked for
their relevance to the themes of this book. Understanding real software can
be hard going, but readers embarking on a challenging MIPS software project
may find this chapter useful, both as a style guide and as a checklist.

Appendices A (on instruction timing), B (on assembler language syntax),
and C (on object code) contain highly technical information that I felt shouldn’t
be completely omitted, although not many of you will need to refer to this
maserial. Appendix D is the place where you can find late-breaking news
about the MIPS architecture; you can read about MIPS16, MDMX, and the
MIPS V extensions to the instruction set.

You will also find at the end of this book a glossary of terms — a good
place to look for specialized or unfamiliar usage and acronyms — and a list
of books, papers, and on-line references for further reading.

0.1 Style and Limits

Every book reflects its author, so we’d better make a virtue of it.

Since some of you will be students, I wondered whether I should distin-
guish general use from MIPS use. I decided not to; I am specific except where
it costs the reader nothing to be general. I also try to be concrete rather than
abstract. I don’t worry about whatever meaning terms like TLB have in the
wider industry but do explain them in a MIPS context. Human beings are
great generalizers, and this is unlikely to damage your learning much.

This book has been at least seven years in gestation, though it didn’t
always have this form. The author has been working around the MIPS ar-
chitecture since 1986. From 1988 onward I was giving training courses on
the MIPS architecture to some customers, and the presentation slides began
to take on some of the structure of this book. In 1993 I gathered them to-
gether to make a software manual for IDT to publish as a part of its MIPS
documentation package, but the manual was specific to IDT’s R3051 family
components and left out all sorts of interesting details. Over 1995-96, this
book grew to include 64-bit CPUs and to cover all the ground that seems
relevant.
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The MIPS story continues; if it did not, we’d only be writing this book for
historians and Morgan Kaufmann wouldn’t be very interested in publishing
it. Since the process of writing and reviewing books is lengthy, we have to
define a suitable cut-off point. MiPS developments that were announced too
late are not included in the main text of this book. But we have updated
Appendix D at the last minute to reflect as many as possible of the more
recent developments.

0.2 Conventions

A quick note on the typographical conventions used in this book:

• Type in this font (Minion) is running text.

• Type in this font (Futura) is a sidebar.

• Type is this font (Courier bold) is used for assembler code
aad MIPS register names.

• Type in this font (Courier) is used for C code and hexadecimals.

• Type in this font (Minion italic, small) is used for hardware signal names.

• Code in italics indicates variables.

0.3 Acknowledgments

The themes in this book have followed me through my computing career.
Mike Cole got me excited about computing, and I’ve been trying to emulate his
skill in picking out good ideas ever since. Many people at Whitechapel Work-
stations taught me something about computer architecture and about how
to design hardware-Bob Newman and Rick Filipkiewicz probably the most.
I also have to thank Whitechapel’s salesperson Dave Graven for originally
turning me on to MIPS. My fellow engineers at Algorithmics (Chris Dearman,
Rick Filipkiewicz, Gerald Onions, Nigel Stephens, and Chris Shaw) have to be
doubly thanked, both for all I’ve learned through innumerable discussions,
arguments, and designs and for putting up with the book’s competition for
my time.

I’ve worn out more than one editor at Morgan Kaufmann: Bruce Spatz
originally encouraged me to start and Jennifer Mann took over; Denise Pen-
rose has guided it through to publication. Many thanks are due to the re-
viewers who’ve read chapters over a long period of time: Phil Bourekas of
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Integrated Device Technology, Inc.; Thomas Daniel of the LSI Logic Corpo-
ration; Mike Murphy of Silicon Graphics, Inc.; and David Nagle of Carnegie
Mellon University.

Nigel Stephens of Algorithmics wrote the original versions of parts of Chap-
ter 9 and the appendices about assembler language syntax and object code.
He is not responsible for any errors in this material that I may have inadver-
tently introduced.
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Chapter 1
RICSs and MIPS

MIPS is the most elegant among the effective RISC architectures; even
the competition thinks so, as evidenced by the strong MIPS influence

seen in later architectures like DEC’s Alpha and HP’s Precision. Elegance by
itself doesn’t get you far in a competitive marketplace, but MIPS micropro-
cessors have usually managed to be among the fastest of each generation by
remaining among the simplest.

Relative simplicity was a commercial necessity for MIPS, which spun off
from an academic project as a small design group using multiple semicon-
ductor partners to make and market the chips. As a result the architecture
has the largest range of active manufacturers in the industry - working from
ASIC cores (LSI Logic, Toshiba, Philips, NEC) through low-cost CPUs (iDT,
LSI) and from low-end 64-bit (IDT, NKK, NEC) to the top (NEC, Toshiba, and
IDT).

At the low end the CPU is 1.5 mm2 (rapidly disappearing from sight in the
“system on a chip”); at the high end the R10000 is nearly an inch square and
generates 30W of heat — and when first launched was probably the fastest
CPU on the planet. And although MIPS looks like an outsider, sales volumes
seem healthy enough: 44M MIPS CPUs were shipped in 1997, mostly into
embedded applications.

The MIPS CPU is one of the RISC CPUs, born out of a particularly fer-
tile period of academic research and development. RISC(reduced instruction
set computer) is an attractive acronym that, like many such, probably ob-
scures reality more than it reveals it. But it does serve as a useful tag for a
number of new CPU architectures launched between 1986 and 1989, which
owe their remarkable performance to ideas developed a few years earlier by
a couple of seminal research projects. Someone commented that “a RISC is
any computer architecture defined after 1984”; although meant as a jibe at
the industry’s use of the acronym, the comment is also true — no computer
defined after 1984 can afford to ignore the RISC pioneers’ work.

One of these pioneering projects was the MIPS project at Stanford. The

1
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project name MIPS (named for the key phrase microcomputer without inter-
locked pipeline stages) is also a pun on the familiar unit ”millions of instruc-
tions per second” The Stanford group’s work showed that pipelining, although
a well-known technique, had been drastically underexploited by earlier ar-
chitectures and could be much better used, particularly when combined with
1980 silicon design.

1.1 Pipelines

Once upon a time in a small town in the north of England, there was Evie’s
fish and chip shop. Inside, each customer got to the head of the queue and
asked for his or her meal (usually fried cod, chips, mushy peas,1 and a cup
of tea). Then each customer waited for the plate to be filled before going to sit
down.

Evie’s chips were the best in town, and every market day the lunch queue
stretched out of the shop. So when the clog shop next door shut down, Evie
rented it and doubled the number of tables. But they couldn’t fill them! The
queue outside was as long as ever, and the busy townsfolk had no time to sit
over their cooling tea.

They couldn’t add another serving counter; Evie’s cod and Bert’s chips
were what made the shop. But then they had a brilliant idea. They length-
ened the counter and Evie, Bert, Dionysus, and Mary stood in a row. As
customers came in, Evie gave them a plate with their fish, Bert added the
chips, Dionysus spooned out the mushy peas, and Mary poured the tea and
took the money. The customers kept walking; as one customer got his peas,
the next was already getting chips and the one after that fish. Less hardy
folk don’t eat mushy peas — but that’s no problem, those customers just got
nothing but a vacant smile from Dionysus.

The queue shortened and soon they bought the shop on the other side as
well for extra table space. . .

That’s a pipeline. Divide any repetitive job into a number of sequential
parts and arrange that the work moves past the workers, with each specialist
doing his or her part for each unit of work in turn. Although the total time any
customer spends being served has gone up, there are four customers being
served at once and about three times as many customers being served in that
market day lunch hour. Figure 1.1 shows Evie’s organization, as drawn by
her son Einstein in a rare visit to non-virtual reality.2

Seen as a collection of instructions in memory, a program ready to run
doesn’t look much like a queue of customers. But when you look at it from the
CPU’s point of view, things change. The CPU fetches each instruction from

1Non-English readers should probably not inquire further into the nature of this delicacy.
2It looks to me as if Einstein has been reading books on computer science.
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memory, decodes it, finds any operands it needs, performs the appropriate
action, and stores any results — and then it goes and does the same thing all
over again. The program waiting to be run is a queue of instructions waiting
to flow through the CPU one at a time.

Customer
 sequence

Time

Customer 1
Dionysus:

mushy peas
Mary:

tea/cash
Bert:
chips

Evie:
plate/fish

Customer 2
Dionysus:

mushy peas
Mary:

tea/cash
Bert:
chips

Evie:
plate/fish

Customer 3
Dionysus:

mushy peas
Mary:

tea/cash
Bert:
chips

Evie:
plate/fish

Figure 1.1: Eive’s ship shop pipeline

The use of pipelining is not new with RISC microprocessors. What makes
the difference is the redesign of everything — starting with the instruction
set — to make the pipeline more efficient.1 So how do you make a pipeline
efficient? Actually, that’s probably the wrong question. The right one is, what
makes a pipeline inefficient?

1.1.1 What Makes a Pipeline Inefficient?

lt’s not good if one stage takes much longer than the others. The organization
of Evie’s shop depends on Mary’s ability to pour tea with one hand while
giving change with the other — if Mary takes longer than the others, the
whole queue will have to slow down to match her.

In a pipeline, you try to make sure that every stage takes roughly the
same amount of time. A circuit design often gives you the opportunity to
trade the complexity of logic off against its speed, so designers can assign
work to different stages until everything is just right.

1The first RISC in this sense was probably the CDC6600, designed by Seymour Cray in
the 70s, but the idea didn’t catch on at that time. However, this is straying into the history
of computer architecture, and if you like this subject you’ll surely want to read (Hennessy
and Patterson 1996).
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The hard problem is not difficult actions, it’s awkward customers. Back in
the chip shop Cyril is often short of cash, so Evie won’t serve him until Mary
has counted his money. When Cyril arrives, he’s stuck at Evie’s position
until Mary has finished with the three previous customers and can check his
pile of old bent coins. Cyril is trouble because when he comes in he needs a
resource (Mary’s counting) that is being used by previous customers. He’s a
resource conflict.

Daphne and Lola always come in together (in that order) and share their
meals. Lola won’t have chips unless Daphne gets some tea (too salty without
something to drink). Lola waits on tenterhooks in front of Bert until Daphne
gets to Mary, and so a gap appears in the pipeline. This is a dependency (and
the gap is called a pipeline bubble).

Not all dependencies are a problem. Frank always wants exactly the same
meal as Fred, but he can follow him down the counter anyway — if Fred gets
chips, Frank gets chips. . .

If you could get rid of awkward customers, you could make a more efficient
pipeline. This is hardly an option for Evie, who has to make her living in a
town of eccentrics. Intel is faced with much the same problem: The appeal
of its CPUs relies on the customer being able to go on running all that old
software. But with a new CPU you get to define the instruction set, and you
can define many of the awkward customers out of existence. In Section 1.2
we’ll show how MIPS did that, but first we’ll come back to computer hardware
in general with a discussion of caching.

1.1.2 The Pipeline and Caching

We said earlier that efficient pipeline operation requires every stage to take
the same amount of time. But a 1996 CPU can add two 64-bit numbers about
10 times quicker than it can fetch a piece of data from memory.

So effective pipelining relies on another technique to speed most memory
accesses by a factor of 10-the use of caches. A cache is a small, very fast,
local memory that holds copies of memory data. Each piece of data is kept
with a record of its main memory address (the cache tag) and when the CPU
wants data the cache gets searched and, if the requisite data is available, it’s
sent back quickly. Since we’ve no way to guess what data the CPU might be
about to use, the cache merely keeps copies of data the CPU has had to fetch
from main memory in the recent past; data is discarded from the cache when
its space is needed for more data arriving from memory.

Even a simple cache will provide the data the CPU wants more than 90%
of the time, so the pipeline design need only allow enough time to fetch data
from the cache: A cache miss is a relatively rare event and we can just stop
the CPU when it happens.
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Instruction
 sequence

Time

Instruction 1 ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache

Instruction 2 ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache

Instruction 3 ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache

Figure 1.2: MIPS five-stage pipeline

The MIPS architecture was planned with separate instruction and data
caches, so it can fetch an instruction and read or write a memory variable
simultaneously.

CISC architectures have caches too, but they’re most often afterthoughts,
fitted in as a feature of the memory system. A RISC architecture makes more
sense if you regard the caches as very much part of the CPU and tied firmly
into the pipeline.

1.2 The MIPS Five-Stage Pipeline

The MIPS architecture is made for pipelining, and Figure 1.2 shows the
pipeline of most MIPS CPUs. So long as the CPU runs from the cache, the exe-
cution of every MIPS instruction is divided into five phases (called pipestages),
with each pipestage taking a fixed amount of time. The fixed amount of time
is usually a processor clock rycle (though some actions take only half a clock,
so the MIPS five-stage pipeline actually occupies only four clock cycles).

All instructions are rigidly defined so they can follow the same sequence
of pipestages, even where the instruction does nothing at some stage. The
net result is that, so long as it keeps hitting the cache, the CPU starts an
instruction every clock cycle.

Let’s look at Figure 1.2 and consider what happens in each pipestage.

IF (instruction fetch) gets the next instruction from the instruction cache
(I-cache).
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RD (read registers) fetches the contents of the CPU registers whose numhers
are in the two possible source register fields of the in struction.

ALU (arithmetic/logic unit) performs an arithmetical or logical operation in
one clock cycle (floating-point math and integer multiply/divide can’t be
done in one clock cycle and are done differently, but that comes later).

MEM is the stage where the instruction can readlwrite memory variables in
the data cache (D-cache). On average about three out of four instruc-
tions do nothing in this stage, but allocating the stage for each instruc-
tion ensures that you never get two instructions wanting the data cache
at the same time. (It’s the same as the mushy peas served by Dionysus.)

WB (write back) stores the value obtained from an operation back to the
register file.

You may have seen other pictures of the MIPS pipeline that look slightly
different; it has been common practice to simplify the picture by drawing
each pipestage as if it takes exactly one clock cycle. Some later MIPS CPUs
have longer or slightly different pipelines, but the pipeline with five stages
in four cycles is where the architecture started, and implementations keep
returning to something very close to it.

The tyranny of the rigid pipeline limits the kinds of things instructions
can do. Firstly, it forces all instructions to be the same length (exactly one
machine word of 32 bits), so that they can be fetched in a constant time. This
itself discourages complexity; there are not enough bits in the instruction to
encode really complicated addressing modes, for example.

This limitation has an immediate disadvantage; in a typical program built
for an architecture like x86, the average size of instructions is only just over
3 bytes. MIPS code will use more memory space.

Secondly, the pipeline design rules out the implementation of instructions
that do any operation on memory variables. Data from cache or memory
is obtained only in phase 4, which is much tao late to be available to the
ALU. Memory accesses occur only as simple load or store instructions that
move the data to or from registers (you will see this described as a load/store
architecture).

The RISC CPUs launched around 1987 worked because these restrictions
don’t cause much trouble. An 87 or later RISC is characterized by an instruc-
tion set designed for efficient pipelining and the use of caches.

However, the MIPS project architects also attended to the best thinking
of the time about what makes a CPU an easy target for efficient optimizing
compilers. Many of those requirements are quite compatible with the pipeline
requirements, so MIPS CPUs have 32 general-purpose registers and three-
operand arithmetical/logical instructions. Happily, the complicated special-
purpose instructions that particularly upset pipelines are often those that
compilers are unwilling to generate.
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1.3 RISC and CISC

We can now have a go at defining what we mean by these overused terms.
For me, “RISC” is an adjective applied to machine architectures/instruction
sets. In the mid-80s, it became attached to a group of relatively new ar-
chitectures in which the instruction set had been cunningly and effectively
specified to make pipelined implementations efficient and successful. It’s a
useful term because of the great similarity of approach apparent in SPARC,
MIPS, PowerPC, HP Precision, and DEC Alpha.

By contrast to this rather finely aimed description, “CISC” (complex in-
struction set computer) is used negatively to describe architectures whose
definition has not been shaped by a desire to fit pipelined implementations.
The RISC revolution was so successful that no post-1985 architecture has
abandoned the basic RISC principles; thus CISC architectures are inevitably
those born before 1985. In this book you can reasonably assume that some-
thing said about CISC is being said to apply to both Intel’s x86 family and
Motorola’s 680x0.

Both terms are corrupted when they are applied not to instruction sets but
to implementations. It’s certainly true that Intel accelerated the performance
of its far-from-RISC x86 family by applying implementation tricks pioneered
by RISC builders. But to describe these implementations as having a RISC
core is misleading.

1.4 Great MIPS Chips of the Past and
Present

We’ll take a very fast and somewhat superficial tour. You’ll get to know some
of these names much better in the chapters that follow.

1.4.1 R2000 to R3000

MIPS Corporation was formed in 1984 to make a commercial version of the
Stanford MIPS CPU. The Stanford project was one of several US academic
projects that were bringing together chip design, compiler optimization, and
computer architecture in novel ways with great success. The commercial
CPU was enhanced with memory management hardware and first appeared
late in 1985 as the R2000. An ambitious external math coprocessor (the
R2010 floating-point accelerator, or FPA) first shipped in mid-87. The R3000,
shipped in 1988-89, is a “midlife kicker”: It’s almost identical from the pro-
grammer’s viewpoint, although small hardwa re enhancements combined to
give a substantial boost to performance.
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The R2000/R3000 chips include a cache controller — to get a cache, just
add industry-standard static RAMs. The math coprocessor shares the cache
buses to read instructions (in parallel with the integer CPU) and to transfer
operands and results. The division of function was ingenious, practical, and
workable, allowing the R2000/R000 generation to be built without extrav-
agant ultra-high pin-count packages. As clock speeds increased, however,
the very high speed signals in the cache interface caused design problems;
between 1988 and 1991 R3000 systems took three years to grow from 25 to
40MHz.

1.4.2 R6000: A Diversion

You can speed up the caches two ways: either take them on chip or speed
the interface to external memories. In the long run it was clear that as the
amount of logic that could be put on a chip increased, this problem would be
solved by bringing the caches on chip. In the short term, it looked as though
it should be possible to push up the clock rate by changing the signalling
technology between the CPU and cache chips from CMOS1 (CMOS is the
densest and cheapest process for complex chips) to ECL (as used in high-end
minicomputer, mainframe, and supercomputer implementations throughout
the 70s). ECL (emitter-coupled logic) uses a much smaller voltage change
to signal “0” or “1” and is much less sensitive to noise than normal CMOS
signalling, allowing much faster interfaces.

The prospect (back in 1988) was the possibility of making small computers
that would redefine the performance of “super-minicomputers” in the same
way as CMOS RISC microprocessors had redefined workstation performance.

There were problems: Although RISC CPUs were quite easy to implement
in dense CMOS, they were large pieces of logic to build in the bipolar technol-
ogy traditionally used for ECL computers. So most effort went into “BiCMOS”
parts that could mix an internal CMOS core with bipolar circuits for interfac-
ing.

The MIPS project was called the R6000. It didn’t exactly fail, but it got
delayed by one problem after another and got overtaken by the R4000-the
first of a new generation of CMOS processors with on-chip caches.

Curiously, although the BiCMOS implementation strategy turned out to
be a dead end, it turned out that the on-chip cache revolution that over-
whelmed it was itself premature, at least in terms of making the fastest pos-
sible workstation. Hewlett Packard stuck with an external primary cache for
its rather MIPS-like Precision architecture. HP eventually pushed its clock
rate to around 120MHz-three times the fastest R3000 without using ECL
signalling or BiCMOS chips. HP did careful development, as engineers are

1It would have been more precise to say TTL-compatible CMOS, but I wanted to leave
“TTL” to the glossary.
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supposed to. This strategy put HP at the top of the performance stakes for a
long, long time; the winner is not always the most ambitious architecture.

1.4.3 The R4000 Revolution

The R4000, introduced in 1991, was a brave and ground-breaking develop-
ment. Pioneering features included a complete 64-bit instruction set, the
largest possible on-chip caches, extraordinarily fast clock rates(100MHz on
launch), on-chip secondary cache controller, a system interface running at a
fraction of the internal CPU clock, and on-chip support for a shared-memory
multiprocessor system. With the benefit of hindsight we can see that the
R4000 anticipated most of the engineering developments seen up to 1995 but
avoided the (relatively complex and so far rather unsuccessful) superscalar
route.

Not everything about the R4000 was perfect. It was an ambitious chip
and took a while to get completely right. MIPS guessed that cache access
times would lag behind the performance of the rest of the CPU, so it specified
a longer pipeline to allow for two-clock-cycle cache accesses; and the long
pipeline and relatively small primary caches made the chip much less efficient
(in terms of performance/MHz) than the R3000. Moreover, MIPS Corporation
fell victim to hubris, expecting to use the chip to become strong players in the
systems market for workstations and servers; when this unrealistic ambition
was dashed, some momentum was lost.

By 1992 the workstation company Silicon Graphics, Inc. (SGI) was the
leading user of MIPS processors for computer systems. When MIPS Corpo-
ration’s systems business collapsed in early 1993 SGI was willing to step in
to rescue the company and the architecture. By the end of 1994 late-model
R4400 CPUs (a stretched R4000 with bigger caches and performance tun-
ing) were running at 200-250MHz and keeping SGI in touch with the RISC
performance leaders.

R4000 itself never played well in embedded markets, but the compatible
R4600 did. Reverting to the traditional five-stage pipeline and a product of
the old MIPS design team (now trading as QED and designing for IDT), R4600
gave excellent performance at a reasonable price. Winning a place in Cisco
routers and SGI Indy desktops led to another first: The R4600 was the first
RISC CPU that plainly turned in a profit.

1.4.4 R5000 and R10000

The years 1995-96 saw a resurgence in the MIPS architecture; a design group
called QED, spun out of MIPS at the time of the SGI takeover, is now estab-
lished as an independent design group capable of developing state-of-the-art
mid-range CPUs. With MIPS’s own R10000 and the QED-designed R5000,
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both launched in early 1996, and low-end R4x00 chips making some very
large volume embedded design gains, it’s clear that the MIPS architecture
will be around for a few more years.

The R10000 was a major departure for MIPS from the traditional simple
pipeline; it was the first CPU to make truly heroic use of out-of order exe-
cution. Although this was probably the right direction (Pentium II and HP’s
PA-8x00 series followed its lead and are now on top of their respective trees),
the sheer difficulty of debugging R10000 may have set Silicon Graphics up to
conclude that sponsoring its own high-end chips was a mistake.

R5000 is a stretched R4600 with tweaked floating point and a cost-effective
secondary cache controller, built to keep the Indy going.

MIPS CPUs in use today come in four broad categories:

• ASIC cores: MIPS CPUs can be implemented in relatively little space and
with low power consumption, and an architecture with mature software
tools and support is an attractive alternative to architectures tailored
for the low end. MIPS was the first “grown up” CPU to be available
as an ASIC core-witness its presence in the Sony PlayStation games
console. Companies that will provide a MIPS CPU in a corner of a silicon
subsystem include LSI Logic, Toshiba, NEC, and Philips.

• Integrated 32-bit CPUs: From a few dollars upward, these chips con-
tain CPU, caches, and a variable amount of system interface simpli-
fication. There’s considerable variation in price, power consumption,
and processing power. Most of them omit the memory management
unit; hardware floating point is rare. IDT has the largest range, but
LSI Logic, Toshiba, and NKK also have products. However, 32-bit CPUs
are rapidly being squeezed out between ASIC cores at the bottom and
high-end CPUs.

• Integrated 64-bit CPUs: Introduced late in 1993, these chips offer amaz-
ing speed, reasonable power consumption, and have become a cult hit in
high-end embedded control. The range is now growing upward to higher
performance and downward to low-cost CPUs that feature shrunken bus
interfaces. Stars in this field are IDT and NEC, with NKK and Toshiba
second-sourcing IDT’s offerings. The second generation (1995) of these
devices has featured cost-reduced CPUs and appears to be even more
successful.

• Ultimate power machines: Silicon Graphics, the workstation company
that is the adoptive parent of the MIPS architecture, develops high-end
versions of the architecture in conjunction with some of the semiconduc-
tor vendors in recent years, particularly with NEC. Some of the products
of this work, such as the math-oriented “pocket supercomputer” R8000
chip set, are likely never to see application outside SGI’s computers. But
others, like the R5000 and top-end R10000, appeal to a select band of
users with particular needs.
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The major distinguishing features of some milestone products are sum-
marized in Table 1.1. We haven’t discussed the instruction set revision levels
from MIPS I through MIPS IV, but there’ll be more about them in Section 2.7,
where you’ll also find out what happened to MIPS II.

1.5 MIPS Compared with CISC Architectures

Programmers who have some assembler-language-level knowledge of earlier
architectures-particularly those brought up on x86 or 680x0 CISC instruc-
tion sets-may get some surprises from the MIPS instruction set and regis-
ter model. We’ll try to summarize them here, so you don’t get sidetracked
later into doomed searches for things that don’t quite exist, like a stack with
push/pop instructions!

We’ll consider the following: constraints on MIPS operations imposed to
make the pipeline efficient; the radically simple loadlstore operations; pos-
sible operations that have been deliberately omitted; unexpected features of
the instruction set; and the points where the pipelined operation becomes
visible to the programmer.

1.5.1 Constraints on Instructions

• All instructions are 32 bits long: That means that no instruction can fit
into only 2 or 3 bytes of memory (so MIPS binaries are typically 20-30%
bigger than for 680x0 or 80x86) and no instruction can be bigger.

This means, for example, that it is impossible to incorporate a 32-bit
constant into a single instruction (there would be no instruction bits
left to encode the operation and the target register). The MIPS architects
decided to make space for a 26-bit constant to encode the target address
of a jump or jump-to-subroutine; however, most constant fields are 16
bits long. It follows that loading an arbitrary 32-bit value requires a two-
instruction sequence, and conditional branches are limited to a range of
64K instructions.

• Instruction actions must fit the pipeline: Actions can only be carried out
in the right pipeline phase and must be complete in one clock. For
example, the register write-back phase provides for just one value to be
stored in the register file, so instructions can only change one register.

• Three-operand instructions: Arithmetical/logical operations
don’t have to specify memory locations, so there are plenty of instruc-
tion bits to define two independent sources and one destination register.
Compilers love three-operand instructions, which give optimizers much
more scope to improve code that handles complex expressions.
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• The 32 registers: The choice of the number of registers is largely a soft-
ware issue, and a set of 32 general-purpose registers is by far the most
popular in modern architectures. Using 16 would definitely not be as
many as modern compilers like, but 32 is enough for a C compiler to
keep frequently accessed data in registers in all but the largest and
most intricate functions. Using 64 or more registers requires a bigger
instruction field to encode registers and also increases context-switch
overhead.

• Register zero: $0 always returns zero, to give a compact encoding of that
useful constant.

• No condition codes: One feature of the MIPS instruction set that is radi-
cal even among the 1985 RISCs is the lack of any condition flags. Many
architectures have multiple flags for “carry”, “zero”, and so on. CISC
architectures typically set these flags according to the result written by
any or a large subset of machine instructions, while some RISC archi-
tectures retain flags (though typically they are only set explicitly, by
compare instructions).

The MIPS architects decided to keep all this information in the register
file: Compare instructions set general-purpose registers and conditional
branch instructions test general-purpose registers. That does benefit a
pipelined implementation, in that whatever clever mechanisms are built
in to reduce the effect of dependencies on arithmetical/logical operations
will also reduce dependencies in compare/branch pairs.

We’ll see later that efficient conditional branching means that the deci-
sion about whether to branch or not has to be squeezed into only half
a pipeline stage; the architecture helps out by keeping the branch deci-
sion tests very simple. So conditional branches (in MIPS) test a single
register for sign/zero or a pair of registers for equality.

1.5.2 Addressing and Memory Accesses

• Memory references are always plain register loads and stores: Arithmetic
on memory variables upsets the pipeline, so it is not done. Every mem-
ory reference has an explicit load or store instruction. The large register
file makes this much less of a problem than it sounds.

• Only one data-addressing mode: All loads and stores select the memory
location with a single base register value modified by a 16-bit signed
displacement.1

• Byte-addressed: once data is in a register of a MIPS CPU, all operations
always work on the whole register. But the semantics of languages such

1This is not quite true for MIPS CPUs from about 1996 on (MIPS IV), which have a two-
register addressing mode for floating-point loads and stores.
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as C fit badly on a machine that can’t address memory locations down to
byte granularity, so MIPS gets a complete set of load/store operations for
8- and 16-bit variables (we will say byte and halfword). Once the data
has arrived in a register it will be treated as data of full register length,
so partial-word load instructions come in two flavors-sign-extend and
zero-extend.

• Load/stores must be aligned: Memory operations can only load or store
data from addresses aligned to suit the data type being transferred.
Bytes can be transferred at any address, but halfwords must be even-
aligned and word transfers aligned to 4-byte boundaries. Many CISC
micro-processors will load/store a 4-byte item from any byte address,
but the penalty is extra clock cycles.

However, the MIPS instruction set architecture (ISA) does include a cou-
ple of peculiar instructions to simplify the job of loading or storing at
improperly aligned addresses.

• Jump instructions: The limited 32-bit instruction length is a particular
problem for branches in an architecture that wants to support very large
programs. The smallest op-code field in a MIPS instruction is 6 bits,
leaving 26 bits to define the target of a jump. Since all instructions are
4 byte aligned in memory the two least-significant address bits need not
be stored, allowing an address range of 228=256MB. Rather than make
this branch PC relative, this is interpreted as an absolute address within
a 256MB segment. This imposes a limit on the size of a single program,
although it hasn’t been much of a problem yet!

Branches out of segment can be achieved by using a jump register in-
struction, which can go to any 32-bit address.

Conditional branches have only a 16-bit displacement field — giving a
218-byte range since instructions are 4 byte aligned — which is inter-
preted as a signed PC-relative displacement. Compilers can only code a
simple conditional branch instruction if they know that the target will
be within 128KB of the instruction Following the branch.

1.5.3 Features You Won’t Find

• No byte or halfword arithmetic: All arithmetical and logical operations
are performed on 32-bit quantities. Byte and/or halfword arithmetic
requires significant extra resources, many more op-codes, and is rarely
really useful. C programmers are exhorted to use the int data type for
most arithmetic, and for MIPS an int is 32 bits and such arithmetic
will be efficient. C’s rules are to perform arithmetic in int whenever any
source or destination variable is as long as int.

However, where a program explicitly does arithmetic as short or char,
a MIPS compiler must insert extra code to make sure that the results



Chapter 1. RICSs and MIPS 15

wrap and overflow as they would on a native 16- or 8-bit machine.

• No special stack support: Conventional MIPS assembler usage does de-
fine one of the registers as a stack pointer, but there’s nothing special
to the hardware about sp. There is a recommended format for the stack
frame layout of subroutines, so that you can mix modules from differ-
ent languages and compilers; you should almost certainly stick to these
conventions, but they have no relationship to the hardware.

A stack pop wouldn’t fit the pipeline, because it would have two register
values to write (the data from the stack and the incremented pointer
value).

• Minimal subroutine support: There is one special feature: Jump instruc-
tions have a jump and link option, which stores the return address into
a register. $31 is the default, so for convenience and by convention $31
becomes the return address register.

This is less sophisticated than storing the return address on a stack,
but it has some significant advantages. Two examples will give you a
feeling for the argument: Firstly, it preserves a pure separation between
branch and memory-accessing instructions; and secondly, it can aid
efficiency when calling small subroutines that don’t need to save the
return address on the stack at all.

• Minimal interrupt handling: It is hard to see how the hardware could do
less. It stashes away the restart location in a special register, modifies
the machine state just enough to let you find out what happened and tp
disallow further interrupts, then it jumps to a single predefined location
in low memory. Everything else is up to the software.

• Minimal exception handling: Interrupts are just one sort of exception (the
MIPS word exception covers all sorts of events where the CPU may want
to interrupt normal sequential processing and invoke a software han-
dler). An exception may result from an interrupt, an attempt to access
virtual memory that isn’t physically present, or many other things. You
go through an exception, too, on a deliberately planted trap instruclion
like a system call that is used to get into the kernel in a protected OS.
All exceptions result in control passing to the same fixed entry point.1

On any exception, a MIPS CPU does not store anything on a stack, write
memory, or preserve any registers for you.

By convention, two general-purpose registers are reserved so that excep-
tion routines can bootstrap themselves (it is impossible to do anything
on a MIPS CPU without using some registers). For a program running in
any system that takes interrupts or traps, the values of these registers
may change at any time, so you’d better not use them.

1I exaggerate slightly; one particular kind of exception (a TLB miss from a user program,
if you really want to know now) has a different dedicated entry point. Details will be given in
Section 5.3.
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Figure 1.3: The pipeline and branch delays

1.5.4 A Feature You Might Not Expect

The MIPS CPU does have an integer multiply/divide unit; this is worth men-
tioning because many RISC machines don’t have multiply hardware. The
multiply unit is relatively independent of the rest of the CPU, with its own
special output registers. In many MIPS implementations it is tuned for small
size rather than speed, and integer multiplication is relatively slow. Later
CPUs, particularly those aimed at the embedded market, typically used big-
ger, faster designs.

1.5.5 Programmer-Visible Pipeline Effects

So far, this has all been what you might expect from a simplified CPU. How-
ever, the pipeline tuning has some stranger effects as well, and to understand
them we’re going to draw some pictures.

• Delayed branches: The pipeline structure of the MIPS CPU (Figure 1.3)
means that when a jump instructian reaches the execute phase and a
new program counter is generated, the instruction after the jump will
already have been started. Rather than discard this potentially useful
work, the architecture dictates that the instruction after a branch must
always be executed before the instruction at the target of the branch.
The instruction position following any branch is called the branch delay
slot.

If nothing special was done by the hardware, the decision to branch or
not, together with the branch target address, would emerge at the end
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of the ALU pipestage — in time to fetch the branch target instruction
instead of the next instruction but two. But branches are important
enough to justify special treatment, and you can see from Figure 1.3
that a special path is provided through the ALU to make the branch ad-
dress available half a clock cycle early. Together with the odd half-clock-
cycleshift of the instruction fetch stage, that means that the branch tar-
get canbe fetched in time to become the next but one, so the hardware
runs the ranch instruction, then the branch delay slot instruction, and
then the ranch target — with no other delays.
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Figure 1.4: The pipeline and load delays

It is the responsibility of the compiler system or the assembler program-
ming wizard to allow for and even exploit the branch delay; it turns out
that it is usually possible to arrange that the instruction in the branch
delay slot does useful work. Quite often, the instruction that would oth-
erwise have been placed before the branch can be moved into the delay
slot.

This can de a bit tricky on a conditional branch, where the branch delay
instruction must be (at least) harmless on both paths. Where nothing
useful can be done, the delay slot is filled with a nop instruction.

Many MIPS assemblers will hide this odd feature from you unless you
explicitly ask them not to.

• Late data from load (load delay slot): Another consequence of the pipeline
is that a load instruction’s data arrives from the cache/memory system
after the next instruction’s ALU phase starts - so it is not possible to
use the data from a load in the following instruction. (See Figure 1.4 for
how this works.)

The instruction position immediately after the is called the load delay
slot, and an optimizing compiler will try to do something useful with it.
The assembler will hide this from you but may end up putting to a nop.
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Usually, and certainly on all CPUs implementing MIPS III or higher, the
load result is interlocked: If you try to use the result too early, the
CPU stops until the data arrives. But on early MIPS CPUs there were
no interlocks, and the attempt to use data in the load delay slot led to
unpredictable results.

• Bizarre multiply/divide effects: The MIPS integer multiply/divide unit
runs outside the main pipeline and continues to run even when opera-
tions in the main pipeline are abandoned, as happens during exception
processing. There’s a note on the trouble this can cause in Section 2.3.



Chapter 2
MIPS Architecture

The rather grandiose word architecture is used in computing to describe
the abstract machine you program, rather than the actual implementa-

tion of that machine. That’s a useful distinction — and one worth defending
from the widespread misuse of the term in marketing hype. The abstract
description may be unfamiliar, but the concept isn’t. If you drive a stick-shift
car you’ll find the gas pedal on the right and the Butch on the left, regardless
of whether the car is front-wheel drive or rear-wheel drive. The architecture
(which pedal is where) is deliberately kept the same although the implemen-
tation is different.

Of course, if you’re a rally driver concerned with going very fast along
slipery roads, it’s suddenly going to matter a whole lot which wheels are
driven. Computers are like that too — once your performance needs are
extreme or unusual, the details of the implementation may become important
to you.

In general, a CPU architecture consists of an instruction set and some
knowledge about registers. The terms “instruction set” and “architecture” are
pretty close to synonymous, so you’ll often see the acronym ISA (instruction
set architecture).

The MIPS architecture has racked up a number of generations, and some
of those have different implementations:

MIPS I : The instruction set used by the original 32-bit processors; it is still
common.

MIPS II : A minor upgrade defined for a machine called the R6000, which
didn’t get beyond preproduction. But it’s made a comeback in 1995’s
new implementations of 32-bit MIPS.

MIPS III : The 64-bit instruction set used by CPUs called R4xxx.

MIPS IV : A minor upgrade from MIPS III, appearing in two different imple-
mentations (R10000 and R5000).

19



20 2.1. A Flavor of MIPS Assembly Language

The architecture levels define everything the original company documen-
tation chose to define; that has typically been rather more than enough to
ensure the ability to run the same UNIX application and less than enough to
ensure wmplete portability of code that uses OS or low-level features. Other
essential software-visible characteristics of a MIPS CPU are specific to the
CPU implementation.

In this book, I will be rather more generous; I’ll sometimes ascribe a fea-
ture lo MIPS III that does not appear in the architecture manual, so long as
that feature is to be found in ail the implementations of the MIPS III archi-
tecture that you’re likely to meet.

Moreover, even outside the ISA levels and in their implementation-specific
areas the great majority of MIPS CPUs have generally fallen into two fami-
lies: The first was led off by the early MIPS R3000 CPU and including pretty
much all 32-bit CPUs, and the second was founded by the 64-bit pioneer, the
R4000.

Quite a few other implementations add some of their own new instructions
and interesting features. It’s not always easy to get software or tools (partic-
ularly compilers) that take advantage of implementation-specific features.

There are two levels of detail at which we can describe the MIPS architec-
ture. The first (this chapter) is the kind of view you’d get if you were writing a
user program for a workstation but chose to look at your code at the assem-
bler level. That means that the whole normal working of the CPU would be
visible.

In the next chapters we’ll take on everything, including all the gory details
that a high-level operating system hides — CPU control registers, interrupts,
traps, cache manipulation, and memory management. But at least we can
cut the task into smaller pieces.

CPUs are often much more compatible at the user level than when ev-
erything is exposed. MIPS III (R4xxx) CPUs are 100% compatible with their
predecessors at the user level.

2.1 A Flavor of MIPS Assembly Language

Assembly language is the human-writable (and readable) version of the CPU’s
raw binary instructions, and there’s a whole chapter devoted to it later. Read-
ers who have never seen any assembly language will find some parts of this
book mystifying.

Most MIPS assembler programs interpret a rather stark language, full of
register numbers. But toolchains often make it easy to use a microprocessor
language, at least to allow the programmer to write names where the strict
assembler language requires numbers. Mast use the C preprocessor because
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of its familiarity. The C preprocessor strips out C-style comments, which
therefore become usable in assembler code.

With the help of the C preprocessor, MIPS assembler code almost invari-
ably uses names for the registers. The names reflect each register’s conven-
tional use (which we’ll talk about in Section 2.2).

For readers familiar with assembly language, but not the MIPS version,
here are some examples of what you might see:

/* this is a comment */
# also is this

entrypoint: # that’s a label
addu $1, $2, $3 # (registers) $1 = $2 + $3

Like most assembler languages, it is line oriented. The end of a line de-
limits instructions, and the assembler’s native comment convention is that it
ignores any text on a line beyond a “#” character. But it is possible to put
more than one instruction on a line, separated by semicolons.

A label is a word followed by a colon “:” — word is interpreted loosely, and
labels can contain all sorts of strange characters. Labels are used to define
entry points in code and to name storage locations in data sections.

A lot of instructions are three-operand, as shown. The destination register
is on the left (watch out, that’s opposite to the Intel x86 convention). In
general, the register result and operands are shown in the same order you’d
use to write the operation in C or any other algebraic language, so

subu $1, $2, $3

means exactly

$1 = $2 - $3

That should be enough for now.

2.2 Registers

There are 32 general-purpose registers for your program to use: $0 to $31.
Two, and only two, behave differently from the others:

$0 always returns zero, no matter what you store in it.
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$31 is always used by the normal subroutine-calling instruction (jal) for the
return address. Note that the call-by-register version (jalr) can use
any register for the return address, though use of anything except $31
would be eccentric.

In all other respects all these registers are identical and can be used in any
instruction (you can even use $0 as the destination of instructions, though
the resulting data will disappear without a trace).

In the MIPS architecture the program counter is not a register, and it is
probably better for you not to think of it that way-in a pipelined CPU there are
multiple candidates for its value, which gets confusing. The return address
of a jal is the next instruction but one in sequence:

...

jal printf
move $4, $6
xxx # return here after call

That makes sense because the instruction immediately after the Call is
the call’s delay slot-remember, the rules say it must be executed before the
branch target. The delay slot instruction of the call is rarely wasted, because
it is typically used to set up a parameter.

There are no condition codes; nothing in the status register or other CPU
internals is of any consequence to the user-level programmer.

There are two register-sized result ports (called hi and lo) associated with
the integer multiplier. They are not general-purpose registers, nor are they
useful for anything except multiply and divide operations. However, there
are instructions defined that insert an arbitrary value back into these ports
— after some reflection, you may be able to see that this is required when
restoring the state for a program that has been interrupted.

The floating-point math coprocessor (floating-point accelerator, or FPA), if
available, adds 32 floating-point registers; in simple assembler language they
are called $f0 to $f31.

Actually, for MIPS I and MIPS II machines only the 16 even-numbered
registers are usable for math. However, they can be used for either single-
precision (32-bit) or double-precision (64-bit) numbers; when you do double-
precision arithmetic, register $f1 holds the remaining bits of the register
identified as $f0. Only moves between integer and FPA, or FPA load/store
instructions, ever refer to odd-numbered registers (and even then the assem-
bler helps you forget).

MIPS III CPUs have 32 genuine FP registers, but even then software might
not use the odd-numbered on es, preferring to maintain software compatibil-
ity with the old family.
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2.2.1 Conventional Names and Uses of General-
Purpose Registers

We’re a couple of pages into an architecture description and here we are
talking about software. But I think you need to know this now.

Table 2.1: Conventional names of registers with usage mnemonics

Register number Name Used for

0 zero Always return 0

1 at (assembler temporary) Reserved for use by assembler

2-3 v0,v1 Value returned by subroutine

4-7 a0-a3 (arguments) First few parameters for a subroutine

8-15 t0-t7 (temporaries) Subroutines can use without saving

24,25 t8,t9

16-23 s0-s7 Subroutine register variables; a subroutine that writes one of
these must save the old value and restore it before it exits, so
the calling routine sees the values preserved

26,27 k0,k1 Reserved for use by interrupt/trap handler; may change under
your feet

28 gp Global pointer; some run-time systems maintain this to give easy
access to (some) “static” or “extern” variables

29 sp stack pointer

30 s8/fp Ninth register variable; subroutines that need one can use this
as a frame pointer

31 ra Return address fro subroutine

Although the hardware makes few rules about the use of registers, their
practical use is governed by a forest of conventions. The hardware cares
nothing for these conventions, but if you want to be able to use othe r people’s
subroutines, compilers, or operating systems, then you had better fit in.

With the conventional uses of the registers go a set of conventional names.
Given the need to fit in with the conventions, use of the conventional names
is prettv much mandatory. The common names are listed in Table 2.1.

Somewhere about 1996 Silicon Graphics began to introduce compilers
that use new conventions. The new conventions can be used to build pro-
grams that use 32-bit addresses or that use 64-bit addressing, and in those
two cases they are called respectively “n32” and “n64”. We’ll ignore them for
now, but we describe them in detail in Chapter 10.

Conventional Assembler Names and Usages for Registers

at : This register is reserved for the synthetic instructions generated by the
assembler. Where you must use it explicitly (such as when saving or
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restoring registers in an exception handler) there’s an assembler direc-
tive to stop the assembler from using it behind your back (but then some
of the assembler’s macro instructions won’t be available).

v0, v1 : Used when returning non-floating-point values from a subroutine.
If you need to return anything too big to fit in two registers, the compiler
will arrange to do it in memory. See Section 10.1 for details.

a0-a3 : Used to pass the first four non-FP parameters to a subroutine. That’s
an occasionally false oversimplification — see Section 10.1 for the grisly
details.

t0-t9 : By convention, subroutines may use these values without preserving
them. This makes them a good choice for “temporaries” when evaluat-
ing expressions — but the compiler/programmer must remember that
values stored in them may be destroyed by a subroutine call.

s0-s8 : By convention, subroutines must guarantee that the values of these
registers on exit are the same as they were on entry, either by not using
them or by saving them on the stack and restoring them before exit.
This makes them eminently suitable for use as register variables or for
storing any value that must be preserved over a subroutine call.

k0, k1 : Reserved for use by an OS’s trap/interrupt handlers, which will
use them and not restore their original value; so they are of little use to
anyone else.

gp : If a global pointer is present, it will point to a load-time-determined
location in the midst of your static data. This means that loads and
stores to data lyng within 32KB of either side of the gp value can be
performed in a single instruction using gp as the base register.

Without the global pointer, loading data from a static memory area takes
two instructions: one to load the most significant bits of the 32-bit con-
stant address computed by the compiler and loader and one to do the
data load.

To use gp a compiler must know at compile time that a datum will end
up linked within a 64KB range of memory locations. In practice it can’t
know; it can only guess. The usual practice is to put small global data
items (8 bytes and less in size) in the gp area and to get the linker to
complain if it still gets too big.

Not all compilation systems and not all run-time systems support gp.

sp : It takes explicit instructions to raise and lower the stack pointer, so
MIPS code usually adjusts the stack only on subroutine entry and exit;
it is the responsibility of the subroutine being called to do this. sp is
normally adjusted, on entry, to the lowest point that the stack will need
to reach at any point in the subroutine. Now the compiler can access
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stack variables by a constant offset from sp. Once again, see Section
10.1 for conventions about stack usage.

fp : Also known as s8, a frame pointer will be used by subroutine to keep
track of the stack if it wants to do things that involve extending the
statck by amount that is determined at run time. Some languages may
do this explicitly; assembler programmers are always welcome to exper-
iment; and C programs that use the alloca() library routine will find
themselves doing so.

If the stack bottom can’t be computed at compile time, you can’t access
stack vanaUles from sp, so fp is initialized by the function prologue to
a constant position relative to the function’s stack frame. Cunning use
of register conventions means that this behavior is local to the function
and doesn’t affect either the calling code or any nested function calls.

ra : On entry to any subroutine, return address holds the address to which
control should be returned — so a subroutine typically ends with the
instruction jr ra.

Subroutines that themselves call subroutines must first save ra, usually
on the stack.

There is a corresponding set of standard uses for floating-point registers
too, which we’ll summarize in Section 7.5. We’ve described here the original
promulgated by MIPS; some evolution has occured in recent times, but we’ll
keep that back until Section 10.8, which discusses the details of some newer
standards for calling conventions.

2.3 Integer Multiply Unit and Registers

The MIPS architects decided that integer multiplication was important enough
to deserve a hardwired instruction. This is not so common in RISCs. One al-
ternative would be to implement a multiply step that fits in the standard
integer execution pipeline and to require software routines for every multipli-
cation; early SPARC CPUs did just that.

Another way of avoiding the to perform integer multiplication in the floating-
point unit — a good solution used in Motorola’s short-lived R8000 family —
but that would compromise the optional nature of the MIPS floating-point
coprocessor.

The multiply unit in early MIPS CPUs is not spectacularly fast. Its ba-
sic operation is to multiply two register-sized values together to produce a
twice-register-sized result, which is stored inside the multiply unit. The in-
structions mfhi, mflo retrieve the result in two halves into specified general
registers.
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Unlike results for integer operations, the multiply result registers are inter-
locked An attempt to read the results before the multiplication is complete
results in the CPU being stopped until the operation completes.

The integer multiply unit will also perform an integer division between
values in two general-purpose registers; in this case the lo register stores
the result (quotient) and the hi register stores the remainder.

In MIPS CPUs the integer multiply unit operations are relatively lengthy:
Multiply takes 5-12 clock cycles and division 35-80 clock cycles (it depends
on the implementation, and for some implementations it depends on the
size of the operands). These are significantly slower than the same opera-
tions on double-precision floating-point values and not internally pipelined
— signs that the hardware implementation traded performance for simplicity
and economy in chip space.

The assembler has a synthetic multiply operation that starts the multiply
and then retrieves the result into an ordinary register. The MIPS Corpora-
tion’s assembler will replace a multiply instruction with a series of shifts and
adds if it thinks it will go faster; in my opinion compilers should be allowed
to make such transformations but assemblers should not!

The multiply unit is not itself pipelined but runs one instruction at a time.
Old results will be lost soon after the start of a new multiply instruction,
without that change being deferred to the write-back pipeline stage. This
leads to a hard-to-understand problem, which can cause your program to
generate garbage as a result of an interrupt if you don’t follow the rules.

If an mfhi or mflo instruction is interrupted by some kind of exception
before it reaches the write-back stage of the pipeline, it will be aborted with
the intention of restarting it. However, a subsequent multiply instruction
that has passed the ALU stage would continue (in parallel with exception
processing) and would overwrite the hi and lo register values, so that the
re-execution of the mfhi would get wrong (i.e., new) data. For this reason it is
recommended that a multiply should not be started within two instructions
of an mfhi/mflo. Some assemblers (definitely SGI and Algorithmics) will put
in nop padding if you write this in sequential code, but they probably won’t
notice if there’s an intervening branch. See Section 2.9 for a list of potential
pipeline-visibility problems.

Integer multiply and divide operations never produce an exception, though
divide by zero produces an undefined result. Compilers will often generate
code to trap on errors, particularly on divide by zero.

Instructions mthi, mtlo are defined to set up the internal registers from
general-purpose registers. They are essential to restore the values of hi and
lo when returning from an exception, but probably not for anything else.
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2.4 Loading and Storing: Addressing Modes

As mentioned above, there is only one addressing mode. Any load or store
machine instruction can be written

lw $1, offset($2)

You can use any registers for the destination and source. The offset is a
signed, 15-bit number (and so can be anywhere between −32768 and 32767);
the program address used for the load is the sum of rd and the offset. This
address mode is normally enough to pick out a particular member of a C
structure (offset being the distance between the start of the structure and
the member required). It implements an array indexed by a constant; it is
enoueh to reverence function variables from the stack or Frame pointer and
to provide a reasonable-sized global area around the gp value for static and
extern variables.

The assembler provides the semblance of a simple direct addressing mode,
to load the values of memory variables wh ose address can be computed at
link time.

More complex modes such as double-register or scaled index must be im-
plemented with sequences of instructions.

2.5 Data Types in Memory and Registers

MIPS CPUs can load or store between 1 and 8 bytes in a single operation.
Naming conventions used in the documentation and to build instruction
mnemonks are as follows:

C name MIPS name Size (byte) Assembler mnemonic

long long dword 8 “d” as in ld

int word 4 “w” as in lw

long1

short halfword 2 “h” as in lh

char byte 1 “b” as in lb

1Nothing is simple. Recent MIPS compilers offering 64-bit pointers interpret the long data
type as 64 bits (it’s good practice for a C compiler that a bong should be big enough to hold
a pointer).
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2.5.1 Integer Data Types

Byte and halfword loads come in two flavors. Sign-extending instructions lb
and lh load the value into the least-significant bits of the 32-bit register but
fill the high-order bits by copying the sign bit (bit 7 of a byte, bit 15 of a
halfword). This correctly converts a signed integer value to a 32-bit signed
integer.

The unsigned instructions lbu and lhu zero-extend the data; they load the
value into the least-significant bits of a 32-bit register and fill the high-order
bits with zeros.

For example, if the byte-wide memory location whose address is in t1
contains the value 0xFE (−2, or 254 if interpreted as unsigned), then

lb t2, 0(t1)
lbu t3, 0(t1)

will leave t2 holding the value 0xFFFF FFFE (−2 as signed 32-bit value)
and t3 holding the value 0x0000 00FE (254 as signed or unsigned 32-bit
value).

The above description relates to MIPS machines considered as 32-bit CPUs,
but those implementing MIPS III and above have 64-bit registers. It turns out
that all partial-word loads (even unsigned ones) sign-extend into the top 32
bits; this behavior looks bizarre but is helpful, as is explained in Section
2.7.3.

Subtle differences in the way shorter integers are extended to longer ones
are a historical cause of C portability problems, and the modern C standards
have very definite rules to remove possible ambiguity On machines like the
MIPS, which cannot do 8- or 16-bit precision arithmetic directly, expressions
involving short or char variables require the compiler to insert extra instruc-
tions to make sure things overflow when they should: This is nearly always
undesirable and rather inefficient. When porting code that uses small integer
variables to a MIPS CPU, you should consider identifying which variables can
be safely changed to int.

2.5.2 Unaligned Loads and Stores

Normal loads and stores in the MIPS architecture must be aligned; half-
words may be loaded only from 2-byte boundaries and words only from 4-
byte boundaries. A load instruction with an unaligned address will produce
a trap. Because CISC architectures such as the MC680x0 and Intel x86 do
handle un-aligned loads and stores, you may come across this as a prob-
lem when porting software; in extremity, you may even decide to install a
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trap handler that will emulate the desired load operation and hide this fea-
ture from the application — but that’s going to be horribly slow unless the
references are very rare.

All data items declared by C code will be correctly aligned.

Where you know in advance that you want to code a transfer from an ad-
dress whose alignment is unknown and that may turn out to be unaligned,
the architecture does allow for a two-instruction sequence (much more ef-
ficient than a series of byte loads, shifts, and adds). The operation of the
constituent instructions is obscure and hard to grasp, but they are normally
generated by the macro-instruction uulw (unaligned load word). They’re de-
scribed fully in Section 8.4.1.

A macro-instruction ulh (unaligned load half) is also provided and is syn-
thesized by two loads, a shift, and a bitwise “or” operation.

By default, a C compiler takes trouble to align all data correctly, but there
are accasions (when importing data from a file or sharing data with a dif-
ferent CPU) when being able to handle unaligned integer data efficiently is
a requirement. Some compilers permit you to flag a data type as potentially
unaligned and will generate special code to cope; ANSI has #pragma align
nn and GNU C has the less ugly (but even more non-ANSI) packed structure
field attribute type.

Even if your compiler implements packed data types, there’s no guaran-
tee that the compiler will use the special MIPS instructions to implement
unaligned accesses.

2.5.3 Floating-Foint Data in Memory

Loads into floating-point registers from memory move data without any in-
terpretatian — you can load an invalid floating-point number (in fact, an
arbitrary bit pattern) and no FP error will result until you try to do arithmetic
with it.

On 32-bit processors, this allows you to load single-precision values by a
load into an even-numbered floating-point register, but you can also load a
double-precision value by a macro-instruction, so that on a 32-bit CPU the
assembler instruction

l.d $f2, 24 (t1)

is expanded on a 32-bit CPU to two loads to consecutive registers:

lwcl $f2, 24(t1)
lwcl $f3, 28(t1)
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Language

On a 64-bit CPU, l.d is an alias for the machine instruction ldc1, which
does the whole job.

Any C compiler that complies with the MIPS/SGI rules aligns 8-byte-long
double-precision floating-point variables to 8-byte boundaries. The 32-bit
hardware does not require this alignment, but it’s done for forward compati-
bility: 64-bit CPUs will trap if asked to load a double from a location that is
not 8 byte aligned.

2.6 Synthesized Instructions in Assembly
Language

MIPS machine code might be rather dreary to write; although there are excel-
lent architectural reasons why you can’t load a 32-bit constant value into a
register with a single instruction, assembler programmers don’t want to think
about it every time. So MIPS Corporation’s assembler (and other good MIPS
assemblers) will synthesize instructions for you. You just write a load imme-
diate instruction and the assembler will figure out when it needs to generate
two machine instructions.

This is obviously useful but having been invented is bound to be abused.
Many MIPS assemblers end up hiding the architecture to an extent that is
not really necessary. In this manual we will try to use synthetic instructions
sparingly, and we will tell you when it happens. Moreover, in the instruction
tables below, we will consistently distinguish between synthetic and machine
instructions.

It is my feeling that these features are there to help human programmers
and that serious compilers should generate instructions that are one-for-one
with machine code. But in an imperfect world many compilers will in fact
generate synthetic instructions.

Helpful things the assembler does include the following:

• A 32-bit load immediate: You can code a load with any value (including a
memory location that will be computed at link time), and the assembler
will break it down into two instructions to load the high and low half of
the value.

• Load from memory location: You can code a load from a memory-resident
variable. The assembler will normally replace this by loading a tempo-
rary register with the high-order half of the variable’s address, followed
by a load whose displacement is the low-order half of the address. Of
course, this does not apply to variables defined inside C functions, which
are implemented either in registers or on the stack.
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• Efficient access to memory variables: Some C programs contain many
references to static or extern variables, and a two-instruction se-
quence to load/store any of them is expensive. Some compilation sys-
tems, with run-time support, get around this. Certain variables are
selected at compile/assemble time (by default MIPS Corporation’s as-
sembler selects variables that occupy 8 or less bytes of storage) and are
kept together in a single section of memory that must end up smaller
than 64KB. The run-time system then initializes one register — $28 or
gp by convention-to point to the middle of this section. Loads and stores
to these variables can now be coded as a single gp relative load or store.

• More types of branch conditions : The assembler synthesizes a full set of
branches conditional on an arithmetic test between two registers.

• Simple or different forms of instructions: Unary operations such as not
and neg are produced as a nor or sub with the zero-valued register $0.
You can write two-operand forms of three-operand instructions and the
assembler will put the result back into the first-specified register.

• Hiding the branch delay slot : In normal coding the assembler will not
let you access the branch delay slot. The SGI assembler, in particular,
is exceptionally ingenious arid may reorganize the instruction sequence
substantially in search of something useful to do in the delay slot. An
assembler directive .set noreordar is available where this must not
happen.

• Hiding the load delay: The assembler will detect an attempt to use the
result of a load in the next instruction and will move code around. In
early MIPS CPUs (with no load data inter-lock) it will insert a nop if
required.

• Unaligned transfers: The unaligned load/store instructions will fetch
halfword and word quantities correctly, even if the target address turns
out lo de unaligned.

• Other pipeline corrections: Some instructions (such as those that use the
integer multiply unit) have additional constraints — e.g., the multiply
unit’s input registers must not be reset until the third instruction after
a previous result is delivered. You probably don’t want to think about
those details, and the assembler will patch them up for you.

• Other optimizations: Some MIPS instructions (particularly floating point)
take quite a few clock cycles to produce results but the hardware is in-
terlocked, so you do not need to correct programs. But the SGI assem-
bler is particularly heroic in these circumstances and will move code all
over the place to try to make it run take account of these delays to write
faster. You may or may not welcome this.
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In general, if you really want to correlate assembler source language (not
enclosed by a .set noreorder) with instructions stored in memory, you
need help. Use a disassembler utility.

2.7 MIPS I to MIPS IV 64-Bit (and Other) Exten-
sions

The MIPS architecture has grown since its invention — notably, it’s grown
from 32 to 64 bits. That growth has been done so ne atly that it would be
quite possible to describe contemporary MIPS as a 64-bit architecture with
a well-defined 32-bit subset for low-cost implementations. We haven’t quite
done that for several reasons. Firstly, that is not how it happened, so such a
description is in danger of mystifying you. Secondly, one of the lessons that
MIPS has to offer the world is the art of extending an architecture nicely. And
thirdly the mate rial in this book was in fact written about 32-bit MIPS before
it was extended to encompass 64 bits.

So the approach is a hybrid one. We will usually introduce the 32-bit
version first, but once we get down to the details we’ll handle both versions
together. We’ll use the acronym ISA for the long-winded term instruction set.

Once the MIPS ISA started to evolve, the ISA of the original 32-bit MIPS
CPUs (the R2000, R3000, and descendants) was retrospectively called MIPS
I.1 The next variant to be widely used is a substantial enhancement that leads
to a complete 64-bit ISA for the R4000 CPU and its successors; this is called
MIPS III.

One of the blessings of MIPS is that at user level (all the code that you can
see when writing applications on a workstation) each MIPS ISA has been a
superset of the previous one. Nothing gets left out, only added.

There was a MIPS II, but it came to nothing because its first implementa-
tion (the R6000) ended up being overtaken by the MIPS III R4000. However,
MIPS II was very close to being the same as the subset of MIPS III that you
get by leaving out the 64-bit integer operations. The MIPS II ISA is making a
comeback now as the ISA of choice for new implementations of 32-bit MIPS
CPUs.

As we mentioned above, the different ISA levels define whatever they de-
fine; at a minimum they define all the instructions usable by a user-level
program in a protected operating system — which includes the floating-point
operations.2 To go with the instructions, the ISA defines and describes the
integer, floating-point data, and floating-point control-register.

1This is similar to a film fan asking whether you’ve seen “Terminator l,” even though there
never was a film called that. Even Beethoven’s Symphony no. I was once called “Beethoven’s
Symphony”.

2But it’s always been possible to make a CPU that doesn’t implement floating point.
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But each ISA definition carefully excludes the CPU control (coprocessor
0) registers and more recently the whole CPU control instruction set. I don’t
know how much this helps, though it does create employment for MIPS con-
sultants by concealing information; a book called “MIPS IV Instruction Set”
is no good if you want to know how to program the cache on an R5000.

In practice, coprocessor 0 has evolved in step with the formal ISA and like
the formal ISA there are two major variants: one associated with the R3000
(the MIPS I CPU that is the ancestor of the biggest family of MIPS CPUs) and
the other deriving from the very first MIPS III CPU, the R4000. I’ll refer to
these family groups as “R3000-style” and “R4000-style”, respectively. Later
MIPS CPUs such as R5000 and R10000 have remained R4000-style in this
sense.

2.7.1 To 64 Bits

With the introduction of the R4000 CPU in 1990, MIPS became the first 64-bit
RISC architecture to reach production. The MIPS III version of the instruction
set has 64-bit integer registers; all the general-purpose registers are 64 bits
long, and some of the CPU control registers are too. Moreover, all operations
produce 64-bit results, though some of the instructions carried forward from
the 32-bit instruction set do not do anything useful on 64-bit data. New in-
structions are added where the 32-bit operation can’t be compatibly extended
to dothe right thing for 64-bit operands.

With MIPS III the FPA gets individual FP registers that are 64 bits long,
so you don’t need a pair of them to hold a double-precision value any more.
This extension is incompatible, so a mode switch in a CPU control register
can be set to make the registers behave like a MIPS I CPU and allow the use
of old software.

2.7.2 Who Needs 64 Bits?

By 1996 32 bits was no longer a big enough address space for the very largest
applications. Pundits seem to agree that programs have been growing bigger
exponentially, doubling every 18 months or so. So long as this goes on, de-
mand for address space is expanding at about 75% of a bit per year. Genuine
32-bit CPUs (68020, i386) appeared to replace 16/20-bit machines some-
where around 1984 — so 32 bits will seem small around 2002. If this makes
MIPS’s 1991 move seem premature, that’s probably true — big-MIPS pro-
ponent Silicon Graphics did not introduce its first 64-bit-capable OS into
general use until 1995.

MIPS’s early move was spurred by research interest in operating systems
using large sparse virtual address spaces, which permit objects to be named
by their virtual address over a long period of time. MIPS was by no means
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the most prestigious organization to be deceived about the rate at which op-
erating systems would evolve; Intel’s world-dominating 32-bit CPU range had
to wait 11 years before Windows 95 brought 32-bit operation to the mass
market.

A side effect of the 64-bit architecture is that such a computer can handle
more bits at once, which can speed up some data-intensive applications in
graphics and imaging. It’s not clear, though, whether this is really prefer-
able to the multimedia instruction set extensions exemplified by Intel’s MMX,
which not only features wide data paths but some way of operating simulta-
neously on 1-byte or 16-bit chunks of that wide data.

By 1996 any architecture with pretensions to longevity needed a 64-bit
implementation. Maybe getting there early was not a bad thing.

The nature of the MIPS architecture — committed to a flat address space
and the use of general-purpose registers as pointers — means that 64-bit
addressing and 64-bit registers go together. Even where the long addresses
are irrelevant, the increased bandwidth of the wide registers and ALU may be
useful for routines that shovel a lot of data, which are often found in graphics
or high-speed communication applications.

It’s one of the signs of hope for the MIPS architecture (and certain other
simpler RISC architectures) that the move to 64 bits makes segmentation
(featured in x86 and PowerPC architectures) totally pointless.

2.7.3 Regarding 64 Bits and No Mode Switch: Data in Reg-
isters

The “standard” way to extend a CPU to new areas is to do whaa DBC did long
ago when taking the PDP-11 up to the VAX and Intel did when going from the
8086 to the i286 and i386: they defined a mode switch in the new processor
that, when turned on, makes the processor behave exactly like its smaller
ancestor.

But mode switches are kludges and in any case are difficult to implement
in a non-microcoded machine. So the R4000 uses a different approach:

• All MIPS II instructions are preserved.

• So long as you only run MIPS II instructions you get 100% compatibility,
in the sense that the low 32 bits of each MIPS III 64-bit register hold the
same values as would have filled the corresponding MIPS II register.

• As many as possible of the MIPS II instructions are defined so as to be
both compatible and still to be useful 64-bit instructions.
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The crucial decision (and an easy one, once you identify the question) is:
What shall be in the high-order 32 bits of a register when we’re being 32
bit compatible? There are a number of choices, but only a few of them are
simple.

We could simply decide that the high bits should be undefined; when
you’re being 32 bit compatible the high bits of registers can contain any old
garbage. This is easy to achieve but fails the third test above: We will now
need separate 32- and 64-bit versions of test instructions and conditional
branches (they test registers for equality, or for being negative, by looking at
the top bit).

A second and more promising option would be to decide that the high-
register bits should remain zero while we’re running 32-bit instructions; but
again, this means we’ll have to double up tests for negatives and for com-
parisons of negative numbers. Also, a 64-bit “nor” instruction between two
top-half-zero values doesn’t naturally produce a top-half-zero value.

The third, and best, solution is to maintain the top half of the register full
of copies of bit 31. If (when running only 32-bit instructions) we ensure that
each register contains the correct low 32 bits and the top half flooded with
copies of bit 31, then all 64-bit comparisons and tests are compatible with
their 32-bit versions. All bitwise logical instructions must work too (anything
that works on bit 31 works the same on bits 32-63).

The successful candidate can be described by saying that you keep 32-bit
values in registers by sign-extending them to 64 bits; this is done without
regard to whether the value is being interpreted as signed or unsigned.

With that decided, MIPS III needs new 64-bit versions of simple arithmetic
(the 32-bit addu instruction, when confronted by 32-bit overflow, has to pro-
duce the overflow value in the low half of the register and bit 31 copies in
the top half — not the same as a 64-bit add!). It also needs a load-64-bits
and new shift instructions, but it’s a modest enough set. Where new instruc-
tions are needed for 64-bit data they get a “d” fordouble in the instruction
mnemonic, generating names like daddu, daub, dmult, and 1d.

Slightly less obvious is that the existing 32-bit load instruction 1w is now
more precisely described as load word signed, so a new zero-extending lwu
appears. The number of instructions added is fattened by the need to support
existing variants and (in the case of shift-by-a-constant) the need to use a
different op-code to escape the limits of a fixed 5-bit shift amount field.

All MIPS instructions are listed in horrible detail in Chapter 8.

2.7.4 Other Innovations in MIPS III

The widespread extensions required in going to 64 bits provide an opportunity
to add some useful instructions (unrelated to 64-bit operation).
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Multiprocessor Synchronization Operations

There’s a special pair of instructions — a load linked and a store conditional
— whose job is to allow the implementation of software semaphores in a way
that works with shared memory multiprocessor systems. They do the same
job as the atomic read-modify-write (RMW) or locked instructions offered by
more recent CISC architectures — but RMW and locking get very inefficient
in large multiprocessor systems. We’ll account for their operation in Section
5.8.4 below. Meanwhile, here’s what they do.

ll is a regular load-word instruction, but it keeps a record of the address
you used in a special internal register; sc is a store-word instruction, but it
only does the store if

• The CPU has not taken any interrupt or exception since a preceding ll
at the same address, and

• (For multiprocessor systems) no other CPU has signalled a write to (or
intention to write to) a region of memory including the address used by
the 11

And then sc returns a value telling the program whether or not the store
succeeded.

Although designed for multiprocessor systems, ll and sc allow you to
implement a semaphore in a uniprocessor without haveing to disable all in-
terrupts.

Loop-Closing Branches (Branch Likely)

Efficient MIPS code requires that the compiler be able to find useful work to
do in most branch delay slots. In many cases, the instruction that would
logically have preceded the branch is a good choice. This can’t be done, of
course, when the branch is a conditional one and the instruction sequence
before it is devoted to computing the condition.
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Page 36 of the original book is missed.



38 2.7. MIPS I to MIPS IV 64-Bit (and Other) Extensions

0x0000 0000

0x8000 0000

0xA000 0000

0xC000 0000

Mapped (kseg2) 

32-bit user space (kuseg)
2GB

Unmapped uncached(kseg1)

Unmapped cached (kseg0)

Figure 2.1: MIPS memory map: the 32-bit view

(sometimes they’re close, but not the same). We’ll refer to them as program
addresses1 and physical addresses, respectively.

A MIPS CPU runs at one of two privilege levels: user and kernel.2 We’ll
often talk about “user mode” and “kernel mode” for brevity, but it’s a feature
of the MIPS architecture that the change from kernel to user never makes
anything work differently, it just sometimes makes it illegal. At the user
level, any program address with the most-significant bit of the address set is
illegal and causes a trap. Also, some instructions cause a trap in user mode.

In the 32-bit view (Figure 2.1), the program address space is divided into
four big areas with traditional (and thoroughly meaningless) names; different
things happen according to the area an address lies in, as follows:

kuseg 0x0000 0000-7FFF FFFF (low 2GB): These are the addresses permit-
ted in user mode. In machines with an MMU, they will always be trans-

1I had worked with operating systems before I met up with MIPS, so it’s natural for me
to call the program addresses “virtual addresses” — but for many people “’virtual address”
suggests a lot of operating system complications that aren’t relevant here.

2MIPS CPUs after R40000 have a third “supervisor” mode; however, since all MIPS OSs
so far have ignored it, we will mostly do so too.
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lated (see Chapter 6). You should not attempt to use these addresses
unless the MMU is set up.

For machines without an MMU, what happens is implementation de-
fined; your particular CPU’s manual may tell you about something use-
ful you could do with them. But if you want your code to be portable to
and between MMU-less MIPS processors, avoid this area.

kseg0 0x8000 0000-9FFF FFFF (512MB): These addresses are translated
into physical addresses by merely stripping off the top bit and mapping
them contiguously into the low 512MB of physical memory. Since this
is a trivial translation, these addresses are often called “untranslated”,
but now you know better!

Addresses in this region are almost always accessed through the cache,
so they may not be used until the caches are properly initialized. They
will be used for most programs and data in systems not using the MMU
and will be used for the OS kernel for systems that do use the MMU.

ksegl 0xA000 0000-BFFF FFFF (512MB): These addresses are
mapped into physical addresses by stripping off the leading 3 bits, giving
a duplicate mapping of the low 512MB of physical memory. But this
time, access will not use the cache.

The ksegl region is the only chunk of the memory map that is guaranteed
to behave properly from system reset; that’s why the after-reset starting
point (0xBFC0 0000) lies within it. The physical address of the starting
point is 0x1FC0 0000 — tell your hardware engineer.1

You will therefore use this region to access your initial program ROM,
and most people use it for I/O registers. If your hardware designer pro-
poses to map such things outside the low 512MB of physical memory,
apply persuasion.

kseg2 0xC000 0000-FFFF FFFF (1GB): This area is only accessible in kernel
mode but is once again translated through the MMU. Don’t access it
before the MMU is set up. Unless you are writing a serious operating
system, you will probably never have cause to use kseg2.

2.8 Basic Address Space

2.8.1 Addressing in Simple Systems

MIPS program addresses are never simply the same as physical addresses,
but simple embedded software will probably use addresses in kseg0 and

1The engineer wouldn’t be the first to have put the ROM at physical 0xBFC0 0000 and
found that the system wouldn’t bootstrap.
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ksegl, where the program address is related in an obvious way to physical
addresses.

Physical memory locations from 0x2000 0000 (512MB) upward are not
mapped anywhere in that simple picture; you can reach them by putting
translation entries in the memory management unit (translation lookaside
buffer) or by using some of the extra spaces available in 64-bit CPUs.

2.8.2 Kernel vs. User Privilege Level

With kernel privileges (where the CPU starts up) it can do anything. In user
mode, program addresses above 2GB (top bit set) are illegal and will cause a
trap. Note that if the CPU has an MMU, this means that all user addresses
must be translated by the MMU before reaching physical memory, giving an
OS the chance to prevent a user program from running amok. That means,
though, that the user privilege level is redundant for a MIPS CPU running
without a memory-mapped OS.

Also, in user mode some instructions — particularly the CPU control in-
structions an OS needs — become illegal.

Note that when you change the kernel/user privilege mode bit, it does not
change the interpretation of anything — it just means that some things cease
to be allowed in user mode. At kernel level the CPU can access low address
just as if it were in user mode, and they will be translated in the smae way.

Note also that, though it can sound as if kernel mode is for operating
system writers and user mode is the simple everyday mode, the reverse is the
truth. Simple systems (including many real-time operating systems) never
leave MIPS kernel mode.

2.8.3 The Full Picture: The 64-Bit view of the Memory Map

MIPS addresses are always formed by adding a 16-bit offset to a value in a
register. In MIPS III+ CPUs, the register always holds a 64-bit value, so there
are 64 bits of program address. Such a huge space permits a rather cavalier
attitude to chopping up the address space, and you can see how it’s done in
Figure 2.2.

The first thing to notice is that the 64-bit memory map is packed inside or
the 32-bit map. That’s an odd trick — like Dr. Who’s “Tardis”, the inside is
much bigger than the outside — and it depends upon the rule we described
in Section 2.7.3: When emulating the 32-bit instruction set, registers always
contain the 64-bit sign extension of the 32-bit value. As a result, a 32-bit
program gets access to the lowest and highest 2GB of the 64-bit program
space. So the extended map assigns those lowest and highest regions to the
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same purpose as in the 32-bit version, and extension spaces are defined in
between.

In practice, the vastly extended user space and supervisor-accessible spaces
are not likely to be of much significance unless you’re implementing a virtual
memory operating system; hence many MIPS III users will continue to de-
fine pointers as 32-bit objects. The large unmapped windows onto physical
memory might be useful to overcome the 512MB limit of kseg0 and ksegl, but
you can achieve the sam e effect by programming the memory manager unit
(translation lookaside buffer).

2.9 Pipeline Hazards

Any pipelined CPU hardware is always subjec to timing delays for those oper-
ations that inevitably can’t fit into a strict one-clock-cycle regime. The design-
ers or the architecture, tnough, get to choose which (it any). of these delays
become visible to the programmer. Hiding timing foibles simplifies the pro-
grammer’s model of what the CPU is doing, but it also loads complexity onto
the hardware implementor. Leaving the scheduling problem to programmers
and their software tools simplifies the hardware but can create development
and porting problems.

As we’ve said several times already, the MIPS architecture leaves some
pipeline artifacts visible and makes the programmer or compiler responsi-
ble for making the system work. The following points summarize where the
pipeline shows up:

• Branch delay: In all MIPS CPUs the instruction following any branch
instruction (in the branch delay slot) is executed even though the branch
is taken. In the odd-looking branch likely instructions, introduced with
the MIPS II instruction set, the delay slot instruction is executed only if
the branch is taken; see Section 8.4.4 for a rationale.

The programmer or compiler should find a useful, or at worst harmless,
instruction for the branch delay slot. But even the assembler will hide
the branch delay from you unless you specify otherwise.

• Load delay: In MIPS I CPUs the instruction following a load instruction
(in the load delay slot) must not use the data that was loaded. A useful
or harmless instruction needs to separate load and usage. Again, the
assembler will hide this from you unless you specify otherwise.

MIPS II and subsequent CPUs don’t suffer from this hazard; CPU hard-
ware stalls the second instruction until the data arrives. But optimizing
compilers and programmers should always be aware of how much time
a particular CPU needs to get data ready to use.
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Figure 2.2: MIPS memory map: the 64-bit view

• Integer multiply/divide trouble: The integer multiplier hardware is sepa-
rately pipelined from the regular ALU and does not properly implement
“precise exceptions” (see Section 5.1 for what that means). The fix is
simple and usually implemented by the assembler — you just have to
avoid starting one multiply/divide operation too quickly after retrieving
the results of the last one. The explanation of why this fix is both nec-
essary and sufficient is rather more complicated (see Section 5.1).
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• Floaring-point (coprocessor 1) foibles: Floating-point computations nearly
always take multiple clock cycles to complete, and typical MIPS FPA
hardware has several somewhat independent pipelined units. Under
these circumstances the hardware has just got to hide the pipeline; FP
computations are allowed to proceed in parallel with the execution of
later instructions, and the CPU is stalled if an instruction reads a result
register before the computation finishes. Really heavyweight optimiza-
tion requires the compiler to have tables of instruction repeat rates and
latencies for each target CPU type, but you won’t want to depend on
those for the program to work at all.

If computation presents no pipeline hazards, the same is not true of
the interaction between the floating-point coprocessor and the integer
execution unit. There are two effects.

Firstly, the instruction that moves data from floating-point to integer
registers, which is called mfcl, delivers data a clock cycle late — in fact,
with the same timing as loads from memory. Just as with loads, this is
a hazard in MIPS I CPUs but interlocked with later hardware; optimizing
compilers will try to do something useful in the delay slot.

Secondly, the branch instructions that test the floating-point condi-
tion code(s) cannot run in the instruction slot immediately following
the floating-point compare operation that generates the condition. A
one-instruction delay is specified and is required by most MIPS imple-
mentations.

• CPU control instruction problems: This is where life gets tricky. When you
change fields like those in the CPU status register, you are potentially af-
fecting things that happen at all pipeline stages. Since the architecture
description regard the whole CPU control system as implementation de-
pendent, there are no ISA-version-fixed rules about what is needed. And
an unfortunate consequence is that CPU vendors have not even had a
template for how such hazards should be documented.

Look in Chapter 3 for a summary of the CPU control instructions used
on MIPS CPUs to date, and then refer to Appendix A for a summary of
the timing issues as they affect at least the key R4000 CPU.
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Chapter 3
Coprocessor 0: MIPS Processor
Control

In addition to its normal computational functions, any CPU needs units
to handle interrupts, configuration options, and some way of observing or

controlling on-chip functions like caches and timers. But it’s difficult to do
this in the neat implementation-independent way that the ISA does for the
computational instruction set.

It would be desirable, and be easier for you to follow, if we could introduce
this through some chapters that separate out the different functions, and
we’re going to do that. But we have to describe the common mechanisms
used to implement these features first. You should read the first part of this
chapter before tackling the next three chapters of this book; take particular
note of the use of the word coprocessor as explained on Page 46.

So what jobs does CP0 on a MIPS CPU do?

• Configuration: MIPS hardware is often very flexible, and you may be
able to select quite major features of the CPU (such as its endianness;
see 11) or alter the way the system interface works. One or more internal
registers provide control and visibility of these options.

• Cache control: MIPS CPUs have always integrated cache controllers, and
all but the oldest integrate caches too. Even the very first MIPS CPUs
had cache control fields in status registers, and from the R4000 onward,
there’s a specific CP0 instruction to manipulate cache entries. We’ll talk
about caches in Chapter 4.

• Exception/interrupt control: What happens on an interrupt or any excep-
tion, and what you do to handle it, are defined and controlled by CP0
registers and a few special instructions. This is described in Chapter 5.

• Memory management unit control: This is discussed in Chapter 6.

45
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• Miscellaneous: There’s always more: timers, event counters, parity error
detection. Whenever additional functions are built into the CPU and
built in too tightly to be conveniently accessed as I/O devices, this is
where they get attached.

Special MIPS Use of the Word Coprocessor
The word coprocessor is normally used to
mean an optional part of a processor that
takes responsibility for some extension to the
instruction set. The MIPS standard instruction
set omits many features needed in any real
CPU, but op-codes are reserved and instruc-
tion fields defined for up to four coprocessors.
One of these (coprocessor 1)is the floating-
point coprocessor, which really is a coproces-
sor in anyone’s language.
Another (coprocessor 0 or CP0) is described
by MIPS as the system control coprocessor,
and these instructions are essential to handle
all those functions out-side the responsibi ty of
the standard ISA; they are the subject of this
chapter.
Coprocessor 0 has no independent existence
and certainly not optional — you can’t pos-
sibly make a MIPS CPU without a CPU status

register, for example. But it does provide a
standard way of encoding the instruction that
access the status register, so that, although
the definition of the status register changes
between R3000 and R4000 families, you can
use the same assembler for both CPUs.
The coprocessor 0 functions are deliberately
corralled off from the M1PS ISA and are in prin-
ciple implementation dependent. In prac-
tice, these functions have evolved in partner-
ship with the regular instruction set; for exam-
ple, the CP0 features of all MIPS III CPUs built
to date have been similar enough to allow the
same OS binaries to run over the whole family
(with some care).
Of the four coprocessors, CP3 has been in-
vaded by “standard” instructions from MIPS
III and (particularly) MIPS IV and is now unus-
able. CP2 may yet be used by some system-
on-a-chip applications.

We’ll summarize everything found in “standard” CPUs in the second half
of this chapter. But first, we’ll leave aside what we’re trying to do and look at
the mechanisms we use to do it. There are relatively few CP0 instructions —
wherever possible, low-level control over the CPU involves reading and writing
bitfields within special CP0 registers.

Table 3.1 introduces the functions of those CPU control registers that have
become de facto standards. The first group of functions in the table has been
implemented in every MIPS CPU to date; the second has been in every MIPS
CPU since the R4000 (which marked an attempt to improve the organization
of the CP0 units).

This is not a complete list; we’ll see some more control registers in the
sections on memory management and cache control. In addition, some MIPS
CPUs have gained implementation-specific registers — this is a preferred way
to add features to the MIPS architecture. Refer to your particular CPU’s
manuals.

To avoid burying you in detail at this stage, we’ve banished the bit-by-bit
description of the CP0 registers to separate sections: Section 3.3 for those
registers common to every MIPS CPU to date and Section 3.4 for those com-
mon to most implementations following the R4000. You can skip over those
sections for now if you’re interested in going on to the following chapters.
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Table 3.1: Common MIPS CPU control registers(not MMU)

Register CP0 Description
mnenonic register no.

PRId 15 An identifier identifying this CPU’s generic type, with a revision
level. The type IDs are supposedly policed by MIPS Corpora-
tion and should (at least) change whenever the architecture or
corocessor 0 register set changes. There’s a list of values issued
up to mid-97 in Tbale 3.2 below.

SR 12 The status register, which, perversely, consists mostly of writable
control fields. Fields determine the CPU privilege level, which
interrupt pins are enabled, and other CPU modes.

Cause 13 What caused that exception or interrupt?

EPC 14 Exception Program Counter : where to restart after excep-
tion/interrupt.

BadVaddr 8 The program address that caused the last address-related ex-
ception. Set by address errors of all kinds, even if there is no
MMU.

Index 0 All these are MMU manipulation registers,

Random 1 described in Chapter 6. EntryLo1 and Wired

EntryLo0 2 got introduced with the R4000.

EntryLo1 3

Context 4

EntryHi 10

PageMask 5

Wired 6

Registers introduced with the R4000

Count 9 Together, these form a simple but useful high-

Compare 11 resolution interval timer, ticking at half the CPU pipeline clock
rate.

Config 16 CPU setup parameters, usually system determined; some
writable here, some read-only.

LLAddr 17 Address from last ll (load-linked) instruction. For diagnostics
only.

WatchLo 18 Data watchpoint facility. Can cause an exception

WatchHi 19 when the CPU attempts to load or store at this address — poten-
tially useful for debugging.

CacheERR 27 Fields for analyzing (and possibly recovering from) a

ECC 26 memory error, for CPUs using error-correcting code

ErrorEPC 30 on the data path. See Figure 4.10.1 and the explanation around
it for details.

TagLo 28 Registers for cache manipulation, described in

TagHi 29 Section 4.10.

While we’re listing registers, k0 and k1 are worth a mention. These are
two general-purpose registers reserved (by software convention) for use in
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exception-processing routines. It’s pretty much essential to reserve at least
one register; the choice of which register is arbitrary but it must be one that
is embedded in all extant MIPS toolkits and binaries.

3.1 CPU Control Instructions

There are several special CPU control instructions used in the memory man-
agement implementation, but we’ll leave those until Chapter 6. MIPS III
CPUs have a polymorphic cache instruction that contrives to do everything
required to caches, described below in Chapter 4.

But those aside, MIPS CPU control requires very few instructions. Let’s
start with the ones that give you access to all the registers we just listed off:

mtc0 rs, <nn> # Move to coprocessor 0
dmtc0 rs, <nn> # Move doubleword to control register

These instructions load coprocessor 0 register number nn from CPU gen-
eral register rs, with either 32 or 64 bits of data (even in 64-bit CPUs many
of the CP0 registers are only 32 bits long). This is the only way of setting bits
in a CPU control register.

It is not good practice to refer to CPU control registers by their number in
assembler programs; normally you use the mnemonic names shown in Table
3.1. Most toolchains define these names in a C-style include file and arrange
for the C preprocessor to be run as a front end to the assembler; see your
toolkit documentation for guidance on how to do this. Although there’s a fair
amount of influence from original MIPS standards, there is some variation in
the names used for these registers. We’ll stick to the mnemonics shown in
Table 3.1.

Getting data out of CP0 registers is the opposite:

mfc0 rd, <nn> # Move from coprocessor 0
dmfc0 rd, <nn> # Move doubleword from coprocessor 0

In either case rd is loaded with the values from CPU control register num-
ber nn. This is the only way of inspecting bits in a control register. So if you
want to update a single field inside, say, the status register SR you’re going
to have to code something like

mfc0 t0, SR
and t0, <complement of bits to clear>
or t0, <bits to set>
mtc0 SR, t0



Chapter 3. Coprocessor 0: MIPS Processor Control 49

The last crucial component of the control instruction set is a way of un-
doing the effect of an exception. We’ll discuss exceptions in detail in Chapter
5, but the basic problem is shared by any CPU that can implement any kind
of secure OS; the problem is that an exception can occur while running user
(low-privilege) code but that the exception handler runs at high privilege.1

So when returning from the exception back to the user program, the CPU
needs to steer between two dangers: On the one hand, if the privilege level is
lowered before control returns to the user program, you’ll get an instant and
fatal second exception caused by the privilege violation; ort the other hand,
if you return to user code before lowering the privilege level, a malicious pro-
gram might get the chance to run an instruction with kernel privileges. The
return to user mode and the change of privilege level must be indivisible from
the programming viewpoint (or atomic, in architecture jargon).

On R3000 and similar CPUs this job is done by a jump instruction with
an rfe in its delay slot, but from the R4000 onward eret does the whole job.
We’ll go into the details in Chapter 5.

3.2 What Registers Are Relevant When?

These are the registers you will need to consult in the following circum-
stances:

Encoding of Control Registers
An note about reserved fields is in order
here. Many unu sed control register fields are
marked “0”. Bits in such fields are guaranteed
to read zero, and it is harmless to write them

(though the value written is ignored. Other
reserved fields are marked “reserved” or “x”;
you should take care to always write them as
zero, and you should not assume that you will
get back zero or any other particular value.

• After power-up: You’ll need to set up SR to get the CPU into the right
state to bootstrap itself.

Most MIPS CPUs other than the earliest have a configuration register
Config where some options may need to be set up before very much
will work. Consult your hardware engineer about making sure that the
CPU and system agree enough about configuration to get to the point of
writing these registers!

• Handling any exception: Any MIPS exception (apart from one particu-
lar MMU event) invokes a single common “general exception handler”
routine at a fixed address.

On entry no program registers have been saved, only the return address
in EPC. The MIPS hardware knows nothing about stacks. In any case,

1Almost universally, CPUs use a software-triggered exception — a system call — as the
only mechanism that user code can invoke a servrce from the OS kernel (which runs at a
higher privilege level).
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in a secure OS the privileged exception handler can’t assume anything
about the integrity of the user-level code — in particular, it can’t assume
that the stack pointer is valid or that stack space is available.

You need to use at least one of k0 and k1 to point to some memory
space reserved to the exception handler. Now you can save things, using
the other k0 or k1 register to stage data from control registers where
necessary.

Consult the cause register to find out what kind of exception it was and
dispatch accordingly.

• Returning from exception: Control must eventually be returned to the
value stored in EPC on entry. Whatever kind of exception it was, you will
have to adjust SR back when you return, restoring the user-privilege
state, enabling interrupts, and generally unwinding the exception effort.

On the R3000 the special instruction rfe does the job, but note that
it does not transfer control. To make the jump back you will load the
original EPC value back into a general-purpose register and use a jr
operation.

On the R4000 and all 64-bit CPUs to date, the return-from-exception
instruction eret combines the return to user space and resetting of SR.

Strictly speaking, the CP0 instruction set, including rfe and eret, is
implementation dependent. But no MIPS CPU has ever invented a third
way of doing the job, and it’s fairly safe to suppose that none ever will.
However, what you might well see one day is a 32-bit CPU that bases its
CP0 design on the R4000.

• Interrupts: SR is used to adjust the interrupt masks, to determine which
(if any) interrupts will be allowed higher priority than the current one.
The hardware offers no interrupt prioritization, but the software can do
whatever it likes.

• Instructions that always cause exceptions: These are often used. (for
system calls, breakpoints, and to emulate some kinds of instruction). All
MIPS CPUs have implemented instructions called break and syscall;
some implementations have added extra ones.

3.3 Encodings of Standard CPU Control
Registers

This section tells you about the format of the control registers, with a sketch
of the function of each field. In most cases, more information about how
things work is to be found in separate sections below. However, we’ve left the
registers that are specific to the memory management system to Chapter 6.
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3.3.1 Processor ID (PRId) Register

Figure 3.1 shows the layout of the PRId register, a read-only register to be
consalted to identify your CPU type. “Imp” will change whenever there’s a
change in either the instruction set or the CPU control register definitions.
“Rev” is strictly manufacturer dependent and wholly unreliable for any pur-
pose other than helping a CPU vendor to keep track of silicon revisions. Some
settings we know about are listed in Table 3.2.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 Rev Imp 

Figure 3.1: PRId register fields

If you want to print out the values, it is conventional to print them out
as “x.y” where x and y are the decimal values of Imp and Rev, respectively.
Try not to use the contents of this register to establish parameters (like cache
size, speed, and so on) or to establish the presence or absence of particular
features; your software will be more portable and robust if you design code
sequences to probe for the existence of individual features. In many cases
you will find examples or suggestions throughout this book.

Table 3.2: MIPS CPU implemementation nmumber in PRId(Imp)

CPU type Imp value

R2000 1

R3000, IDT R3051, R3052, R3071, R3081. Most
early 32-bit MIPS CPUs

2

R6000 3

R4000, R4400 4

Some LSI Logic 32-bit CPUs 5

R6000A 6

IDT R3041 7

R10000 9

NEC Vr4200 10

NEC Vr4300 11

R8000 16

R4600 32

R4700 33

R3900 and derivatives 34

R5000 35

QED RM5230, RM5260 40
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3.3.2 Status Register (SR)

The MIPS CPU has remarkably few mode bits; those that exist are defined
by fields in the CPU status register SR, as shown in Figure 3.2. We’ve shown
fields for the “standard” R3000 and R4000 CPUs; other CPUs occasionally
use other fields, sometimes alter the interpretation of fields, and commonly
don’t implement all of the fields.

We emphasize again that there are no nontranslated or noncached modes
in MIPS CPUs; all translation and caching decisions are made on the basis of
the program address.

The fields that are shared by the R3000 and R4000 CPUs are provided by
most MIPS CPUs.

R3000 (MIPS I) status register

R4000 (MIPS III) status register

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 CU1 CU0  RE   BEV  TS  PE  CM  PZ  Swc  IsC  IM  KUo  IEo  KUp  IEp  KUc  IEc SX KX RP  FR

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 CU1 CU0   RE   BEV  TS  PE  CM  PZ  Swc  IsC  IM   KUo  IEo  KUp  IEp  KUc  IEc

Figure 3.2: Fields in status register SR

Key Fields Common to R3000 and R4000 CPUs

Here are the critical shared fields; it would be very bad form for a new imple-
mentation to recycle any of them for any purpose, and they are probably now
nailed down for the foreseeable future.

CU1 Coprocessor 1 usable: 1 to use FPA if you have it, 0 to disable. When
0, all FPA instructions cause an exception. While it’s obviously a bad
idea to enable FPA instructions if your CPU lacks FPA hardware, it can
be useful to turn off an FPA even when you have one.1

Bits 31 and 30 control the usability of coprocessors 3 and 2, respec-
tively, and might be used by some MIPS CPUs that want to define more
instructions. CP2 instructions may appear in some core implementa-
tions.

BEV Boot exception vectors: When BEV == 1, the CPU uses the ROM (ksegl)
space exception entry point (described in Section 5.3). BEV is usually
set to 0 in running systems.

1Why turn off a perfectly good FPA? Some operating systems disable FP instructions
for every new task; if the task attempts some floating point it will trap and the FPA will
be enabled for that task. But now we can distinguish tasks that never use floating-point
instructions, and when such a task is suspended and restored we don’t need to save or
restore the FP registers; that may save some time in crucial context-saving code.
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IM Interrupt mask: An 8-bit field defining which interrupt sources, when ac-
tive, will be allowed to cause an exception. Six of the interrupt sources
are generated by signals from outside the CPU core (one may be used
by the FPA, which although it lives on the same chip is logically exter-
nal); the other two are the software-writable interrupt bits in the Cause
register.

The 32-bit CPUs with floating-point hardware use one of the CPU inter-
rupts to signal floating-point exceptions; MIPS III and subsequent CPUs
usually have an interval timer as part of the coprocessor 0 features,
and timer events are signalled on the highest interrupt bit. Otherwise,
interrupts are signalled from outside the CPU chip.

No interrupt prioritization is provided for you: The hardware treats all
interrupt bits the same. See Section 5.8 for details.

Less Obvious Shared Fields

These fields are obscure, generally unused, but scary to change and therefore
universal to date.

CU0 Coprocessar 0 usable: Set 1 to be able to use some nominally privileged
instructions in user mode. You don’t want to do this. The CPU control
instructions encoded as coprocessor 0 type are always usable in kernel
mode, regardless of the setting of this bit.

RE Reverse endianness in user mode: The MIPS processors can be config-
ured, at reset time, with either endianness (see Section 11.6 if you don’t
know what that means). Since human beings are perverse, there are
now two universes of MIPS implementation: DEC and Windows NT are
little-endian; SGI and their UNIX world are big-endian. Embedded ap-
plications originally showed a strong big-endian bias but are now thor-
oughly mixed.

It could be a useful feature in an operating system to be able to run soft-
ware from the opposite universe; the RE bit makes it possible. When RE
is active, user-privilege software runs as if the CPU had been configured
with the opposite endianness.

However, achieving cross-universe running would require a large soft-
ware effort as well, and to date nobody has done it.

TS TLB shutdown: See Chapter 6 for details. TS gets set if a program address
simultaneously matches two TLB entries, which is certainly a sign of
something horribly wrong in the OS software. Prolonged operation in
this state, in some implementations, could cause internal contention
and damage to some chips, so the TLB ceases to match anything. TLB
shutdown is terminal and can be cleared only by a hardware reset.



54
3.3. Encodings of Standard CPU Control

Registers

Some MIPS CPUs have foolproof TLB hardware and may not implement
this bit.

On IDT R3051 family CPUs you can inspect this bit following hardware
reset, and it will be set if and only if the CPU lacks a TLB (the memory
management hardware). This test is not reliable across all implementa-
tions.

R3000-Specific Fields in the Status Register: Everyday Use

SwC, IsC Swap caches and isolate (data) cache: These are cache mode bits
for cache management and diagnostics; see Section 4.5 for details. In
simple terms, when SR(IsC) is set, all loads and stores access only
the data cache and never memory; in this mode a partial-word store
invalidates the cache entry.

When SR(SwC) is set, the roles of the I-cache and the D-cache are re-
versed so that you can access and invalidate I-cache entries.

KUc, IEc These are the two basic CPU protection bits.

KUc is set 1 when running with kernel privileges, 0 for user mode. In ker-
nel mode you can get at the whole program address space and use priv-
ileged (coprocessor 0) instructions. In user mode you are restricted to
program addresses between zero and 0x7FFF FFFF and can’t run privi-
leged instructions; attempts to break the rules result in an exception.

IEc is set 0 to prevent the CPU taking an interrupt, 1 to enable.

KUp, IEp KU previous, IE previous: On an exception, the hardware takes the
values of KUc and IEc and saves them here at the same time as changing
the values of KUc, IEc to [1, 0] (kernel mode, interrupts disabled). The
instruction rfe can be used to copy KUp, IEp back into KUc, IEc.

KUo, IEo KU old, IE old: On an exception the KUp, IEp bits are saved here.
Effectively, the six KU/IE bits are operated as a three-deep, 2-bit-wide
stack that is pushed on an exception and popped an rfe. The process
is described in Chapter 5 and illustrated in Figure 5.1.

This provides a chance to recover cleanly from an exception occuring so
early in an exception-handling routine that the first exception has not
yet saved SR. The circumstances in which this can be done are limited,
and it is probably only really of use in allowing the user ThB refill code
to be made a little shorter; see Section 6.7 for more information.

Obscure R3000-only Bits

PE Set if a cache parity error has occurred. No exception is generated by
this condition, which is really only useful for diagnostics. The MIPS
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architecture has cache diagnostic facilities because earlier versions of
the CPU used external caches, and signal timing on the cache buses
was at the limits of technology For those implementations the cache
parity error bit was an essential design debug tool.

For CPUs with on-chip caches, this feature is probably obsolete.

CM This shows the result of the last load operation performed with the D-
cache isolated (see bit IsC of this register or Section 4.9.1 to know more
about what “isolated” means). CM is yet if the cache really contained
data for the addressed memory location (i.e., if the load would have hit
in the cache even if the cache had not been isolated).

PZ When set, cache parity bits are written as zero and not checked. This
is a fossil from CPUs with external caches, where it allowed confident
designers to dispense with the external memory that held the cache
parity bits, saving a little money. You won’t use this if the CPU has
on-chip caches.

Common SR Fields in R4x00 CPUs

Remember, these fields are in principle entirely CPU dependent; however,
there’s been a lot of commonality in CPUs from MIPS III upward.

FR A mode switch: Set 1 to expose all 32 double-sized floating-point registers
to software; set 0 to make them behave as they do on the R3000.

SR Soft reset occurred: MIPS CPUs offer several different grades of rest-
distinguished by hardware signals. The field SR(SR) is clear follow-
ing a hard reset (one where all operating parameters are reloaded from
scratch) but set following a soft reset or NMI. In particular, the configu-
ration register Config retains its values across a soft reset but must be
reprogrammed after a hard reset.

DE Disable cache and system interface data checking: You may need to set
this for some hardware systems that don’t provide parity on cache refills
(though the hardware designer has the option of flagging data returning
to the CPU as having no parity, which is probably a better approach).
You should also set it for CPUs that don’t implement cache parity.

UX, SX, KX These support a mix of R3000-compatible and expanded ad-
dress spaces: There are separate bits for the three different privilege
levels; when the appropriate one is set, the most common memory trans-
lation exceptions (TLB misses) are redirected to a different entry point
where the software will expect to deal with 64-bit addresses.

Also, when SR(vx) is zero the CPU won’t run 64-bit instructions from
the MIPS III ISA in user mode.
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KSU CPU privilege level: 0 for kernel, 1 for supervisor, 2 for user. Regardless
of this setting, the CPU is in kernel mode whenever the EXL or ERL
bits are set following an exception. The supervisor privilege level was
introduced with the R4x00 but has never been used; see the sidebar for
an explanation (or speculation) why.

ERL Error level: This gets set when the CPU takes a parity/ECC mis-check
exception. This uses a separate bit because a correctable ECC error
can happen anywhere — even in the most sensitive part of an ordinary
exception routine — and if the system is aiming to patch up ECC errors
and keep running, it must be able to fix them regardless of when they
occur. That’s challenging, since the exception routine has no registers
it can safely use; and with no registers to use as pointers, it can’t start
saving register values.

To get us out of this hole, SR(ERL) has drastic effects; all access to
normal user-space-translated addresses disappears, and program ad-
dresses from 0 through 0x7FFF FFFF become uncached windows onto
the same physical addresses. The intention is that the cache error ex-
ception handler can use base+offset addressing off the zero register to
get itself some memory space to save registers.

EXL Exception level: Set by any exception, this forces kernel mode and dis-
ables interrupts; the intention is to keep EXL on for long enough for
software to decide what the new CPU privilege level and interrupt mask
is to be.

IE Global interrupt enable: Note that either ERL or EXL inhibit all interrupts,
regardless.

Why Is There an Supervisor Mode?
The R3000 CPU offered only two privilege Lev-
els, which are all that is required by most UNIX
implementations and all that has ever been
used in any MIPS OS. So why did the R4000’s
designers go to considerable trouble to add
a feature that has never been used?
In 1989-90 one of the biggest successes for
MIPS was the use of the R3000 CPU in DEC’s
DECstation product line and MIPS wanted the
R4000 to be selected as DEC’s future work-
station CPU. The competition was an in-house
development that evolved into DEC’s Alpha
architecture, but they were coming from be-
hind; R4000 was usable about 18 months be-
fore Alpha. Whichever CPU was chosen had
to run not only UNIX but DEC’s minicomputer
operating system VMS; apparently VMS archi-
tects claimed that it wasn’t possible to imple-
ment VMS on a system with only two privilege
levels.

Alpha’s basic instruction set is almost identi-
cal to MIPS’s; its biggest difference the at-
tempt to do without any partial-wrord loads or
stores, and newer Alpha instruction sets have
regained those.
In the end, it appears that the VMS software
team was decisive in choosing Alpha over the
R4000 because of its insistence that certain
differences in the instruction set and CPU con-
trol architectures would make a VMS port to
R4000 crucially slower. I am very skefr tical
about this and put the choice down to NIH
(not invented here). DEC was arobably right
to believe that control over its microprocessor
development was essential, but it’s interesting
to speculate how things might have turned
out differently if DEC had stayed on board
with the R4000.
I also suspect that sales of VMS on Alpha have
been negligible, but that’s another story.
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CPU-Dependent Fields in R4x00 CPUs

RP Reduced power: Lowers the CPU’s operating frequency, usually by divid-
ing it by 16. In many R4x00 CPUs this doesn’t work; even where it does,
it requires that the CPU system interface be built to cope with it. Read
the CPU manual, and talk to the system designer.

CH Cache hit indicator: Used for diagnostics only.

CE Cache error: This is only useful for diagnostics and recovery routines,
and those should rely on information in the ECC register instead.

3.3.3 Cause Register

Figure 3.3 shows the fields in the Cause register, which you consult to find
out what kind of exception happened and which you will use to decide what
exception routine to call. Cause is a key register in exception handling and
is defined the same way in all the MIPS CPUs I know of, though the list of
exception types has grown.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 BD   IP   CE  ExcCode  

Figure 3.3: Fields in Cause register

BD Branch delay: EPC is committed to being the address where control
should go back to after an exception. Normally, this also points at the
exception victim instruction.

But when the exception victim is an instruction that is in the delay slot
following a branch, EPC has to point to the branch instruction; it is
harmless to re-execute the branch, but if you returned from the excep-
tion to the branch delay instruction itself the branch would not be taken
and the exception would have broken the interrupted program.

Cause(BD) is set only if the exception victim instruction was in a branch
delay slot. You need only look at Cause(BD) if you want to analyze the
exception victim instruction (if Cause(BD) == 1 then the instruction is
at EPC + 4).

CE Coprocessor error: If the exception is taken because a coprocessor format
instruction was not enabled by the corresponding SR(CUx) field, then
Cause(CE) has the coprocessor number from that instruction.

IP Interrupt pending: Shows you the interrupts that want to happen. These
bits follow the CPU inputs for the six hardware levels. Bits 9 and
8 are readable/writable and contain whatever value you last wrote to
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them. However, any of the 8 bits active when enabled by the appropri-
ate SR(IM) bit and the global interrupt enable flag SR(IEc) will cause
an interrupt.

Cause(IP) is subtly different from the rest of the Cause register fields: It
doesn’t tell you what happened when the exception took place; instead,
it tells you what is happening now.

ExcCode This is a 5-bit code that tells you what kind of exception happened,
as detailed in Table 3.3.

3.3.4 Exception Return Address (EPC) Register

This is just a register that holds the address of the return point for this
exception. The instruction causing (or suffering) the exception is at EPC,
unless BD is set in Cause, in which case EPC points to the previous (branch)
instruction. EPC is 64 bits wide if the CPU is.

3.3.5 Bad Virtual Address (BadVaddr) Register

This register holds the address whose use led to an exception; it is set on any
MMU-related exception, on an attempt by a user program to access address
outside kuseg, or if an address is wrongly aligned. After any other exception it
is undefined. Note in particular that it is not set after a bus error. BadVaddr
is 64 bits wide if the CPU is.

Table 3.3: ExcCode values: different kinds of exceptions

Exccode Mnemonic Description
value

0 Int Interrupt

1 Mod TLB modification: This is an attempt to store to a program address
in a mapped region but where the MMU entry is marked as write
only.

2 TLBL TLB load/TLB store: No valid entry in

3 TLBS the TLB matches a program address used for a read or write, re-
spectively. This exception gets a special entry point for handling
most translations (exactly which exceptions get special treatment
changes between R3000- and R4000-like CPUs).

4 AdEL Address error (on load/I-fetch or store,

5 AdES respectively): This is either an attempt to get outside kuseg when in
user mode or an attempt to read a doubleword, word, or halfword
at a misaligned address.

6 IBE Bus error (instruction fetch or data

— continued —
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Table 3.3: continued

Exccode Mnemonic Description
value

7 DBE read, respectively): External hardware has signalled an error of
some kind; what you have to do about it is system dependent.
A bus error on a store can only come about indirectly, as a result
of a cache read to obtain the cache line to be written.

8 Syscall Generated unconditionally by a syscall instruction.

9 Bp Breakpoint: This is a break instruction.

10 RI Reserved instruction: This is an instruction code undefined in this
CPU.

11 CpU Coprocessor unusable: This is a special kind of undefined in-
struction exception, where the instruction is in a coprocessor or
load/store coprocessor format. In particular, this is the excep-
tion you get from a floating-point operation if the FPA usable bit,
SR(CU1)is not set; hence it is where floating-point emulation starts.

12 Ov Arithmetic overflow: Note that unsigned versions of instructions
(e.g., addu) never cause the exception.

13 TRAP This comes from one of the conditional trap instructions added with
MIPS II.

14 VCEI Virtual coherency error in the 1-cache: This is only relevant to R4000
and above CPUs that have a secondary cache and that use the
secondary cache tag bits to check for cache aliases. Explained in
Section 4.14.2.

15 FPE Floating-point exception: This occurs only in MIPS II and higher
CPUs. In MIPS I CPUs, floating-point exceptions are signalled as
interrupts.

16 C2E Exception from coprocessor 2: No R4x00 CPU (yet) has had a co-
processor 2, so this needn’t worry you.

17-22 - Reserved for future expansion.

23 Watch Physical address of load/store matched enabled value in
WatchLo/ WatahHi registers.

24-30 - Reserved for future expansion.

31 VCED virtual coherency error on data: this is the same as for VCEI.

3.4 Control Registers for the R4000 CPU and Fol-
lowers

The R4000 (the first CPU implementing the 64-bit MIPS III ISA) was a brave
attempt to regularize some features of CPU implementations that were show-
ing signs of getting out of control and an attempt to provide a regular struc-
ture for some irresistible features.

The most obvious change is that the caches now come under the control of
a new instruction (really a set of instructions) called cache additional features
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include an on-CPU timer, some debug facilities, and mechanisms for handling
recoverable bit errors in the extensive cache. Also there’s a Config register
that allows parameterization of some key features (cache size, cache line size,
etc.) by communicating those parameters to the software that needs to know
it.

We’ll introduce the registers that are just for cache management in Chap-
ter 4 where we’re dealing with caches in general and the MMU/TLB registers
in Chapter 6.

3.4.1 Count/Compare Registers: The R4000 Timer

These registers provide a simple general-purpose interval timer that runs
continuously and that can be programmed to interrupt. In most CPUs, it’s
a reset-time configuration option whether the timer is wired to an interrupt.
The timer is always the interrupt input found at Cause(IP7) (usually making
the hardware input Int5* redundant).

Count is a 32-bit counter that counts up continually, at exactly half the
CPU’s pipeline clock rate. When it reaches the maximum 32-bit value it
overflows quietly back to zero. You can read Count to find the current time.
You can also write Count at any time — but it’s normal practice not to do so.

Compare is a 32-bit read/write register. When Count increments to a value
equal to Compare, the interrupt is raised. The interrupt remains asserted
until cleared by a subsequent write to Compare.

To produce a periodic interrupt, the interrupt handler should always in-
crement Compare by a fixed amount (not an increment to Count, because the
period would then get slightly increased by interrupt latency). The software
needs to check for the possibility that a late interrupt response might lead it
to set Compare to a value that Count has already passed; typically, it rereads
Count after writing Compare.

3.4.2 Config Register: R4x00 Configuration

CPU configuration is firmly CPU dependent, but all members of the R4x00
family have the Config register and share many of its fields. Figure 3.4
shows the set of flags provided by the original R4000 CPU.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 EC EP  SS  SW  EW  SC  SM  IB  DB  CU  KO DC IC SB CM  BE  EB EM  

Figure 3.4: Fields in R4000’s Config register

The fields in Figure 3.4 are as follows:
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CM Set 1 for master/checker mode — applicable to fault-tolerant systems
only. Set at reset time and read only.

EC This 3-bit field encodes the clock divider: the ratio between the internal
pipeline clock and the clock used to run the system interface. In some
CPUs, the system interface clock is the same as the input dock, and this
acts as a multiplier for the internal clock; in older CPUs, the pipeline al-
ways runs at twice the input clock rate, and this acts as a programmable
divider for the system interface clock.

For the R4000, when the field holds the number n, the ratio is (n+ 2).
But the introduction of such clock ratios as 1.5 and 2.5 in later CPUs
has forced a change of encoding. Refer to the individual CPU manual.

This field is (so far) set at reset time and read-only.

EP This 4-bit field encodes the transmit data pattern. The R4000 CPU and
many of its successors have a system interface that has no external
handshake signal on the multiple data of a cache line write-back cyde.
The CPU is capable of sending the data at one bus-width quantity per
clock cycle. Because this is sometimes too fast For the interface to cope
with, the rate and rhythm with which data is sent can be programmed
here.

The following table shows the data pattern as a pattern of “D”; meaning a
clock cycle where a word of data is sent, or “x”where the system interface
rests for a clock:

Short patterns are repeated as necessary, so a write back of an 8-word
(4-doubleword) cache line programmed with
Config(EP) == 5 would be “DDxxxxDD”. (Or would it be correctly writ-
ten “DDxxxxDDxxxx”, implying a three-cycle quiet period on the bus?)
Our experience is that many CPUs do not implement dead time at the
end of a write but that some do. Ask your CPU supplier if this is impor-
tant to you.

Most CPUs support only a subset of these values. Some use different
encodings. The EP field is sometimes set at reset time and read-only
and sometimes programmable here.

EP field Data pattern EP field Data pattern

0 D 8 Dxxx

1 DDx 9 DDxxxxxx

2 DDxx 10 Dxxxx

3 Dx 11 DDxxxxxxx

4 DDxxx 12 Dxxxxx

5 DDxxxx 13 DDxxxxxxxx

6 Dxx 14 Dxxxxxx

7 DDxxxxx 15 DDxxxxxxxxx
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SB Off-chip secondary cache block size (or line size). This field is usually
hardware configured and read-only here. R4000 encodings are

SB Value Block size

(32-bit words)

0 4

1 8

2 16

3 32

SS On the R4000 CPU, the off-chip secondary cache can either be operated
as split (separate cache locations used for instructions and data, regard-
less of their addresses) or unified (all treated the same according to their
address). It is set 1 for split, 0 for unified.

SW On the R4000 (and maybe some others), it is set 1 if the secondary cache
is 128 bits wide like the original R4000SC, 0 for 64 bits wide.

EW System interface width: 0 for 64 bit, 1 for 32 bit.

SC In R4000 and R5000 CPUs and their immediate descendants, this field
is writable and acts as a software-controlled enable for the secondary
cache; it is very useful for diagnostic purposes. It is set 1 if there is an
on-chip controlled secondary cache, 0 otherwise.

Some later uniprocessor CPUs with provision for secondary caches re-
port the secondary cache size in another field, recycling some bitfields
that are used for multiprocessor purposes in R4000. However, typi-
cally those size fields are just blindly passing on information received at
power-on configuration time and have no hardware impact.

SM Multiprocessor cache coherenry protocol configuration.

BE CPU endianness (see Section 11.6): 1 for big-endian, 0 for little-endian.
On the NEC Vr4300 (at least) this field is software writable, but on most
MIPS CPUs it’s part of the hardware configuration.

EM Data checking mode: 1 for ECC checking, 0 for per-byte parity.

EB Must be 0. There was once going to be a hardware interface option to
do all cache refills/write backs in sequential order, rather than in sub-
block order; this option has never been implemented.

IC/DC Size of primary I- and D-cache: A binary value n codes for a cache
size of 212+n bytes.

IB/DB Line (block) size of primary I- and D-cache: 0 for 4×32-bit words, 1
for 8×32-bit words.
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CU Another multiprocessor cache coherency protocol configuration bit.

K0 This is a writable field that allows you to configure cache behavior for
accesses in kseg0. The codes here are just the same as those that can
be entered into the MMU tables to control caching on a page-by-page
basis and appear to you as the EntryLo(C) field. Outside of cache-
coherent multiprocessors, the only interesting standard values are 3 ==
cached and 2 == uncached.

Post-R4000 CPUs not offering multiprocessor cache facilities have used
other values to configure different cache behaviors such as write through
and write allocate — see Section 3.4 for what those mean.

3.4.3 Load-Linked Address (LLAddr) Register

This register holds the physical address of the last-run load-linked operation,
which is kept to monitor accesses that may cause a future store conditional
to fail; see Section 5.8.4. Software access to LLAddr is for diagnostic use
only.

3.4.4 Debugger Watchpoint (WatchLo/
WatchHi) Registers

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 W MatchAddr  R 

Figure 3.5: Layout of WatchLo register

These registers implement a watchpoint: They hold a physical address that
is checked against each load or store operation and that causes a trap if the
load/store address matches. They are intended for use by debug software.

WatchLo is shown in Figure 3.5. Watchpoint addresses are maintained
only to the nearest doubleword (8 bytes), so only address bits down to 3
need be kept. WatchHi holds high-order address bits. The other WatchLo
bits enable the watchpoint cheek on reads if WatchLo(R) == 1 or writes if
WatchLo(w) == 1. There’s nothing to stop you from enabling both read and
write watchpoint.

Some debuggers make use of the hardware watchpoint and some don’t.
Debuggers that do have a watchpoint facility (sometimes also called data
break-point) normally allow you to set an arbitrary number of them and are
likely to use WatchLo/WatchHi only when you’ve specified exactly one debug-
ger watchpoint.
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Chapter 4
Caches for MIPS

A MIPS CPU without a cache isn’t really a RISC. Perhaps that’s not fair;
for special purposes you might be able to build a MIPS CPU with a small,

tightly coupled memory that can be accessed in a fixed number of pipeline
stages (preferably one). But MIPS CPUs have pretty much always had cache
hardware built in.

This chapter will describe the way in which MIPS caches work and what
the software has to do to make them useful and reliable. From reset almost
everything about the cache state is undefined, so the software must build
carefully. You might also benefit from some hints and tips for use when
sizing the caches (it would be bad software practice to assume you know how
big the cache is). For the diagnostics programmer, we discuss how to test the
cache memory and probe for particular entries.

Some real-time applications writers may want to control exactly what will
get cached at run time. We discuss how to do it, even though I am skeptical
about the wisdom of using such tricks.

There’s also some evolution to contend with. In early 32-bit MIPS proces-
sors, cache management functions relied upon putting the cache into a spe-
cial state and then using ordinary reads and writes whose side effects could
initialize or invalidate cache locations. For later CPUs, special instructions
are defined to do the relevant operations.

4.1 Caches and Cache Management

The cache’s job is to keep a copy of memory data that has been recently read
or written, so it can be returned to the CPU quickly and in a fixed period of
time to keep the pipeline running.

MIPS CPUs always have separate caches for instructions and data. (I-
cache, and D-cache, respectively) so that an instruction can be read and a

65
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load or store done simultaneously.

Older CPU families (such as the x86) have to be compatible with code that
was written for CPUs that didn’t have any caches. Modern x86 chips contain
ingeniously designed hardware to make sure that software doesn’t have to
know about the caches at all (if you’re building a machine to run MS/DOS
this is essential to provide backward compatibility).

But because MIPS machines have always had caches, there’s no need for
the cache to be so clever. The caches must be transparent to application
software, apart from the increased speed. But in a MIPS CPU, which has
always had cache hardware, there is no attempt to make the caches ivisible
to system software or device drivers — cache hardware is installed to make
the CPU go fast, not to help the system programmer. In a UNIX-like OS the
operating system hides the cache from applications, of course, but while a
more lightweight OS might well hide the details of cache manipulation from
you, you will still probably have to know when to invoke the appropriate
subroutine.

4.2 How Caches Work

Conceptually, a cache is an associative memory, a chunk of storage where
data is written marked with an arbitrary data pattern as a key. In a cache,
the key is the full memory address. Produce the same key back to an asso-
ciative memory and you’ll get the same data back again. A real associative
memory will store items using any set of keys at all, at least until it’s full;
however, since a presented key has to be compared with every stored key si-
multaneously, a genuine associative memory of any size is either hopelessly
resource hungry, slow, or both.

So haw can we make a useful cache that is fast and efficient? Figure 4.1
shows the basic layout of the simplest kind of cache, the direct-mapped each
used in most MIPS CPUs up to the 1992 generation.

The direct-mapped arrangement uses a simple chunk of high-speed mem-
ory (the cache store) indexed by enough low address bits to span its size.
Each line inside the cache store contains one or more words of data and a
cache tag field that records the memory address where this data belongs.

On a read, the cache line is accessed and the tag field is compared with
the higher addresses of the memory address; if the tag matches, we know
we’ve got the right data and have “hit” in the cache. Where there’s more than
one word in the line, the appropriate word will be selected based on the very
lowest address bits.

If the tag doesn’t match, we’ve missed and the data will be read from
memory and copied into the cache. The data that was previously held in the
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cache is simply discarded and will need to be fetched from memory again if
the CPU references it.

Cache memory

Cache data storeTagstore

Index Data

Higher bits Low bits

Memory address

Hit

Match?

Yes

No

Figure 4.1: Direct-mapped cache

A direct-mapped cache like this one has the property that, for any given
memory address, there is only one line in the cache store where that data
can be kept.1 That might be good or bad; it’s good because such a simple
structure will be fast and will allow us to run the whole CPU faster. But
simplicity has its bad side too: If your program makes repeated reference to
two data items that happen to share the same cache location (presumably
because the low bits of their addresses happen to be close together), then the
two data items will keep pushing each other out of the cache and efficiency
will fall drastically.

A real associative memory wouldn’t suffer from this kind of thrashing but
would be impossibly complex, expensive, and slow for any reasonable size.

A common compromise is to use a two-way set-associative cache — which
is really just a matter of running two direct-mapped caches in parallel and
looking up memory locations in both of them, as shown in Figure 4.2.

1In a fully associative memory, data associated with any given memory address (key) can
be stored anywhere; a direct-mapped cache is as far from being content addressable as a
cache store can be.
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Now we’ve got two chances of getting a hit on any address. Four-way set-
associative caches (where there are effectively four direct-mapped subcaches)
are also fairly common in on-chip caches.

There are penalties, however. A set-associative cache requires many more
bus connections than a direct-mapped cache, so caches too big to integrate
onto a single chip are much easier to build direct mapped. More subtly,
because the direct-mapped cache has only one possible candidate for the
data you need, it’s possible to keep the CPU running ahead of the tag check
(just so long as the CPU does not do anything irrevocable based on the data).
Simplicity and running ahead can translate to a faster clock rate.

Tagstore Cache data store

Cache memory A

A-line Data

Cache memory B

Cache data storeTagstore

B-line Data

Select B

Match?

Select A

Match?

Higher bits Low bits

Figure 4.2: Two-way set-associative cache

Once the cache has been running for a while it will be full, so storing the
incoming memory data usually means discarding some previously cached
data. If you know that the data in the cache is already safely in memory, you
can just discard the cached copy; if the data in the cache is more up to date
than memory, you need to write it back first.
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That brings us to how the cache handles writes.

4.3 Write-Through Caches in Early MIPS CPUs

CPUs don’t just read data (as the above discussion seems to be assuming) —
they write it too. Since a cache is intended to be a local copy of some data
from main memory, one obvious way of handling the CPU’s writes is the use
of what is called a write-through cache.

In a write-through cache the CPU’s data is always written to main memory;
if a copy of that memory location is resident in the cache, the cached copy is

4.4 Write-Back Caches in Recent MIPS CPUs
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From the MIPS R4000 on, MIPS CPUs have on-chip caches that are write
back, write allocate, and have line sizes of 16 or 32 bytes.

The design choices in MIPS caches as applied to the R4000 and other
large CPUs used in Silicon Graphics and other computers are influenced by
the needs of multiprocessor systems (not discussed in this book).

4.5 Other Choices in Cache Design

The 80s and 90s have seen much work and exploration of how to build
caches. So there are yet more choices:

• Physically addressed/virtually addressed: While the CPU is running
a grown-up OS, data and instruction addresses in your program (the
program address or virtual address) are translated before appearing as
physical addresses in the system memory.

A cache that works purely on physical addresses is easier to manage
(we’ll explain why below), but raw program (virtual) addresses are avail-
able to start the cache lookup earlier, letting the system run that little
bit faster.

So what’s wrong with program addresses? They’re not unique; many
different programs running in different address spaces on a CPU may
share the same program address for different data. We could reinitialize
the entire cache every time we switch contexts between different address
spaces; that used to be done some years ago and may be a reasonable
solution for very small caches. But for big caches it’s ridiculously inef-
ficient, and we’ll need to include a field identifying the address space in
the cache tag to make sure we don’t mix them up.

There’s another, more subtle problem with program addresses: The
same physical location may be described by different addresses in dif-
ferent tasks. In turn, that might lead to the same memory location
cached in two different cache entries (because they were referred to by
different virtual addresses that selected different cache indexes). These
cache aliases must be avoided by the OS’s memory manager; see Section
4.14.2 for details.

From the R4000 on, MIPS primary caches have used the program ad-
dress to provide a fast index to start the cache lookup. But rather
than using the program address plus an address space identifier to tag
the cache line, they use the physical address. The physical address is
unique to the cache line and is efficient because the scheme allows the
CPU to translate program addresses to physical addresses at the same
time it is looking up the cache.
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• DMA into memory: If a device is loading data into memory, it’s important
to invalidate any cache entries purporting to hold copies of the memory
locations concerned; otherwise, the CPU reading these localions will ob-
tain stale cached data. The cache entries should be invalidated before
the CPU uses any data from the DMA input stream.
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Why Not Manage Caches in Hardware?
Caches managed with hardware are often
called “snoopy”. When another CPU or some
DMA device accesses memory, the addresses
concerned are made visible to the cache.
With a CPU attached to a shared bus, this is
pretty straightforward; the address bus con-
tains most of the information you need.The
hardware watches (snoops) the address bus
even when the CPU is not using it and picks
out relevant cycles. It does that by looking up
its own cache to see whether it holds a copy
of the location being accessed.
If someone is writing data that is inside the
cache, the controller can pick up the data
and update the cache line but is more likely
to just invalidate its own, now stale, copy. If
someone is reading data for which updated
information is held in the cache, the controller
may be able to intervene the bus, telling the
the memory controller that it has a more up-
to-date version.
One major problem with doing this is that it
works only within a system designed to oper-
ate that way. Not all systems have a single bus
where all transactions appear; bought-in I/O
controllers are unlikely to conform to the right
protocols.

Also, it’s very complicated. Most of the loca-
tions that CPUs work with are the CPU’s pri-
vate areas; they will never be read or written
by any other CPU or device. We’d like not
to build hardware ingenuity into the cache,
loading every cache location and bus cycle
with complexity that will only sometimes be
used.
It’s easy to suppose that a hardware cache
control mechanism must be faster than soft-
ware, but that’s not necessarily so. A snoopy
cache controller must look at the cache tags
on every external cycle, which could shut
the CPU out of its cache and slow it down;
complex cache controllers usually hold two
copies of the cache tags for this reason. Soft-
ware management can operate on blocks of
cache locations in a single fast loop; hard-
ware management will interleave invalida-
tions, or write back with CPU accesses at I/O
speed, and that usually implies accesses arbi-
tration overhead.
So MIPS took the radical RISC position: MIPS
CPUs either have no cache management
hardware or, where designed for multiproces-
sors, they have everything — ike the R4400MC
or R10000.

• Writing instructions: When the CPU itself is storing instructions into
memory for subsequent execution, you must first ensure that the in-
structions are written back to memory and then make sure that the
corresponding I-cache locations are invalidated: The MIPS CPU has no
connection between the D-cache and the I-cache.

If your software is going to fix these problems, it needs to be able to do two
distinct operations on a cache entry.

The first operation is called write back. The CPU must be able to look in
the cache for data for a particular location. If it is present in the cache and is
dirty (marked as having been writtenthe CPU since it was last obtained from
memory or written back to memory), then the CPU copies the data from the
cache into main memory.
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Table 4.1: Cache evolution in MIPS CPUs
CPU Primary Secondary Tertiary

(MHz) Size direct/ on- Size direct/ on- Size direct/ on-
I-cache D-cache n-way chip? n-way chip? n-way chip?

R3000-33 32K 32K Direct No

R3052-33 8K 2K Direct Yes

R4000-100 8K 8K Direct Yes 1M Direct No

R4600-100 16K 16K 2-way Yes

R10000-250 32K 32K 2-way Yes 4M 2-way No

R5000-200 32K 32K 2-way Yes 1M Direct No

RM7000-xxx 16K 16K 4-way Yes 256K 4-way Yes 8M Direct No

CPUs that add another level of hierarchy reduce the miss penalty for the
next cache inward, so the designers may be able to simplify the inner cache in
search of higher clock rates, most obviously by making the next inner cache
smaller. It seems likely that as many high-end CPUs gain on-chip secondary
caches (from 1998 on), primary cache sizes will fall slightly, with dual 16KB
primary caches a favored “sweet spot”.1

An off-chip cache is generally direct mapped because a set-associative
cache system needs multiple buses and therefore an awful lot of pins to con-
nect it. This is still an area for experimentation; the MIPS R10000 implements
an external two-way set-associative cache with one data bus by delaying the
returned data when the hit is not in the expected set.

Amidst all this evolution, there have been two main generations of the
software interface to the cache. From a software point of view there is one
style founded by the R3000 and followed by practically all 32-bit MIPS CPUs;
there is another starting with the R4000 and used by all 64-bit CPUs to
date.2 R3000-type MIPS CPUs have caches that are write through, direct
mapped, and physically addressed. Cache locations are accessible only as
whole words, so an operation that writes a byte (or anything less than a
whole word) has to be managed specially. Cache management is done using
special modes in which regular loads and stores do magic things to the cache.

1At least this is true of architectures where the primary cache access is mostly fitted into
one clock cycle — always true of MIPS so far. It’s intuitively plausible that there should be a
more or less fixed cache size whose access takes about the same time as the other activities
traditionally fitted into one pipeline stage. However, early versions of the RISC HP-8x00 CPU
family accept a two-clock-cycle primary cache latency in return for a huge external primary
cache, and they seem to work well.

2One day (perhaps by the time you read this) there will probably be 32-bit MIPS CPUs
with R4000-type caches.
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4.6 Managing Caches

4.7 Secondary and Tertiary Caches

4.8 Cache Configuration for MIPS CPUs

4.9 Programming R3000-Style Caches



78 4.9. Programming R3000-Style Caches

Page 73 of the original book is missed.



Chapter 4. Caches for MIPS 79

cache isolation, which was originally intended for cache diagnostics only.
The RMW sequence is suppressed with the cache isolated and in that state
a partial-word write still invalidates the line. It’s unfortunate, but not catas-
trophic, that isolating the cache has rather undesirable side effects for some-
thing to be done in a running system; notably, with the cache isolated no
load/store operation, even one that would normally be uncached, gets to
memory.

4.9.1 Using Cache Isolation and Swapping

All R3000-style CPUs have write-through caches, which means they never
hold data that is more up to date than main memory. That means that they
never need a write back, so we only need the ability to invalidate a location
in either the D-cache or the I-cache.

You need a way of distinguishing operations for cache management from
regular memory references, and cache management is not seen as impor-
tant enough to get a special address region. So there’s a status register bit
SR(IsC) that will isolate the D-cache; in this mode, loads and stores affect
only the cache and loads also hit regardless of whether the tag matches.
With the D-cache isolated, a partial-word write will invalidate the appropriate
cache line.

CAUTION!
When the D-cache is isolated, not even
loads/stores marked by their address or TLB
entry as uncached will operate normally. One
consequence of this is that the cache man-
agement routines must not make any data

accesses; you can only write them in a high-
level language if you have very good control
over your compiler and can ensure that all the
variables you use are maintained in registers.
It’s also essential to run that routine wnn inter-
rupts disabled!

The I-cache is completely inaccessible in normal running. So the CPU
provides a mode where the caches are swapped, by setting the status register
bit SR(SwC); then the D-cache acts as an I-cache and the I-cache acts as the
D-cache. Once the caches are swapped, isolated I-cache entries may be read,
written, and invalidated.

The D-cache behaves perfectly as an I-cache (provided it was sufficiently
initialized to work as a D-cache) but the I-cache does not behave properly as
a D-cache. It is unlikely that it will ever be useful to have the caches swapped
but not isolated.

If you should use a swapped I-cache for word stores (a partial-word store
invalidates the line, as before) you must make sure those locations are inval-
idated before returning to normal operation.
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4.9.2 Initializing and Sizing

4.9.3 Invalidation
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• Figure out the address range you want to invalidate. Invalidating a
region larger than the cache size is a waste of time.

• Isolate the D-cache. Once it is isolated you can’t read or write mem-
ory, so you must at all costs prevent any exception. Disable interrupts
and ensure that subsequent software cannot cause a memory access
exception.

• Swap the caches if you want to work on the I-cache.

• Write a byte value to each cache line in the range.

• Unswap and unisolate.

You should normally run the invalidate routine with its instructions cacheable.
This sounds confusing and dangerous, but in fact you don’t normally have
to take any extra steps to run cached. An invalidation routine in uncached
space will run 4-10 times slower.

It’s essential to disable interrupts while your CPU is running with SR(IsC)
set, because it isn’t able to access memory at all.

4.9.4 Testing and Probing

During testing, debugging, or when profiling, it may be useful to build up a
picture of the cache contents. You cannot read the tag value directly, but for
a valid line you can find it by exhaustive search:

• Isolate the cache.

• Load from the cache line at each possible line start address (low-order
bits fixed, high-order bits ranging over the physical memory that exists
in your system). After each load consult the status register bit SR(CM),
which will be 0 only when you guess the tag value right.

This takes a long time by computer terms, but to fully search a 1K D-cache
with 4MB of cacheable physical memory on a 20MHz processor will take only
a couple of seconds.

4.10 Programming R4000-Style Caches

The R4000 fixed the unseemly cache maintenance of the earlier CPUs. But
the R4000 and its successors have much more sophisticated caches — write
back, write allocate, and with longer lines. Because it’s a write-back cache,
each line needs a status bit that marks it as dirty when it gets written by the
CPU (and hence becomes different from the main memory copy of the data).
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4.10.1 CacheERR, ERR, and ErrorEPC Registers:
Cache Error Handling

The CPU’s caches form a vital part of the memory system, and high-availability
or trustworthy systems may find it worthwhile to use some extra bits to mon-
itor the integrity of the data stored there.

Memory system checks should ideally be implemented end to end; check
bits should be computed as soon as data is generated or introduced to the
system, stored with the data, and checked just before it’s used. That way the
check catches faults not just in the memory array but in the complex buses
and gizmos that data passes through on its way to the CPU and back.

For this reason, R4x00 CPUs (designed to support large computers) pro-
vide error checking in the caches. Like a main memory system, you can use
either simple parity or an error-correcting code (ECC).

Parity is simple to implement as an extra bit for each byte of the memory.
A parity error tells the system that data is unreliable and allows a somewhat-
controlled shutdown instead of creeping random failure. A crucial role of
parity is that it can be an enormous help during system development, be-
cause it unambiguously identifies problems as being due to memory data
integrity.

But a byte of complete garbage has a 50% chance of having correct parity,
and random rubbish on the 72-bit data bus will still escape detection one
time in 256. Some systems want something better.

An error-correcting code is more complex to calculate, because it involves
the whole 64-bit word with eight check bits used together. It’s more thorough:
A 1-bit error can be uniquely identified and corrected, and no 2-bit error can
escape detection. ECC is seen as essential to weed out random errors in very
large memory arrays.

Because the ECC bits check the whole 64-bit word at once, ECC memories
can’t perform a partial-word write by just selecting which part of the word to
operate on but must always merge the new data and recompute the ECC.
MIPS CPUs running uncached require their memory system to implement
partial-word writes, making things complicated. Memory system hardware
must transform partial-word writes into a read-merge-recalculate-write se-
quence.

For simpler systems the choice is usually parity or nothing. It can be
valuable to make parity optional, to get the diagnostic benefits during the
design development without paying the price in production.

Whatever check mechanism is implemented in the memory system, inside
R4x00 caches the CPU may offer per-byte parity, a per-doubleword 8-bit ECC
field, or possibly no protection.
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Where checking is supported, the data check bits are usually carried
straight from the system interface into the cache store and not checked at
cache-refill time. The data is checked when it’s used, which ensures that any
cache parity exception is delivered to the instruction that causes it, not just
to one that happens to share the same cache line. As a degenerate case, an
error on an uncached fetch is flagged as a cache parity error — which can
confuse you.

4.10.2 The Cache Instruction

4.10.3 Cache Sizing and Figuring Out Configuration

4.10.4 Initialization Routines

4.10.5 Invalidating or Writing Back a Region of Memory in
the Cache

4.11 Cache Efficiency
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Table 4.2: Operation codes for the cache instruction

Conventional Code Conventional Code
name (hex) name (hex)

Index Invalidate I 0x00 Hit Invalidate I 0x10

Index Writeback Inv D 0x01 Hit Invalidate D 0x11

Index Invalidate SI 0x02 Hit Invalidate SI 0x12

Index Writeback Inv SD 0x03 Hit Invalidate SD 0x13

Index Load Tag I 0x04 Fill I 0x14

Index Load Tag D 0x05 Hit Writeback Inv D 0x15

Index Load Tag SI 0x06

Index Load Tag SD 0x07 Hit Writeback Inv SD 0x17

Index Store Tag I 0x08 Hit Writeback I 0x18

Index Store Tag D 0x09 Hit Writeback D 0x19

Index Store Tag SI 0x0A

Index Store Tag SD 0x0B Hit Writeback SD 0x1B

Create Dirty Exc D 0x0D

Hit Set Virtual SI 0x1E

Create Dirty Exc SD 0x0F Hit Set Virtual SD 0x1F

• 64-bit CPUs that provide compatibility with the R4000 are just being
helpful.

• How cache is addressed: Two different styles are used. In hit-type oper-
ations you provide a regular program address (virtual address), which is
translated as necessary. If that location is currently cached, the opera-
tion is carried out on the relevant cache line; if the location is not in the
cache, nothing happens.

Alternatively, there are index operations where the low bits of the ad-
dress are used directly to select a cache line, without regard to the line’s
present contents. This exposes the cache’s internal organization in a
nonportable way.

Running cache maintenance is done almost entirely with hit operations,
while initialization requires index types.

• Write back: Causes the cache line to be written back to memory if it is
marked dirty — for clean lines this is a nop.

• Invalidate: Marks the line as invalid so that its data won’t be used again.
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1. A buffer that size isn’t big enough to initialize a secondary cache; we’ll
use a devious trick to manage without.

2. Set TagLo to zero, which makes sure that the valid bit is unset and the
tag parity is consistent.

The TagLo register will be used by the cache store Tag cache instruc-
tions to forcibly invalidate a line and clear the tag parity.

3. Disable interrupts if they might otherwise happen.

4. Initialize the I-cache first, then the D-cache. Following is C code for
I-cache initialization. (You have to believe in the functions or macros
like Index Store Tag T() which do low-level functions; they’re either
trivial assembler code subroutines that run the appropriate machine
instructions or — for the brave GNU C user — macros invoking a C asm
statement.)

for (addr = KSEG0; addr < KSEG0 + size; addr += lnsize)
{

/* clear tag to invalidate */
Index_Store_Tag_I(addr);

/* fill so data field parity is correct */
Fill_I(addr);

/* invalidate again - prudent but not strictly necessary */
Index_Store_Tag_I(addr);

}

5. D-cache initialization is slightly more awkward because there is no cache
Index Fill D operation; we have to load through the cache and rely on
normal miss processing. In turn, while the Fill instruction operates
on a cache index, load processing always relates to memory addresses
and hits in the cache based on the tags. You have to be careful about
the tags; with a two-way cache the I-cache-style loop would initialize
half the D-cache twice, since clearing PTagLo will reset the bit used to
decide which set of the cache line is to be used on the next cache miss.
Here’s how it’s done:

/* clear all tags */
for(addr = KSEG0; addr < KSEG0 + size; addr += lnsize)
{

Index_Store_Tag_D(addr);
}

/* load from each line (in cached space) */
for(addr = KSEG0; addr < KSEG0 + size; addr += lnsize)
{



90 4.11. Cache Efficiency

junk = *addr;
}

/* clear all tags */
for(addr = KSEG0; addr < KSEG0 + size; addr += lnsize)
{

Index_Store_Tag_D(addr);
}
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These are not necessarily the best measures. For example, x86 CPUs are
rather short of registers, so a program compiled for x86 will generate many
more data load and store events than the same program compiled for MIPS.
But the extra loads and stores will be of the stack locations that the x86
compiler uses as surrogates for registers; this is a very heavily used area of
memory and will be very effectively cached. To some extent the number of
cache misses is likely to be characteristic of tracing through a chunk of a
particular program.

However, the above comments are useful in pointing out the following
obvious ways of making a system go faster.

• Reduce the cache miss rate:

– Make the cache bigger. Always effective, but expensive. In 1996,
64KB of cache occupied something over half the silicon area of a
top-end embedded CPU, so doubling the cache size is economically
feasible only if you wait for Moore’s Law to give you the extra tran-
sistors in the same space.

– Increase the set associativity of the cache. lt’s worth going up to
four-way but after that the gains are too small to notice.

– Add another level of cache. That makes the calculation much more
complicated, of course. Apart from the complication of yet another
subsystem, the miss rate in a secondary cache will be depressingly
high; the primary cache has already skimmed the cream of the
repetitive data access behavior of the CPU. To make it worthwhile,
the secondary cache must be much larger (typically eight times or
greater) than the primary cache, and a secondary cache hit must be
much faster (two times or better) than a memory reference.

– Reorganize your software to reduce the miss rate. It’s not clear
if this works in practice: it’s easy to reorganize a small or trivial
program to great effect, but so far nobody has succeeded in building
a general tool that has any useful effect on an arbitrary program.
See Section 4.12.

• Decrease the cache refill penalty:

– Get the first word back to the CPU faster. DRAM memory systems
have to do a lot of work to start up, then tend to provide data quite
fast. The closer the memory is to the CPU and the shorter the data
path between them, the sooner the data will arrive back.
Note that this is the only entry in this list where better performance
goes with a cheaper system. Paradoxically, it’s had the least at-
tention, probably because it requires more integration between the
CPU interface and memory system design. CPU designers are loath
to deal with system issues when they decide the interface of their
chips, perhaps because their job is too complicated already!
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– Increase the memory burst bandwidth. This is traditionally ap-
proached by the expensive technique of bank interleaving, where
two or more memories are used to store alternate words; after the
startup delay, you can take words from each memory bank alter-
nately, doubling the available bandwidth. The first large-scale use
of a memory technology, synchronous DRAM (or SDRAM) emerged
in 1996. SDRAM changes the DRAM interface to deliver much more
bandwidth from a single bank making bank interleaving an obsolete
technique.

• Restart the CPU earlier: The simplest method is to arrange that the cache
refill bursts start with the word that the CPU missed on and to restart
the CPU as soon as that data arrives. The rest of the cache refill contin-
ues in parallel with CPU activity. MIPS CPUs since R4x00 have allowed
for this technique by using sub-block order for cache refill burst data,
which can deliver any word of the block first. But only R4600 and its
descendants have taken advantage of this for data misses.

More radically, you can just let execution continue through a load; the
load operation is handed off to a bus interface unit and the CPU runs on
until such time as it actually refers to the register data that was loaded.
This is called a nonblocking load and is implemented on the R10000
and slated for the RM7000.

Most drastically, you can just keep running any code that isn’t depen-
dent on unfetched data as is done by the out-of-order execution R10000.
This kind of CPU uses this technique quite generally, not just for loads
but for computational instructions and branches.

Intel’s Pentium Pro (progenitor of the Pentium II), MIPS’s R10000, and
HP’s PA-8000 are out-of-order implementations; these 200+ MHz multiple-
issue CPUs are reasonably happy being served by a large (and thus rel-
atively slow) external cache.

4.12 Reorganizing Software to Influence Cache
Efficiency

Most of the time, we work on the assumption that program accesses show
locality of access, and we operate within fairly constrained working sets. For
most purposes we also assume that, within the working set, its accesses are
pretty randomly distributed. For a workstation that must perform adequately
on many different applications, this is a fair assumption, but where an em-
bedded system runs a single application the pattern of misses is likely to be
very characteristic of a particular build of a particular piece of software. It’s
tempting to wonder whether we can massage the application code in a sys-
tematic manner to improve caching efficiency To see how this might work,
you can classify cache misses by their cause:
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• First-time accesses: Everything has to be read from memory once.

• Replacement: The cache has a finite size, and soon after your program
starts every cache miss and refill will be displacing some other valid
data. As the program runs it will repeatedly lose data and have to load
it again. You can minimize replacement misses by using a bigger cache
or a smaller program (it’s the ratio of program size to cache size that
matters).

• Thrashing: Practical caches are usually no more than four-way set asso-
ciative, so for any given program location there are at best four positions
in the cache that can keep it; in a direct-mapped cache there’s just one
and for a two-way set-associative cache there are two. (Thrashing losses
diminish rapidly with set associativity; most research suggests that a
four-way set-associative cache loses little performance this way )

If your program happens to make heavy use of a number of pieces of
data whose low-order addresses are close enough that they use the same
cache line, then once the number of pieces is higher than the set asso-
ciativity of the cache you can get periods of very high cache misses as
the different chunks of data keep pushing each other out of the cache.

With this background, what kind of changes to a program will make it
behave better in a cache?

• Make it smaller: A good idea if you can do it. You can use modest
compiler optimization (exotic optimization often makes programs larger).

• Make the heavily used portion of the program smaller: Access density
in programs is not at all uniformly distributed. There’s often a signifi-
cant amount of code that is almost never used (error handling, obscure
system management), or used only once (initialization code). If you can
separate off the rarely used code, you might be able to get better cache
hit rates for the remainder.

An approach that has been tried with qualified success is to use a pro-
filer to establish the most heavily used functions in a program while
running a representative workload, then to arrange the functions in
memory in decreasing order of execution time. That means at least that
the very most frequently used functions won’t fight each other for cache
locations.

• Force some important code/data to be cache resident: Some vendors pro-
vide a mechanism to allow part of the cache to be loaded and then those
contents to be protected from replacement. This has been marketed to
people who are concerned about having deterministic performance in
interrupt handlers or other crucial pieces of software. This is usually
implemented by consuming a set from a two-way set-associative cache
(so that the cache acts as direct mapped for the rest of the system).
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I am very skeptical about the viability of this approach, and I don’t know
of any research that backs up its usefulness. The loss in performance
to the rest of the system is likely to outweigh the performance gain of
the critical code. Cache locking has been used as a rather dubious
marketing tool to tackle customer anxiety about the heuristic nature
of caches. The anxiety is understandable, but the problem comes with
faster, more complex, larger systems — caches are only one part of this
issue.

• Lay out the program to avoid thrashing: Beyond making the active part of
the program smaller (see above) this seems to rne to be too unmaintain-
able to be a good idea. And a set-associative cache (even just two-way)
makes it quite pointless.

• Make some rarely used data or code uncacheable: It seems appealing to
just reserve the cache for important code, leaving used-once or used-
rarely code out.

This is almost always a mistake. If the data is really rarely used, it will
never get into the cache in the first place. And because caches usually
read data in lines of 4–16 words, they often produce a huge speedup
even when traversing data or code that is used only once; the burst refill
from memory takes little longer than a single-word access and gives you
the next 3-15 words free.

In short, we warmly recommend the following approach as a starting point
(to be abandoned only after much measurement and deep thought). To start
with, allow everything to be cacheable except I/O registers and lightly used
remote memory. See what the cache heuristics do for your application before
you try to second-guess them. Secondly, fix hardware problems in hardware.
There’s no software band-aid that will regain performance lost to excessive
cache refill latency or low memory bandwidth. The attempt to lower cache
miss rates by reorganizing software is bound to be lengthy and complicated,
but be aware at the start that the gains will be small and hard-won. Try to
get the hardware fixed too!

4.13 Write Buffers and When You Need to Worry

The write-through cache common to all 32-bit MIPS CPUs demands that all
CPU stores be immediately sent to main memory, which would be a big per-
formance bottleneck if the CPU waited for each write to finish.

In an average C program compiled for MIPS, about 10% of instructions
executed are stores, but these accesses tend to come in bursts, for example
when a function prologue saves a few registers.
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DRAM memory frequently has the characteristic that the first write of a
group takes quite a long time (5-10 clock cycles is typical on these CPUs),
and subsequent ones are relatively fast so long as they follow quickly.

If the CPU simply waits while a write completes, the performance hit will
be huge. So it is common to provide a write buffer, a FIFO store in which
each entry contains both data to be written and the address at which to write
it. MIPS CPUs have used FIFOs with between one and eight entries.

The 32-bit MIPS CPUs with write-through caches depend heavily on write
buffers. In these CPUs, a four-entry queue has proved efficient for well-tuned
local DRAM with CPU clock rates up to 40MHz.

Later MIPS CPUs (with write-back caches) retain the write buffer as a
holding area for cache line write backs and as a time saver on uncached
writes.

Most of the time the operation of the write buffer is completely transparent
to software. But sometimes the programmer needs to be aware of what is
happening:

• Timing relations for 1/O register accesses: This affects all MIPS CPUs.
When you perform a store to an I/O register, the store reaches memory
after a small, but indeterminate, delay. Other communication with the
I/O system (e.g., interrupts) may happen more quickly — for example,
you may see an active interrupt from a device “after” you have told it
to generate no interrupts. In a different case, if an I/O device needs
some time to recover after a write you must ensure that the write buffer
FIFO is empty before you start counting out that time period. Here, you
must ensure that the CPU waits while the write buffer empties. It is
good practice to define a subroutine that does this job; it is traditionally
called wbflush().See Section 4.13.1 below for hints on implementing it.

The above describes what can happen on any MIPS R4x00 (MIPS III ISA)
or subsequent CPU implemented to date. It’s also enough For the whole IDT
R3051 family, the most popular embedded component CPUs. But on some
earlier 32-bit systems, even stranger things can happen:

• Reads overtaking writes: When a load instruction (uncached or missing
in the cache) executes while the write buffer FIFO is not empty, the CPU
has a choice: Should it finish off the write or use the memory interface
to fetch data for the load? It’s more efficient to do the read first — the
CPU is certainly stopped until the read data arrives, but there’s a good
chance that the write can be deferred and still performed in parallel with
later CPU activity.1

1You may observe that there is some danger that the overtaking read may be trying to
fetch locations for which there is still a write pending, which would be disastrous; however,
CPUs allowing read overtaking will compare read and write addresses and give the write
priority if the addresses overlap.
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The original R3000 hardware left this decision in the hands of the sys
tem hardware implementation. The most popular integrated MIPS I
CPUs from IDT don’t permit reads to overtake writes — they have un-
conditional write priority. Most MIPS III CPUs have not permitted read
overtaking, but robust software doesn’t have to assume this any more.
See the description of the sync instruction in Section 8.4.9.

If you believe that your MIPS I CPU might not have unconditional write
priority, then when you are dealing with I/O registers the necessary
address check may not save you; a load may misbehave because an
earlier store to a different address is still pending. In this case you need
to call wbflush().

• Byte gathering: Some write buffers watch for partial-word writes within
the same memory word and will combine those partial writes into a
single operation. This is not done by any current R3051-family CPU,
but it can wreak havoc with IIO register writes.

It is not a bad idea to map your I/O registers such that each register
is in a separate word location (i.e., 8-bit registers should be at least 4
bytes apart). You can’t always do it.

4.13.1 Implementing wbfiush

Unless your CPU is one of the peculiar type above, you can ensure that the
write buffer is empty by performing an uncached load from anywhere (which
will stall the CPU until the writes have finished and the load has finished
too). This is inefficient; you can minimize the overhead by loading from the
fastest memory available to you.

For thase who never want to think about it again, a write to memory fol-
lowed by an uncached read from the same address (with a sync in between
the two if you’re running on a MIPS III or later CPU) will flush out the write
FIFO on any MIPS CPU built to date (and it’s difficult to see how a CPU with-
out this behavior could be a correct implementation).

Some systems use a hardware signal that indicates whether the FIFO is
empty, wired to an input that the CPU can sense directly. But this isn’t done
on any MIPS CPU to date.

CAUTION!
Systems often have write buffers outside the
CPU. Any bus or memory interface that boosts
of having write posting as a feature is behav-

ing similarly. Write buffers outside the CPU can
give you just the same sort of trouble as those
inside it. Take carre with your programming.
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4.14 More about MIPS Caches

Although you may never need to know about these subjects, we mention
them for the sake of completeness.

4.14.1 Multiprocessor Cache Features

Our discussion in this book will stick to should read the classic single-CPU
systems. Interested parties paper (Sweazey and Smith 1986).

4.14.2 Cache Aliases

This problem only afflicts caches where the address used to generate the
cache index is different from the address stored in the cache tag. In the
primary caches of R4000-style CPUs, the index is taken from the program
(virtual) address and the tag from the physical address. This is good for
performance, because cache lookup can parallel address translation, but it
can lead to aliases.

Most of these CPUs can translate addresses in 4KB pages and have caches
of 8KB or larger. It’s therefore possible that a single physical page is mapped
to two different program addresses, which are sequential pages — let’s say
those starting at 0 and 4KB. If the program accesses data at 0, it will be
loaded into the cache at index 0. If it accesses the same data at the alternate
address of 4KB, it will be fetched again from memory into the cache at the
different index of 4KB. Now there are two copies of the same cache line, and
modifications made at one address will not find their way to the other one.
This is a cache alias.

MIPS secondary caches are always physically indexed and tagged, so they
don’t suffer from aliases.1

However, it’s easier to avoid this problem than to fix it. Aliases can’t arise
between any pair of translations where the two alternative program addresses
will produce the same cache index. With 4KB pages, the low 12 bits of the
cache index are guaranteed to be equal; it’s only necessary to ensure that any
two alternative program addresses for any physical page are equal modulo
the largest likely primary cache set size. If you only issue multiple program
addresses that are a multiple of 64KB apart, it’s hard to imagine that you’ll
have anv trouble.2

1CPUs with on-chip secondary cache controllers can use some bits in the secondary
cache to keep track of cache fetches into the primary cache; R4000 and R4400 CPUs use
this to detect cache aliases and take a special exception to allow system software to resolve
the problem. But this doesn’t seem to be a tradition being carried on in later MIPS CPUs.

2Although CPUs get relentlessly bigger and faster with every year that passes, it’s likely
that primany cache set sizes will peak aot far beyond the current 16KB record. Primary
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caches run at the full CPU clock rate, and smaller is faster; future, more h ighly integrated
CPUs will probably go for on-chip secondary caches instead.
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Chapter 5
Exceptions, Interrupts, and
Initialization

In the MIPS architecture interrupts, traps, system calls, and everything else
that disrupts the normal flow of execution are called exceptions and are

handled by a single mechanism. What sort of events are they?

• External events: These are interrupts, or bus errors on a read. Inter-
rupts are used to direct the attention of the CPU to some external event,
which can be faster or more efficient than insisting that the CPU regu-
larly poll for that event.

Interrupts are the only exception conditions that arise from something
independent of the CPU’s normal instruction stream. Since you can’t
avoid interrupts just by being careful, there have to be software mecha-
nisms to inhibit the effect of interrupts when necessary.

• Memory translation exceptions: These are caused by an address that
should be translated, but for which no valid translation currently exists,
or a write to a write-protected page. The OS checks these exceptions,
some of which are symptomatic of an application program stepping out-
side its permitted address space and will be fixed by terminating the
application to protect the rest of the system. The more common benign
memory translation exceptions ca.n be used to initiate operating sys-
tem functions as complex as a complete demand-paged virtual memory
system or as simple as extending the space available for a stack.

• Other unusual program conditions for the kernel to fix: Notable among
these are conditions resulting from floating-point instructions, where
the hardware is unable to cope with some difficult and rare combina-
tion of operation and operands and is seeking the services of a software
emulator.
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This category is fuzzy, since different kernels have different ideas about
what they’are willin to fix. An unaligned load may be an error on one
system and something to be handled in software on another.

• Program or hardware-detected errors: This includes nonexistent instruc-
tions, instructions that are illegal at user privilege level, coprocessor in-
structions executed with the appropriate SR flag disabled, integer over-
flow, address alignment errors, and accesses outside kuseg in user
mode.

• Data integrity problems: Many MIPS CPUs continually check data on the
bus or data coming from the cache for a per-byte parity or for word-
wide error-correcting code. Cache or parity errors generate a (special)
exception in R4000 and subsequent CPUs.

• System calls and traps: These are instructions whose whole purpose is
to generate recognizable exceptions; they are used to build software fa-
cilities in a secure way (system calls, conditional traps planted by careful
code, and breakpoints).

Some things do not cause exceptions, though you’d expect them to. For
example, you will have to use other mechanisms to detect bus errors on write
cycles, because the CPU places data and address in its write buffer and the
external write cycle happens sometime later, so an exception would be hard
to relate to the instruction that caused it. Some systems may use external
mechanisms, perhaps signalled with an interrupt.

Even stranger, parity errors detected in the cache of most 32-bit CPUs
don’t cause an exception; the fault shows up in the status register bit SR(PE)but
you have to look for it. R3000 cache parity was added late and for diagnostic
purposes only.

In this chapter, we’ll look at how MIPS CPUs decide to take exceptions and
what the software has to do to handle them cleanly. We’ll explain why MIPS
exceptions are called “precise”, discuss exception entry points, and discuss
some software conventions.

Hardware interrupts from outside the CPU are the most common excep-
tions for embedded applications, the most time critical, and the ones most
likely to cause subtle bugs. Special problems can arise with nested excep-
tions, those exceptions occurring while you are still handling an earlier ex-
ception.

The way that a MIPS CPU starts up after system reset is implemented as
a kind of exception and borrows functions from exceptions — so that’s de-
scribed in this chapter too. At the end of the chapter, we’ll look at a couple of
related subjects: how to emulate an instruction (as needed by an instruction
set extension mechanism) and how to build semaphores to provide robust
task-to-task communication in the face of interrupts. Chapter 12 contains
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the annotated source code of an interrupt/exception handler taken from a
real MIPS system.

5.1 Precise Exceptions

You will see the phrase precise exceptions used in the MIPS documentation.
it is a useful feature, but to understand why, you need to meet its alternative.

In a CPU tuned for the best performance by pipelining (or by more com-
plicated tricks for overlapping instruction execution), the architecture’s se-
quential model of execution is an illusion maintained by clever hardware.
Unless the hardware is designed cleverly, exceptions can cause this illusion
to unravel.

When an exception suspends its thread of execution, a pipelined CPU
has several instructions in different phases of completion. Since we want
to be able to return from the exception and carry on without disruption to
the interrupted flow of execution, each instruction in the pipeline must be
either completed, made as though we never saw it, or its half-completed state
stored. Moreover, we need to be able to remember which instruction falls n
each of those categories.

A CPU architecture features precise exceptions when it prescribes a so-
lution to this problem that makes life as easy as possible for the software.
In a precise-exception CPU, on any exception we get pointed at one instruc-
tion (the exception victim). All instructions preceding the exception victim
in execution sequence are complete; any work done on the victim and on
any subsequent instructions has no side effects that the software need worry
about.1 The sotfware that handles exceptions can ignore all the timing ettects
or the CPU’s implementation.

The MIPS architecture comes close to prescribing that all exceptions are
precise. Here are the ingredient:

• Unambiguous proof of guilt: After any exception the CPU control register
EPC points to the correct place to restart execution after the exception
is dealt with. In most cases, it points to the exception victim, but if the
victim was in a branch delay slot EPC points to the preceding branch in-
struction: Returning to the branch instruction will re-execute the victim
instruction, but returning to the victim would cause the branch to be
ignored. When the victim is in a branch delay slot, the cause register bit

1This is not quite the same as saying that the exception victim and subsequent instruc-
tions haven’t done anything. But it does require that, when re-executed after the exception,
those instructions will behave exactly as they would have done if the exception hadn’t hap-
pened. Computer architecu say that any side effect must be idempotent — doing it twice is
the same as doing it once.
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Cause(BD) is set, because some exception handlers need to inspect the
victim instruction — in this case found at location EPC + 4.

It may seem obvious that it should be easy to find the victim, but on
some heavily pipelined CPUs it may not be possible.

• Exceptions appear in instruction sequence: This would be obvious for a
nonpipelined CPU, but exceptions can arise at several different stages
of execution, creating a potential hazard. For example, if a load instruc-
tion suffers an address exce ption this won’t happen until the MEM
pipestage; if the next instruction bits an address problem on an in-
struction fetch (at the IF pipestage) the exception event affecting the
second-in-sequence instruction will actually happen first.

To avoid this problem, an exception that is detected early is not activated
until it is known that all previous instructions will complete success-
fully; the event is just noted and passed along the pipeline until a fixed
pipeline stage. If an earlier instruction’s later-detected event reaches the
finish line while our exception note is making its way down the pipeline,
the exception note just gets discarded. In the case above the instruction-
fetch address problem is suppressed — it will likely happen again when
we finish handling the victim instruction’s problem and re-execute the
victim and subsequent instructions.

• Subsequent instructions nullified: Because of the pipelining, instructions
lying in sequence after the victim at EPC have been started. But you are
guaranteed that no effects produced by these instructions will be visible
in the registers or CPU state, and no effect at all will occur that will
prevent execution, properly restarted at EPC, from continu ing just as if
the exception had not happened.

MIPS implementations fall short of precise exception heaven in a few re-
spects. For example, the integer multiply unit doesn’t respond to excep-
tions — see the sidebar. This problem can be avoided by some instrucrution-
ordering rules, which are normally enforced by the assembler program.

The MIPS implementation of precise exceptions is quite cos tly, because it
limits the scope for pipelining. That’s particularly painful in the FPA, because
floating-point operations often take many pipeline stages to run. A MIPS FP
instruction cannot be allowed to progress past the ALU pipeline stage until it
is known that it won’t produce an exceution.

5.2 When Exceptions Happen

Since exceptions are precise, the programmer’s view of when an exception
happens is unambiguous: The last instruction exec uted before the exception
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was the one before the exception victim. And, if the exception wasn’t an
interrupt, the victim is the instruction that caused it.

On an interrupt in a typical MIPS CPU, the last instruction to be com-
pleted before interrupt processing starts will be the one that has just finished
its MEM stage when the interrupt is detected. The exception victim will be
the one that has just finished its ALU stage. However, take care: MIPS archi-
tects don’t make promises about exact interrupt latencies and signals may
be resynchronized through one or more clock stages before reaching the CPU
core.

Nonprecise Exception Handling in tie Integer
Multiplier
The integer multiplier has its own separate
pipeline. Operations are started by instruc-
tions like mult or div, which take two regis-
ter operands and feed them into the multiplier
machine. The program then issues an mflo in-
struction (and sometimes also mfhi, for a 64-
bit result or to obtain the remainder) to get
the results back into a general-purpose regis-
ter. The CPU stalls on mflo if the computation
is not finished; so a programmer concerned
with maximizing performance will put as much
useful work as possible between the two. In
most MIPS implementations a multiply takes 10
or more clock cycles, with divide even slower.
The multiply machine is separately pipelined
from the regular integer unit. Once launched,
a multiply/divide operation is unstoppable
even by an exception. That’s not normally
a problem, but suppose we have a code se-
quence like the following where we’re retriev-
ing one multiply unit result and then immedi-
ately firing off another operation:

mflo $8
molt $9, $10

If we take an exception whose restart address
is the mflo instruction, then the first execu-
tion of mflo will be nullified under the precise-
exception rules and the register $8 will be left
as though the mfla had never happened. Un-
fortunately, the mult will have been started
too and since the multiply unit knows noth-
ing of the exception will continue to run. Be-
fore the exception returns, the computation
will most likely have finished and the mflo will
now deliver the result of the mult that should
have followed it.
We can avoid this problem, on all MIPS CPUs,
by interposing at least two harmless instruc-
tions between the mflo/mfhi on the one
hand and the mult (or any other instruction
that starts a multiply unit computation) on the
other.

5.3 Exception Vectors: Where Exception Handling
Starts

Most CISC processors have hardware (or concealed microcode) that analyzes
an exception, dispatching the CPU to different entry points according to what
kind of exception happened. A MIPS CPU does very little of this. If that seems
a serious omission, consider the following.

Firstly, vectored interrupts are not as useful in practice as we might hope.
In most operating systems, interrupt handlers share code (for saving reg-
isters and such like) and it is common for CISC microcode to spend time
dispatching to different interrupt entry points, where OS software loads a
code number and jumps back to a common handler.
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Secondly, it’s difficult to envision much exception analysis being done by
pure hardware rather than microcode; on a RISC CPU ordinary code is fast
enough to be used in preference.

Here and elsewhere, you should bear in mind just how fast CPUs of the
RISC generation are compared with their peripherals. A useful interrupt rou-
tine is going to have to read/write some external registers, and on a mid-90s
CPU that external bus cycle is likely to take 20-50 internal clock cycles. It’s
easy to write interrupt dispatch code on a MIPS CPU that will be Faster than
a single peripheral access — so this is unlikely to be a performance bottle-
neck.1

However, even in MIPS not all exceptions were ever equal, and differences
have grown as the architecture has developed. So we can make some distinc-
tions:

• TLB refill of user-privilege address: There is one particularly frequent
exception in a protected OS, related to the address translation system
(see Chapter 6). The TLB hardware only holds a modest number of
address translations, and in a heavily used system running a virtual
memory OS it’s common for the application program to run on to an
address whose translation is not recorded in the TLB — an event called
a TLB miss (because the TLB is used as a software-managed cache).

The use of software to handle this condition was controversial when
RISC CPUs were introduced, and MIPS CPUs provide significant support
for a preferred scheme for TLB refill. The hardware helps out enough
that the exception handler for the preferred refill scheme usually runs
in about 13 clock cycles.

As part of this, common classes of TLB refill are given an entry point
different from all other exceptions so that the finely tuned refill code
doesn’t have to waste time figuring out what kind of exception has hap-
pened.

• TLB refill for 64-bit address spaces: Memory translation for tasks want-
ing to take advantage of the larger program address space available on
64- bit CPUs uses a slightly different register layout and a different
TLB refill routine; MIPS calls this XTLB refill (“X” for extended, I guess).
Again, a desire to keep this very efficient makes a separate entry point
useful.

• Uncached alternative entry points: For good performance on exceptions
the interrupt entry point must be in cached memory, but this is highly
undesirable during system bootstrap; from reset or power-up, the caches
are unusable until initialized. If you want a robust and self-diagnosing
startup sequence, you have to use uncached read-only memory entry

1We labor this point because the lack of vectored interrupt hardware has been cited by
some of the MIPS competitors as a problem for embedded systems.
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points for exceptions detected in early bootstrap. In MIPS CPUs there
is no uncached “mode” — there ace uncached program memory regions
instead — so there’s a mode bit SR(BEV) that reallocates the exception
entry points into the uncached, startup-safe kseg1 region.

• Parity/ECC error: R4000 and later CPUs detect a data error (usually in
data arriving from main memory, but often not noticed until it’s used
from cache) and take a trap. It would be silly to vector through a cached
location to handle a cache error, so regardless of the state of SR(BEV)
the cache error exception entry point is in uncached space.

• Reset: For many purposes it makes sense to see reset as another excep-
tion, particularly when the R4x00 and later CPUs use the same entry
point for cold reset (where the CPU gets completely reconfigured; indis-
tinguishable from power-up) and warm reset (where the software gets
completely reinitialized). In fact, nonmaskable interrupt (NMI) turns out
to be a slightly weaker version of warm reset, differing only in that it
waits for an instruction to finish before taking effect.

Table 5.1: Hardwired reset and exception entry points for MIPS CPU

Exception type Entry point
SR(BEV) == 0 SR(BEV) == 1

Program Physical Program Physical

Reset, NMI 0xBFC0 0000 0x1FC0 0000

TLB refill, 32-bit task 0x8000 0000 0x000 0xBFC0 0200 0x1FC0 0200

XTLB refill, 64-bit task 0x8000 0080 0x080 0xBFC0 0280 0x1FC0 0280

Cache error (R4x00 and later) 0xA000 0100 0x100 0xBFC0 0300 0x1FC0 0300

Interrupt (some QED CPUs only) 0x8000 0200 0x200 0xBFC0 0400 0x1FC0 0400

All other exceptions 0x8000 0180 0x180 0xBFC0 0380 0x1FC0 0380

All exception entry points lie in untranslated regions of the MIPS memory
map, in kseg1 for uncached entry points and kseg0 for cached ones. In these
areas the nominal 32-bit addresses given in Table 5.1 extend to a 64-bit
memory map by sign extension: The program address 0x8000 0000 in the
32-bit view is the same as 0xFFFF FFFF 8000 0000 in the 64-bit view. Table
5.1 describes the entry points with just 32-bit addresses.

Presumably the 128-byte (0x80) gap between the exception vectors occurs
because the MIPS architects felt that 32 instructions would be enough to code
the basic exception routine, saving a branch instruction without wasting too
much memory!

Here’s what a MIPS CPU does when it decides to take an exception:

1. It sets up EPC to point to the restart location.
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2. The CPU changes into kernel (high-privilege) mode and disables inter-
rupts. The way this is done is different in 32-bit (pre-R4x00) and 64-bit
MIPS CPUs — see the following for details.

3. Cause is set up so that software can see the reason for the exception. On
address exceptions BadVaddr is also set. Memory management system
exceptions set up some of the MMU registers too; more details are given
in Chapter 6.

4. The CPU then starts fetching instructions from the exception entry point,
and everything else is up to software.

Exception

End-of-Exception
rfe instruction

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

Figure 5.1: Priviledge state mini-stack for pre-R4x00 MIPS CPUs

We said that the mechanism used to change into the high-privilege/ interrupts-
disabled state changed between early and later MIPS CPUs. This is one of the
few examples where the CPU actually got simpler.

Pre-R4x00 32-bit CPUs have a kernel/user privilege bit and an inter-
rupt enable/disable bit. Inside the SR register there is a three-entry stack
whose operation is illustrated by Figure 5.1; on an exception the existing
2-bit state is pushed and replaced by kernel mode with interrupts off. The
end-of-exception instruction rfe (restore from exception) pops the stack and
restores the CPU to its pre-exception condition.

System software can use this (under very limited circumstances) to handle
a nested exception within a primitive exception routine that makes no soft-
ware provision for saving and restoring SR; this allows simplification of the
frequently called TLB miss exception (see Section 6.7)
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On the R4000 and subsequent CPUs, the normal privilege field is 2 bits
long, due to the introduction of the intermediate supervisor privilege level.
An exception doesn’t change this field; it just sets the SR(EXL) (exception
level) bit, which has the side effects of forcing kernel mode and disabling
interrupts. Very short exception routines can run entirely at this exception
level (in exception mode, as we’ll sometimes say) and need never touch the
rest of SR. For more conventional exception handlers, which save state and
pass control over to more complex software, exception level provides a cover
under which system software can save the old SR value in safety.

It turns out that the R4x00 model can also be used to allow an exception
within the primitive TLB miss handler, but we’ll talk more about how that’s
done when we get to it.

5.4 Exception Handling: Basics

Any MIPS exception handler has to go through the same stages:

• Bootstrapping: On entry to the exception handler very little of the state
of the interrupted program has been saved, so the first job is to make
yourself enough room to do whatever it is you want without overwriting
something vital to the software that has just been interrupted.

Almost inevitably, this is done by using the k0 and k1 registers (which
are conventionally reserved for kernel mode use) to reference a piece of
memory that can be used for other register saves.

• Dispatching different exceptions: Consult the Cause register field
Cause(ExcCode). This 5-bit code distinguishes all exceptions on MIPS
CPUs (so far).

• Constructing the exception processing environment: Complex exception-
handling routines will probably be written in a high-level language, and
you will want to be able to use standard library routines. You will have to
provide a piece of stack memory that isn’t being used by any other piece
of software and save the values of any CPU registers that both might be
important to the interrupted program and that called subroutines are
allowed to change.

• Processing the exception: You can do whatever you like now.

• Preparing to return: The high-level function is usually called as a sub-
routine and therefore returns into the low-level dispatch code. Here,
saved registers are restored,’ and the CPU is returned to its safe (kernel
mode, exceptions off) state by changing SR back to its post-exception
value.
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• Returning from an exception: The end-of-exception processing is another
area where the CPU has changed, and its description follows in Section
5.5.

5.5 Returning from an Exception

The return of control to the exception victim and the change (if required)
back from kernel to a lower privilege level must be done at the same time
(“atomically”, in the jargon of computer science). It would be a security hole if
you ran even one instruction of application code at kernel privilege level; on
the other hand, the attempt to run a kernel instruction with user privileges
would lead to a fatal exception.

On 32-bit CPUs modeled on the R3000 we use the instruction rfe (restore
from exception), which is not the same as “return from exception”. This
instruction patches up the status register to make it ready to go back to
the state you were in before a trap happened; but it doesn’t do the return
itself. The only secure way of returning to user mode from an exception is to
return with a jr instruction that has the rfe in its delay slot — a rather nice
exploitation of an architectural foible.

With MIPS III and subsequent CPUs there’s an instruction eret that does
the whole job; it both clears the SR(EXL) bit and returns control to the ad-
dress stored in EPC.

5.6 Nesting Exceptions

In many cases you will want to permit (or will not be able to avoid) further ex-
ceptions occurring within your exception processing routine; these are called
nested exceptions.

Naively done, this would cause chaos; vital state from the interrupted
program is held in EPC and SR, and another exception would immediately
overwrite them. Before you permit nested exceptions you must save these
values. Moreover, once exceptions are re-enabled you can no longer rely on
the values of k0 and k1.

An exception handler that is going to survive a nested exception must
use some memory locations to save register values. The data structure used
is often called an exception frame; multiple exception frames from nested
exceptions are usually arranged on a stack.

Stack resources are consumed by each exception, so arbitrarily deep nest-
ing of exceptions cannot be tolerated. Most systems award each kind of ex-
ception a priority level and arrange that while an exception is being processed
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only higher-priority exceptions are permitted. Such systems need have only
as many exception frames as there are priority levels.

You can avoid all exceptions; interrupts can be individually masked by
software to conform to your priority rules, masked all at once with the SR(IE)
bit, or implicitly masked (for later CPUs) by the exception level bit. Other
kinds of exceptions can be avoided by appropriate software discipline. For
example, privilege violations can’t happen in kernel mode (used by most
exception processing software); and programs can avoid the possibility of
addressing errors and TLB misses. It’s essential to do so when processing
higher-priority exceptions.

Typical priorities from lowest to highest are as follows: nonexception code,
TLB miss on kuseg address, TLB miss on kseg2 address, interrupt (lowest),
. . . , interrupt (highest), illegal instructions and traps, and bus errors.

5.7 An Exception Routine

The following MIPS I code fragment is as simple as an exception routine can
be. It does nothing except increment a counter on each exception:

.set noreorder

.set noat

xcptgen:
la k0, xcptcount # get address of counter
lw k1, 0(k0) # load counter
nop # (load delay)
addu k1, 1 # increment counter
sw k1, 0(k0) # store counter
mfc0 k0, C0_EPC # get EPC
nop # (load delay, mfc0 slow)
j k0 # return to program
rfe # branch delay slot

.set at

.set reorder

Note that this routine cannot survive a nested exception (the original re-
turn address in EPC would be lost, for example). It doesn’t re-enable inter-
rupts (and thus is safe that way) but the counter xcptcount must be at an
address that can’t possibly cause any kind of address exception.

5.8 Interrupts

The MIPS exception mechanism is general purpose, but democratically speak-
ing there are two exception types that happen far more often than all the rest
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put together. One is the TLB miss when an application running under a
memory-mapped OS like UNIX steps outside the (limited) boundaries of the
on-chip translation table; we mentioned that before and will come back to it
in Chapter 6. The other popular exceptions are interrupts, occurring when a
device outside the CPU wants attention. Since we’re dealing with an outside
world that won’t wait for us, interrupt service time is often critical.

Embedded-system MIPS users are going to be most concerned about inter-
rupts, which is why they get a special section. We’ll talk about the following:

• Interrupt resources in MIPS CPUs: This describes what you’ve got to work
with.

• Implementing interrupt priority: All interrupts are equal to MIPS CPUs,
but in your system you probably want to attend to some of them before
the others.

• Critical regions, disabling interrupts, and semaphores: It’s often neces-
sary to prevent an interrupt from occurring during critical operations,
but there are particular difficulties about doing so on MIPS CPUs. We
look at solutions.

5.8.1 Interrupt Resources in MIPS CPUs

Almost all MIPS CPUs have a set of eight independent interrupt bits in their
Cause register. On most general-purpose CPUs you’ll find five or six of these
driven by CPU input pins, and two of them are purely software accessible. If
you have a pre-R4000 CPU with floating-point hardware one interrupt pin will
be required for floating-point exception signalling; on R4000 and subsequent
CPUs there’s a counter/timer on-chip that uses up one pin.

An active level on any pin is sensed in each cycle and will cause an excep-
tion if enabled.

The CPU’s willingness to respond to an interrupt is affected by bits in SR.
There are three relevant fields:

• The global interrupt enable bit — SR(IEc) for R3000 CPUs and SR(IE)
for later ones. This bit must be set 1 or no interrupt will be serviced.
On R3000 CPUs, the SR(IEc) bit is automatically cleared when any
exception is taken.

• In R4000 and subsequent CPUs, the SR(EXL) (exception Ievel) and SR(ERL)
(error level) bits will inhibit interrupts if set (as one of them will be after
any exception).
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• The status register also has individual interrupt mask bits SR(IM), one
for each interrupt bit in Cause. Each SR(IM) bit should be set to 1
to enable the corresponding interrupt so that programs can determine
exactly which interrupts can happen and which cannot. Changes to the
individual bits are made under cover, with interrupts disabled globally.

What Are the Software interrupt Bits For?
The clue is in the expression “unless masked”.
Typically this is used as a mechanism for high-
priority interrupt routines to flag actions that
will be performed by lower-priority interrupt
routines once the system has dealt with all
high-priority business. As the high-priority pro-
cessing completes, the software will open up
interrupt mask, and the pending software in-
terrupt will occur.

Why on earth should the CPU provide two bits
in the Cause register that, when set, immedi-
ately cause interrupt unless masked?
There is no absolute reason why the same ef-
fect should not be simulated by system soft-
ware (using flags in memory, for example) but
the soft interrupt bits are convenient because
they fit in with an interrupt handling mecha-
nism that has to be provided.

To discover what interrupt inputs are currently active, you look inside the
Cause register. Note that these are exactly that — current levels — and do
not necessarily correspond to the signal pattern that caused the interrupt ex-
ception in the first place. The active input levels in Cause(IP) and the masks
in SR(IM) are helpfully aligned to the same bit positions, in case you want to
“and” them together. The software interrupts are at the lowest positions, and
the hardware interrupts are arranged in increasing order.

In architectural terms, all interrupts are equal. But to help you avoid
trouble with some CPU implementations there are one or two special uses of
intelrupt signals we ought to mention here.

In R4000 and descendant CPUs, interrupt number 7 is used for the inter-
nal timer. This interrupt corresponds to the hardware pin Int5*, and some of
these CPUs don’t provide an input at all. But where the pin exists, you can
only use the pin by eschewing the timer — and the timer is too useful to do
that.

When R3000 and other MIPS I CPUs have floating-point hardware, FP
exceptions are communicated through an interrupt pin. The MIPS convention
was to use Int3* for this purpose, but DECstations used Int5*. Although 32-
bit CPUs with integrated floating point are fairly rare, those that do exist have
usually offered some software-controlled selection of which interrupt gets tied
to the FPA.

Interrupt processing proper begins after you have received an exception
and discovered from Cause(ExcCode) that it was a hardware interrupt. Con-
sulting Cause(IP) we can find what interrupt is active and thus what device
is signalling us. Here is the usual sequence:

• Consult the Cause register IP field and logically “and” it with the current
interrupt masks in SR(IM) to obtain a bitmap of active, enabled inter-
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rupt requests. There may be more than one, any of which would have
caused the interrupt.

• Select one active, enabled interrupt for attention. The selection is nor-
mally done using fixed priorities, but it is all decided by the software.

• You need to save the old interrupt mask bits in SR(IM), but you probably
already saved the whole SR register in the main exception routine.

• Change SR(IM) to ensure that the current interrupt and all interrupts
your software regards as being of equal or lesser priority are inhibited.

• If you haven’t already done it in the main exception routine, save the
state (user registers, etc.) required for nested exception processing.

• Now change your CPU state to that appropriate to the higher-level part
of the interrupt handler, where typically some nested interrupts and
exceptions are permitted.

In all cases, set the global interrupt enable bit, SR(IEc) (for R3000-
style CPUs) or SR(IE) (for R4000-style CPUs), to allow higher-priority
interrupts to be processed. On an R4000 you’ll also change the CPU
privilege level field SR(KSU) to kernel mode and clear SR(EXL) to leave
exception mode and expose the changes made in the status register.

• Call your interrupt routine.

• On return you’ll need to disable interrupts again so you can restore the
pre-interrupt values of registers and resume execution of the interrupted
task. On an R3000 or similar CPU you will do this by clearing SR(IEc);
on an R4000 or later CPU you will set SR(EXL). That sounds different,
but in both cases you’ll probably do this implicitly by restoring the just-
after-exception value of the whole SR register before getting into your
end-of-exception sequence.

When making changes to SR, you need to be careful about changes whose
effect is delayed due to the operation of the pipeline. At worst, different SR
fields can take effect at slightly different times, so an alteration of SR that
simultaneously changes two fields may produce an unexpected window of
opportunity for an interrupt, as the interrupt-enabling change to one field
works its way through faster than the interrupt-disabling effect of another.
There’s some information on how to read your CPU manual to avoid this sort
of event in Appendix A, Section A.4.

5.8.2 Implementing Interrupt Priority

The MIPS CPU has a simple-minded approach to interrupt priority; all inter-
rupts are equal.

If your system implements an interrupt priority scheme, then:
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• At all times the software maintains a well-defined interrupt priority level
(IPL) at which the CPU is running. Every interrupt source is allocated to
one of these levels.

• If the CPU is at the lowest IPL, any interrupt is permitted. This is the
state in which normal applications run.

• If the CPU is at the highest IPL, then all interrupts are barred.

Not only are interrupt handlers run with the IPL set to the level appropriate
to their particular interrupt cause, but there’s provision for programmers to
raise and lower the IPL. Those parts of the application side of a device driver
that communicate with the hardware or the interrupt handler will often need
to prevent device interrupts in their critical regions, so the programmer will
temporarily raise the IPL to match that of the device’s interrupt input.

In such a system, high-IPL interrupts can continue to be enabled without
affecting the lower-IPL code, so we’ve got the chance to offer better interrupt
response time to some interrupts, usually in exchange for a promise that
their interrupt handlers will run to completion in a short time.

Most UNIX systems have between four and six IPLs.

While there are other ways of doing it, the simplest schemes have the
following characteristics:1

• Fixed priorities: At any IPL interrupts assigned to that and lower IPLs are
barred but interrupts of higher IPLs are enabled. Different interrupts at
the same IPL are typically scheduled first come, first served.

• IPL relates to code being run: Any given piece of code always executes at
the same IPL.

• Simple nested scheduling (above IPL 0): Except at the lowest level, any
interrupted code will be returned to as soon as there are no more ac-
tive interrupts at a higher level. At the lowest level there’s quite likely a
scheduler that shares the CPU out among various tasks, and it’s com-
mon to take the opportunity to reschedule after a period of interrupt
activity.

On a MIPS CPU a transition between interrupt levels must (at least) be ac-
companied by a change in the status register SR, since that register contains
all the interrupt control bits. On some systems interrupt level transitions will
require doing something to external interrupt control hardware, and most
OSs have some global variables to change, but we don’t care about that here;
for now we’ll characterize an IPL by a particular setting of the SR interrupt
fields.

1Since UNIX kernels are built like this, the scheme can’t be too restrictive.
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In the MIPS architecture SR (like all coprocessor registers) is not directly
accessible for bit setting and clearing. Any change in the IPL, therefore, re-
quires a piece of code that reads, modifies, and writes back the SR in separate
operations:

mfc0 t0, SR
1:

nop # all MIPS CPUs need at least one,
# maybe more

or t0, things_to_set
and t0, ˜(things_to_clear)

2:
mtc0 t0, SR
nop # waiting for change to take effect
nop

In general, this piece of code may itself be interruvted, and a problem
arises: suppose we take an interrupt somewhere between label 1 and 2 and
that interrupt routine itself causes any change in SR? Then when we write
our own altered value of SR at label 2, we’ll lose the change made by the
interrupt routine.

It turns out that we can only get away with the code fragment above —
which is pretty much universal in MIPS implementations of OSs — in systems
where we can rely on the IPL being constant in any particular piece of code. If
that’s true, then it follows that even if we get interrupted in the middle of our
read-modify-write sequence, it will do no harm; when the interrupt returns it
will do so with the same IPL, and therefore the same SR value, as before.

Where this assumption breaks down, we need the following discussion.

5.8.3 Atomicity and Atomic Changes to SR

In systems with more than one thread of control — including a single ap-
plication with interrupt handlers — you will quite often find yourself doing
something at which you don’t want to be caught halfway. In more formal
language, you may want a set of changes to be made atomically, so that some
cooperating task or interrupt routine in the system will see either none of
them made or all of them, but never in between.1 The code implementing the
atomic change is sometimes called a critical region.

In an embedded system interrupt routines represent a change in the con-
trol thread; and the rescheduling that runs one task instead of another (with-
out the running task’s knowledge) can only be the eventual consequence of

1An old saying goes: “Never show fools and children things half done.”
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an interrupt. So any critical region can be simply protected by disabling all
interrupts around it; this is crude but effective.

But as we saw above, there’s a problem: The interrupt-disabling sequence
(requiring a read-modify-write sequence on SR is itself not guaranteed to be
atomic. I know of two ways of fixing this impasse and one way to avoid it.

The first fix is to insist that no interrupt may change the value of SR held by
any interruptible code; this requires that interrupt routines always restore SR
before returning, just as they’re expected to restore the state of all the user-
level registers. If so, the non-atomic RMW sequence above doesn’t matter;
even if an interrupt gets in, the old value of SR you’re using will still be
correct. This first approach is generally used in UNIX-like OS kernels for
MIPS and goes well with the interrupt priority system in which every piece of
code is associated with a fixed IPL.

But sometimes this restriction is too much. For example, when you’ve sent
the last waiting byte on a byte-at-a-time output port, you’d like to disable
the ready-to-send interrupt (to avoid eternal interrupts) until you have some
more data to send. And again, some systems like to rotate priorities between
different interrupts to ensure a fair distribution of interrupt service attention.

The second solution is to use a system call to disable interrupts (probably
you’d define the system call as taking separate bit-set and bit-clear param-
eters and get it to update the status register accordingly). Since a syscall
instruction works by causing an exception, it disables interrupts atomically;
on an R3000-type CPU that’s because it cleared SR(IEc), and on an R4040-
type CPU it will have set SR(EXL). Under this protection your bit-set and
bit-clear can proceed cheerfully. It won’t work with SR(EXL) itself, but it
makes no sense to fiddle with SR(EXL) in ordinary code on an R4000 and I
hope you wouldn’t want to. When the system call exception handler returns,
the global interrupt enable status is restored (once again atomically).

A system call sounds pretty heavy weight, but it actually doesn’t need to
take long to run; however, you will have to untangle this system call from the
rest of the system’s exception-dispatching code.

The third solution is available only with the MIPS III instruction set. This
is to use the load-linked and store-conditional instructions to build critical
regions without disabling interrupts at all, as described in Section 5.8.4.

5.8.4 Critical Regions with Interrupts Enabled: Semaphores
the MIPS Way

A semaphore is a coding convention for multitasking programs. The semaphore
is a shared memory location used by concurrently running processes to ar-
range that some resource is only accessed by one of them at once.
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Each atomic chunk of code has the following structure:1

wait(sem);

/* do your atomic thing */
signal(sem);

Think of the semaphore as having two values: 1 meaning “in use” and 0
meaning “available”. The signal() is simple; it just sets the semaphore to
0. wait() checks for the variable to have the value 0 and won’t continue
until it does. It then sets the variable to 1 and returns. That should be
easy, but you can see that it’s essential that the process of checking the
value of sem and setting it again is itself atomic. High-level atomicity (at the
task level) is dependent on being able to build low-level atomicity, where a
test-and-set operation can operate correctly in the face of interrupts (or, on a
multiprocessor, in the face of access by other CPUs).

Most mature CPU families have some special instruction set features for
this: 680x0 CPUs have an atomic test-and-set instruction; x86 CPUs have an
“exchange register with memory” operation that can be made atomic with a
prefer “lock” instruction.

For large multiprocessor systems this kind of test-and-set process be-
comes expensive; essentially, all shared memory access must be stopped
while the semaphore user obtains the value, completes the test-and-set op-
eration, and the set operation percolates through to every cached copy in the
system. This doesn’t scale well to large multiprocessors.

It’s much more efficient to allow the test-and-set operation to run without
any guarantee of atomicity and then to make the set take effect only if we got
away with it. There also needs to be some way to find out whether it was OK;
now unsuccessful test-and-set sequences can be hidden inside the wait()
function and retried as necessary.2

This is what MIPS has, using the 11 (load-linked) and sc (store-conditional)
instructions in sequence. sc will only write the addressed location if there has
been no competing access since the last 11 and will leave a 1/0 value in a
register to indicate success or failure.3

Here’s wait() for the binary semaphore sem:
1Two gurus formulated these ideas. Hoare calls the functions wait() and signal() —

and that’s what we’ve used. Dijkstra calls equivalent functions (but with a slightly more
general concept of semaphore) p() and v() respectively. You can understand why he called
them “p” and “v” quite easily if you speak Dutch.

2Of course, you’d better make sure that there are no circumstances where it ends up
retrying forever!

3Note that we say “if” and not “if and only if”. Sometimes sc will fail even though the
location has not been touched; most uniprocessors will fail the sc when there’s been any
exception serviced since the ll. It’s only important that the sc should usually succeed when
there’s been no competing access and that it always fails when there has been one such.
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wait:
la t0, sem

TryAgaain:
11 t1, 0(t0)
bne t1, zero, WaitForSem
1i t1, 1
sc t1, 0(t0)
beq t1, zero, TryAgain

/* got the semaphore... */

Even in a uniprocessor system this can be useful, because it does not
involve shutting out interrupts. It avoids the interrupt-disabling problem de-
scribed above and can be an important part of a coordinated effort to reduce
worst-case interrupt latency, which is often important in embedded systems.

5.9 Starting Up

In terms of its effect on the CPU, reset is almost the same as an exception,
though one from which we’re not going to return. In the original MIPS ar-
chitecture this is mostly a matter of economy of implementation effort and
documentation, but the R4000 offers several different levels of reset from
a cold reset through to a nonmaskable interrupt — so reset and exception
conditions do shade imperceptibly into each other.

Since we’re recycling mechanisms from regular exceptions, following re-
set EPC points to the instruction that was being executed when reset was
detected, and most register values are preserved. However, reset disrupts
normal operation and a register being loaded or a cache location being stored
to or refilled at the moment reset occurred may be trashed.

It is quite possible to use the preservation of state through reset to imple-
ment some useful postmortem debugging, but your hardware engineer needs
to help; the CPU cannot tell you whether reset occurred to a running system
or from power-up. But postmortem debugging is an exercise for the talented
reader; we will focus on starting up the system from scratch.

The CPU responds to reset by starting to fetch instructions from 0xBFC0
0000. This is physical address 0x1FC0 0000 in the uncached kseg1 region.

Following reset, enough of the CPU’s control register state is defined so
that the CPU can execute uncached instructions. “Enough state” is inter-
preted minimally; note the following points:

• Only three things are guaranteed in SR: the CPU is in kernel mode;
interrupts are disabled; and exceptions will vector through the uncached
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entry points — that is, SR(BEV) == 1.1

Some implementations may guarantee more: For example, IDT doc-
umentation states that the SR(TS) bit is initialized on R3051-family
CPUs; it will be set 0 if the CPU has MMU hardware, 1 otherwise. You
should not rely on this promise for WIPS CPUs outside the R3051 family.

• In a CPU with R3000- type caches the D-cache may be isolated if SR(IsC)
happens to have come upset, so until you’ve set that bit explicitly you
can’t rely on data loads and stores working, even to uncached space. It’s
probably best to be pessimistic and assume the same about any MIPS
CPU.

• The caches will be in a random, nonsensical state, so a cached load
might return rubbish without reading memory.

• The TLB will be in a random state and must not be accessed until initial-
ized (the hardware has only minimal protection against the possibility
that there are duplicate matches in the TLB, and the result could be a
TLB shutdown which Can be amended only by a further reset).

The traditional startup sequence is as follows:

1. Branch to the main ROM code. Why do a branch now?

• The uncached exception entry points start at 0xBFC0 0100, which
wouldn’t leave enough space for startup code to get to a “natural
break”.

• The branch represents a very simple test to see if the CPU is func-
tioning and is successfully reading instructions. If something terri-
ble goes wrong with the hardware, the MIPS CPU is most likely to
keep fetching instructions in sequence (and next most likely to get
permanent exceptions).
If you use test equipment that can track the addresses of CPU reads
and writes, it will show the CPU’s uncached instruction fetches from
reset; if the CPU starts up and branches to the right place, you have
strong evidence that the CPU is getting mostly correct data from the
ROM.
By contrast, if your ROM program plows straight in and fiddles with
SR, strange and undiagnosable consequences may result from sim-
ple faults.

2. Set the status register to some known and sensible state. Now you can
load and store reliably in uncached space.

1In R4000-style CPUs, the first two conditions (and more besides) are typicatiy guaran-
teed by setting the exception-mode bit SR(EXL), and this is implied by treating reset as an
exception.
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3. You will probably have to run using registers only until you have initial-
ized and (most likely) run a quick check on the integrity of some RAM
memory. This will be slow (we’re still running uncached from ROM) so
you will probably confine your initialization and check to a chunk of
memory big enough for the ROM program’s data.

4. You will probably have to make some contact with the outside world (a
console port or diagnostic register) so you can report any problem with
the initialization process.

5. You can now assign yourself some stack and set up enough registers to
be able to call a standard C routine.

6. Now you can initialize the caches and run in comfort. Some systems
can run code from ROM cached and some can’t; on most MIPS CPUs a
memory supplying the cache must be able to provide four-word bursts
and your ROM subsystem may or may not oblige.

5.9.1 Probing and Recognizing Your CPU

You can identify your CPU implementation number and a manufacturer-
defined revision level from the PRId(Imp) and PRId(Rev) fields. However,
it’s best to rely on this information as little as possible; changes to the CPU
may or may not be reflected in PRId. In principle, a particular value of the
PRId(Imp) field should characterize your CPU — the ISA version it runs and
its CP0 registers.1 But whenever you can probe for a feature directly, do so.

Nonetheless, diagnostic software should certainly make PRId(Rev) visi-
ble. And should you ever need to include a truly unpleasant software work-
around for a hardware bug you may be able to test PRId(Rev) to find out
when you can leave it out.

It’s much more robust, though, to probe for individual features. Here are
some examples:

• Have we got FP hardware? The “official” techique is to set SR(CU1) to
enable coprocessor 1 operations and to use a cfcl instruction from co-
processor 1 register 0, which is defined to hold the revision ID. A nonzero
value in bits 8-15 indicates the presence of FPA hardware; good values
you might see are listed in Table 7.3. A skeptical programmer2 will prob-
ably follow this up by checking that it is possible to store and retrieve

1Product politics gets in the way of the use of ID registers. Big companies require the
parts they use to be requalified if there’s a change of specification. A documented change
to a register, even the PRId register, is a change of specification; a new mask version of the
chip that leaves PRId alone probably isn’t. Once a product is in the field, silicon vendors
therefore are under pressure not to change PRId so long as they are producing a compatible
part.

2I assume, Gentle Reader, that this is you.
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data from the FPA registers. Unless your system supports unconditional
use of the floating-point unit, don’t forget to reset SR(CU1) afterward.

• Cache size: You can determine the cache size for an R3xxx CPU by
probing it (see Section 4.5 for one way of doing so). Don’t use PRId,
because there are already many implementations using the same PRId
value but with different cache sizes.

R4x00 and subsequent CPUs have the primary cache size encoded in the
Config register; however, if a secondary cache is fitted the size field is
pure convention, and you’d be better building a secondary cache sizing
routine to check anything reported.

• Have we got a TLB? That’s memory translation hardware. In IDT’s
R3051 family you can look at SR(TS) following a hardware reset; it will
be set for no TLB, 0 otherwise. But this is specific to the R3051 family.

Alternatively, you can read and write values to index or look for evidence
of a continuously counting Random register. If it looks promising, you
may want to check that you can store and retrieve data in TLB entries.

• CPU clock rate: It is often useful to work out your clock rate. You can
do this by running a loop of known length, cached, that will take a fixed
large number of CPU cycles and then comparing with before and after
values of a counter that increments at known speed. Do make sure
that you are really running cached, or you will get strange results —
remember that some hardware can’t run cached out of ROM.

Some maintenance engineer will bless you one day if you make the CPU
type, clock rate, and cache sizes available, perhaps as part of a sign-on mes-
sage.

5.9.2 Bootstrap Sequences

Startup code suffers from the clash of two opposing but desirable goals. On
the one hand, it’s robust to make minimal assumptions about the integrity
of the hardware and to attempt to check each subsystem before using it
(think of climbing a ladder and trying to check each rung before putting your
weight on it). On the other hand, it’s desirable to minimize the amount of
tricky assembler code. Bootstrap sequences are almost never performance
sensitive, so an early change to a high-level language is desirable. But high-
level language code tends to require more subsystems to be operational.

After you have dealt with the MIPS-specific hurdles (like setting up SR so
that you can at least perform loads and stores), the major question is how
soon you can make some read/write memory available to the program, which
is essential for calling functions written in C.
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You have an option here. Most MIPS CPUs now have some data cache on
chip, and it is reasonable to regard on-chip resources as the lowest rungs
on your ladder.1 You could rely on the data cache to provide enough storage
for your C functions during bootstrap; memory might be read or written, but
provided you use less than a cache-size chunk of memory space you will not
depend on being able to read memory and get good data back.

The trouble is that some data caches are small, and programs seem to
need more and more data space; so Algorithmics doesn’t do that.

5.9.3 Starting Up an Application

To be able to start a C application (presumably with its instructions coming
safely from ROM) you need three chunks of writable memory.

Firstly, you need stack space. Assign a large enough piece of writable
memory and initialize the sp register to its upper limit (aligned to an 8-byte
boundary). Working out how large the stack should be can be difficult, so a
large guess helps.

Then you may need some initialized data. Normally the C data area is ini-
tialized by the program loader to set up any variables that have been allocated
values. Most compilation systems that purport to be usable for embedded
applications permit read-only data (implicit strings and data items declared
const) to be managed in a separate segment of object code and put into ROM
memory.

Initialized writable data can be used only if your compilation system and
run-time system cooperate to arrange to copy writable data initializations
from ROM into RAM before calling main().2

Lastly, C programs use a different segment of memory for all static and
extern data items that are not explicitly initialized — an area sometimes
called the “bss” for reasons long lost. Such variables should be cleared to zero
which is readily achieved by zeroing the whole data section before starting the
program.

If your program is built carefully, that’s enough. However, it can yet more
complicated: Take care that your M1YS program is not built to use the global
pointer register gp to speed access to nonstack variables, or you’ll need to do
more initialization.

You’ll find an example (taken from the Algorithmics toolkit) in Section
12.1.

1Sometimes diagnostic suites include bizarre things like the code in the original PC BIOS,
which tests each 8086 instruction in turn. This seems to me like chaining your bicycle
to itself to foil thieves. . . However, the more positive side of this is that if a subsystem is
implemented inside the CPU chip, you don’t lose much by trusting it.

2We can’t resist a small advertisement: The GNU C-based SDE-MIPS cross-compiler
(available from Algorithmics and known to your IDT distributor) has this feature.



124 5.10. Emulating Instructions

5.10 Emulating Instructions

Sometimes an exception is used to invoke a software handler that will stand
in for the exception victim instruction, as when you are using software to
implement a floating-point operation on a CPU that doesn’t support FP in
hardware. Debuggers and other system tools may sometimes want to do this
too.

To emulate an instruction, you need to find it, decode it, and find its
operands (which by now will be copies of the data in the appropriate registers
when the exception triggered, stored in some exception frame). Armed with
these you do the operation in software and patch the results back into the
exception frame copy of the appropriate result register. You then need to fid-
dle with the stored exception return address so as to step over the emulated
instruction, and then return. We’ll go through those step by step.

Finding the exception-causing instruction is easy; it’s usually pointed to
by EPC, unless it was in a branch delay slot, in which case Causa(BD) is set
and the exception victim is at the address EPC + 4.

To decode the instruction, you need some kind of reverse-assembler table.
A big decode-oriented table of MIPS instructions is part of the widely available
GNU debugger gdb, where it’s used to generate disassembly listings. So long
as the GNU license conditions aren’t a problem for you, that will save you
time and effort.

To find the operands you’ll need to know the location and layout of the
exception frame, which is dependent on your particular OS (or exception-
handling software, if it’s too humble to call an OS).

You’ll have to figure out for yourself how to do the operation, and once
again you need to be able to get at the exception frame, to put the results
back in the saved copy of the right register.

There’s a trap for the unwary in incrementing the stored EPC value to step
over the instruction you’ve emulated.1 If your emulated instruction was in
a branch delay slot, the next instruction in program sequence is not simply
the following instruction. In this case you first have to emulate the branch
instruction, testing for whether the branch should be taken or not. if the
branch should be taken you need to compute its target and return straight
there from the exception.

Fortunately, all MIPS branch instructions are side effect free, so this
shouldn’t be too difficult.

1In early MIPS CPUs EPC itself is read-only, so don’t try to write it. But in these CPUs
the actual return from exception is always accomplished by loading the return address into
a general register and executing a jr.



Chapter 6
Memory Management and the TLB

We’ve tended to introduce most topics in this book from the bottom, which
is perhaps natural in a book about low-level computer architecture. But

to describe the memory management hardware we’re instead going to start
off with a description of the UNIX-style virtual memory system that the MIPS
R2000 sought to implement. Later in the chapter we’ll come around and look
at how the same hardware can be made to work in other contexts.

Early MIPS CPUs sought applications in UNIX workstations and servers so
the MIPS memory management hardware was conceived as minimum hard-
ware that could hope to provide memory management for BSD UNIX — used
here as a well-documented exemplar of the needs of any adequate virtual
mernorv OS. It’s clear that the designers were familiar with the DEC VAX
minicomputer and recycled many ideas from that architecture, while omit-
ting many complications. in particular, many problems that the VAX solves
microcode are left to software by the MIPS system.

In this chapter we’ll start where MIPS started, with the requirements of a
basic UNIX-like OS and its virtual memory system. We’ll show how the MIPS
hardware is a response to that requirement. At the end, we’ll say something
about the kinds of use you might make of the memory translation hardware
in embedded systems that don’t make generic use of that hardware.

Memory translation hardware (we’ll call it MMU for memory management
unit) serves several distinct purposes:

• Relocation: The addresses of program entry points and predeclared data
are fixed at program compile/build time. The MMU allows the program
to be run anywhere in physical memory.

• Allocating memory to programs: The MMU can build contiguous pro-
gram space out of physically scattered pages of memory, allowing us to
allocate memory from a pool of fixed-size pages. If we are continually
allocating and freeing variable-size chunks of memory, we will suffer
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fragmentation problems: We’ll end up with lots of small islands of mem-
ory space and unable to respond to requests for a larger chunk, even
though the total free space is quite adequate.

• Hiding and protection: User-privilege programs can only access data
whose program address is in the kuseg memory region (lower program
addresses). Such a program can only get at the memory regions that the
OS allows.

Moreover, each page can be individually specified as writable or write
protected; the OS can even stop a program from accidentally overwriting
its code.

• Extending the address range. Some CPUs can’t directly access their full
potential physical memory range. MIPS I CPUs, despite their genuine
32-bit architecture, arange their address map so that the unmapped
address space windows kseg0 and kseg1 (which don’t depend on the
MMU tables to translate addresses) are windows onto the first 512MB
of physical memory. If you need to access higher location, you must go
through the MMU.

• Making the memory map suit your program: With the MMU, your pro-
gram can use the addresses that suit it. In a big OS there may be many
copies of the same program running, and it’s much easier for them all
to be using the same program addresses.

• Demand paging: Programs can run as if all the memory resources they
needed were already allocated, but the OS can actually give them out
only as needed. A program accessing an unallocated memory region will
get an exception that the OS can process; the OS then loads appropriate
data into memory and lets the program continue.

The essence of the UNIX memory manager’s job is to run many different
processes (multitasking), each in its own memory space.1 If the job is done
properly, the fate of each process is independent of the others (the OS pro-
tects itself too): A process can crash or misbehave without bringing down
the whole system. This is obviously a useful attribute for a university de-
partmental computer running student programs; but even the most rigorous
commercial environment needs to support experimental or prototype software
alongside the tried and tested.

The MMU is not just for big, full virtual memory systems; even small em-
bedded programs benefit from relocation and more efficient memory alloca-
tion. Any system where you may want to run different programs at different

1In this section we’re going to commit the UNIX-style confusion that identifies “process”
(thread of control) with a separate address space. Modern OSs have separate concepts:
Threads are what is scheduled, and address spaces are the protection units. Many threads
can share one address space. The memory translation system is obviously interested in
address spaces and not in threads. But for now we’ll stick with the UNIX oversimplification,
so we can use the familiar word process.
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times will find it easier if it can map the program’s idea of addresses onto
whatever physical address space is readily available.

Multitasking and separation between various tasks’ address spaces have
steadily migrated downward into smaller computers and are now common-
place in personal computers and Internet servers.

Embedded applications frequently use explicit multitasking, but few em-
bedded OSs use separate address spaces. This is probably not so much
because this would not be useful but due to the lack of consistent features
on embedded CPUs and their available operating systems.

The MIPS minimalism that was so necessary to make the workstation
CPU cheap in 1986 may prove relevant to embedded systems in the late 90s.
Even small applications, beset by rapidly expanding code size, need to use
all known tricks to manage software complexity; and the flexible software-
based approach pioneered by MIPS is likely to deliver whatever is needed. A
few years ago it was hard to convince CPU vendors addressing the embedded
market that the MMU was worth including; by 1997, however, Microsoft’s
Windows/CE, which can not be supported without memory management
hardware, was being proposed as a solution for a wide range of embedded
problems.

6.1 Memory Management in Big Computers

It’s probably easiest to start with the whole job of the memory management
system in a UNIX-like system (selected for study because, despite its big-
system capabilities, it’s much simpler than PC operating systems). The typi-
cal view is illustrated as Figure 6.1.

6.1.1 Basic Process Layout and Protection

The biggest split in Figure 6.1 is between the low part, labeled “accessible
to user programs” and the rest. The user-accessible part of the application
map is what we called kuseg in the generic MIPS memory maps described in
Section 2.8. All higher memory is reserved.to the OS. From the OS’s point of
view, the low part of memory is a safe “sandbox” in which the user program
can play all it wants. If the program goes wild and trashes all its own data,
that’s no worry to anyone else.

From the application’s point of view, this area is free for use in building
arbitrarily complicated private data structures and to get on with the job.

Inside the user area, within the program’s andbox, the OS provides more
stack to the program on demand (implicitly, as the stack grows down). it
will also provide a system call to make more data available starting from the
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highest predeclared data addresses and growing up — systems people call
this a heap. The heap feeds library functions such as malloc()which provide
your program with chunks of extra memory.

Per-process data

I/O registers(h/w dependent)

Kernel data

Kernel code

Stack (grows down)

Declared data

Program code

Heap (grows up)

High addresses

Shared by
all tasks

Low addresses

Only accessible
by OS routines

Accessible to 
user programs

Figure 6.1: Memory map for a protected process

Stack and heap are supplied in chunks small enough to be reasonably
thrifty with system memory but big enough to avoid too many system calls or
exceptions. However, on every system call or exception the OS has a chance
to police the application’s memory consumption. An OS can enforce limits
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that make sure the application doesn’t get so large a share of memory as to
threaten other vital activities.

In UNIX-like systems the process keeps its identity inside the OS kernel;
most kernel facilities are provided effectively as special subroutines (system
calls) invoked by the application under special rules to make sure they only
do what the application is entitled to do.

The operating system’s own code and data are of course not accessible to
user space programs. On some systems this is done by putting them in a
completely separate address space; on MIPS the OS shares the same address
space, and when the CPU is running at the user-program privilege level,
access to these addresses is illegal and will trigger an exception.

Note that while each process’s user space maps to its own private real
storage, the OS space is mostly shared. Much of the OS code and resources
are seen at the same address by all processes — an OS kernel is a multi-
threaded but single-address-space system inside — but each process’s user
space addresses access its own separate space. Kernel routines running ap-
plication system calls are trusted to cooperate safely, but the application need
not be trusted at all.

The active parts of the user space are spread out, with stack at the top
and code and compiled-in data at the bottom. This allows the stack to grow
downward (implicitly, as the program runs and references data deeper) and
the data to grow upward (explicitly, as the program calls library functions
that allocate memory). The OS can allocate more memory for stack or data
and can arrange to map it into the appropriate address.

Note that, in order to allow for programs that use vast quantities of data
space, it’s usual to have the stack grow down from the highest permissible
user addresses. The wide spread of addresses in use (with a huge hole in
between) is one characteristic of this address map with which any translation
scheme must cope.

Real-life systems make things more complicated in search of efficiency
and more functions. Most systems map application code as read-only to the
application, meaning that it can safely be shared by many processes — it’s
common to have many processes running the same application.

Many systems share not just whole applications but chunks of applica-
tions accessed through library calls (shared libraries). That opens a whole
other can of worms that we will keep sealed up for now.

6.1.2 Mapping Process Addresses to Real Memory

What mechanisms are needed to support this model?

The MIPS architecture more or less dictates that the addresses used by
programs (whether application or kernel routines) are fixed when the pro-
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gram is compiled and linked.1 That means that applications can’t possibly
all be built to use explicit different addresses — and in any case we want to
be able to run multiple copies of the same application. So during program
execution application addresses are mapped to physical addresses according
to a scheme fixed by the OS when the program is loaded.

Although it would be possible for the software to rush around patching all
the address translation information whenever we switched contexts from one
process to another, it would be very inefficient. Instead, we award each active
process a number (in UNIX it’s called the process ID but these days is more
wisely called the address space ID or ASID). Any address from a process is
implicitly extended by that process’s ASID to produce a unique address to
submit for translation. The ASID needs to be loaded into a CPU register
whenever a new process is scheduled so that the hardware can use it.

The mapping facility also allows the OS to discriminate between different
parts of the user address space: Some parts of the application space (typically
code) can be mapped read-only and some parts can be left unmapped and
accesses trapped, meaning that a program that runs amok is likely to be
stopped earlier.

The kernel part of the process’s address space is generally shared by all
processes and most of it maps permanently resident OS code and data. Since
this code can be linked to run at this address, it doesn’t need a flexible map-
ping scheme, and most MIPS kernels are happy to put most of their code and
data in areas whose mapping is fixed by the architecture.

6.1.3 Paged Mapping Preferred

Many exotic schemes have been tried for mapping addresses, commonly
base/bound pairs to police correct accesses. But mapping memory in what-
ever size chunks the programs ask for, while apparently providing the best
service for applications, rapidly leads to available memory being fragmented
into using awkward-sized pieces. All practical systems map memory in pages
— fixed-size chunks of memory. Pages are always a power of 2 bytes big, with
4KB being overwhelmingly popular.

With 4KB pages, a CPU address can be simply partitioned thus:

nn 8 7 6 5 4 123 012 11 10 9

 Virtual page number(VPN)  Address within page

The address-within-page bits don’t need to be translated, so the memory
management hardware only has to cope with translating the high-order ad-
dresses, traditionally called virtual page number (VPN), into the high-order

1It is possibte to generate position-independent code (PIC) for MIPS CPUs but pure PIC is
somewhat awkward on MIPS. (See Section 10.11.2 for an account of the compromises made
to provide enough position independence for shared libraries in the MIPS/ABI standard.)
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bits of a physical address (a physical frame number, or PFN — nobody can
remember why it’s not PPN).

6.1.4 What We Really Want

The mapping mechanism must allow a program to assert a particular address
within its own process/address space and translate that efficiently into a real
physical address to access memory.

A good way to do this would be to have a table (the page table) containing
an entry far each page in the whole address space, with that entry containing
the correct physical address. This is clearly a fairly large data structure and
is going to have to be stored in main memory. But there are two big problems.

The first is that we now need two references to memory to do any load or
store, and that’s obviously hopeless for performance. You may foresee the
answer to this: We can use a high-speed cache memory to store translation
entries and go to the memory-resident table only when we miss in the cache.
Since each cache entry covers 4KB of memory space, it’s plausible that we can
get a satisfactorily low miss rate out of a reasonably small cache. (At the time
this scheme was invented, memory caches were rare and were sometimes
also called “lookaside butters”; so the memory translation cache became a
translation lookaside buffer or TLB; the acronym survives.)

The second problem is the size of the page table; for a 32-bit application
address space split into 4KB pages, there are a million entries, which will
take at least 4MB of memory. We really need to find some way to make the
table smaller, or there’ll be no memory left to run the programs.

We’ll defer any discussion of the solution for this, beyond observing that
real running programs have huge holes in their program address space, and
if we can invent some scheme that avoids using physical memory for the
corresponding holes in the table, things are likely to get better.

We’ve now arrived, in essence, at the memory translation system DEC
figured out for its VAX minicomputer, which has been extremely influential
in most subsequent architectures. It’s summarized in Figure 6.2.

The sequence in which the hardware works is something like this:

• A virtual address is split into two, with the least-significant bits (usually
12 bits) passing through untranslated — so translation is always done
in pages (usually 4KB).

• The more-significant bits, or VPN, are concatenated with the currently
running process’s ASID to form a unique page address.

• We look in the TLB (translation cache) to see if we have a translation
entry for the page. If we do, it gives us the high-order physical address
bits and we’ve got the address to use.
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Physical address.

Process no. Program (virtual) address.

Refilled when
necessary

Page table
(in memory)TLB

Address 
within page

PFN

Address 
within page

ASID VPN

PFN FlagsASID VPN/Mask PFN Flags

Figure 6.2: Desirable memory translation system

The TLB is a special-purpose store and can match addresses in various
useful ways. It may have a global flag bit that tells it to ignore the value
of ASID for some entries, so that these TLB entries map some range of
virtual addresses for every process.

Similarly, the VPN may be stored with some Mask bits that cause some
parts of the VPN to be excluded from the match, allowing the TLB entry
to map a larger range of virtual addresses.

Both of these special cases are available in some MIPS MMUs.

• There are usually extra bits (flags) stored with the PFN that are used to
control what kind of access is allowed — most obviously, to permit reads
but not writes. We’ll discuss the MIPS architecture’s hags in Section 6.2.

• if there’s no matching entry in the TLB, the system must locate or build
an appropriate entry (using main-memory-resident page table informa-
tion) and load it into the TLB and then run the translation process again.

In the VAX minicomputer, this process was controlled by microcode and
seemed to the programmer to be completely automatic.
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6.1.5 Origins of the MIPS Design

The MIPS designers wanted to figure out a way to offer the same facilities as
the VAX with as little hardware as possible. The microcoded TLB refill was
not acceptable, so they took the brave step of consigning this part of the job
to software.

That means that apart from a register to hold the current ASID, the MMU
hardware is just a TLB, which is simply a high-speed, fixed-size table of trans-
lations. System software can (and usually does) use the TLB as a cache to
front a memory-resident page table, but there’s nothing in the TLB hardware
to make it a cache, except this: When presented with an address it can’t
translate, the TLB triggers a special exception (TLB refill) to invoke the soft-
ware routine. However, considerable care is taken with the details of the TLB
design and associated control registers to help the software to be efficient.

6.2 MIPS TLB Facts and Figures

The MIPS TLB has always been implemented on chip: The memory trans-
lation step is required even for cached references, so it’s very much on the
critical path of the machine. That meant it had to be small, particularly in
the early days, so it makes up for its small size by being clever.

It’s basically a genuine associative memory. Each entry in an associative
memory consists of a key field and a data field; you present the key and the
hardware gives you the data of any entry where the key matches. Associative
memories are wonderful, but they are expensive in hardware. MIPS TLBs
have had between 32 and 64 entries; a store of this size is manageable as a
silicon design.

R4000-style CPUs so far have used a TLB where each entry is doubled up
to map two consecutive VPNs to independently specified physical pages. The
paired entries double the amount of memory that can be mapped by the TLB
with only a little extra logic, without requiring any large-scale rethinking of
TLB management.

You will see the TLB referred to as being fully associative; this emphasizes
that all keys are really compared with the input value in parallel.1

The TLB entry is shown schematically in Figure 6.3 (you’ll find detailed
programming information later in Section 6.5). The TLB’s key consists of the
following:

• VPN : The high order bits of the virtual address (the virtual address of the
page less low bits). It becomes VPN2 with the double entry, to emphasize

1The R4000’s TLB would be correcly, if pedantically, described as a 48-way set-associative
store, with two entries per set.
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TLB entry (R3000-style MIPS CPU)

TLB entry (R4000-style MIPS CPU) Output

Output

Flags

N VD

Flags

C VD

Flags

C VD
VPN2 PageMask ASID G PFN PFN

VPN ASID G PFN

Figure 6.3: TLB entry fields

that if each physical page is 4KB, the virtual address selecting a pair of
entries loses its Ieast-significant bit (which now selects the left or right
output field).

• PageMask: This is only found on later CPUs. It controls how much of
the virtual address is compared with the VPN and how much is passed
through to the physical address; a match on fewer bits maps a larger
region. MIPS CPUs can be set up to map up to 16MB with a single
entry. With all page sizes, the most significant masked bit is used to
select the even or odd entry.

• ASID: Marks the translation as belonging to a particular address space,
so it won’t be matched unless the CPU’s current ASID value matches too
The G bit, if set, disables the ASID match , making the translation entry
apply to all address spaces (so this part of the address map is shared
between all spaces). The ASID is 6 bits long on early CPUs, 8 bits on
later ones. 1

The TLB’s output side gives you the physical frame number and a small
but sufficient bunch of flags:

• Physical frame number (PFN): This is the physical address with the low
12 bits cut off.

• Cadre control (N/C): The 32-bit CPUs have just the N (noncacheable) bit
— 0 for cacheable, 1 for noncacheable.

The 64-bit CPUs provide a 3-bit field c that can contain a larger range
of values that tell multiprocessor hardware what protocols to use when

1The OS-aware reader will appreciate that even 256 is too small an upper limit for the
number of simultaneously active processes on a big UNIX system. However, it’s a reasonable
limit so long as “active” in this context is given the special meaning of “may have transla-
tion entries in the TLB”. Software has to recycle ASIDs where necessary, which will involve
purging the TLB of translation entries for the process that is being downgraded. It’s a dirty
business, but so is quite a lot of what OSs have to do; and 256 entries should be enough to
make sure it doesn’t have to be done so often as to constitute a performance problem. For
programming purposes, the G bit is stored with the output side’s flags.
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data in this page is shared with other processors. Those 64-bit CPUs
that don’t have hardware cache coherency features have maintained this
TLB entry layout; only the two code values that mean cacheable with all
R4000 cache features (3) and uncached (2) are standard over all R4000-
style CPUs. Modern embedded CPUs can select different cache manage-
ment strategies with different values: write through vs. write back or
write allocate vs. uncached write on miss. See your CPU manual.

• Write control bit (D): Set 1 to allow stores to this page to happen. The “D”
comes from this being called the “dirty bit”; see Section 6.8 for why.

• Valid bit (V): If this is 0, the entry is unusable. This seems pretty point-
less: Why have a record loaded into the TLB if you don’t want the trans-
lation to work? It’s because the software routine that refills the TLB is
optimized for speed and doesn’t want to check for special cases. When
some further processing is needed before a program can use a page re-
ferred to by the memory-held table, the memory-held entry can be left
marked invalid. After TLB refill, this will cause a different kind of trap,
invoking special processing without having to put a test in every soft-
ware refill event.

Translating an address is now simple, and we can amplify the description
above:

• CPU generates a program address: This is accomplished either for an
instruction fetch, a load, or for a store that doesn’t lie in the special
unmapped regions of the MIPS address space.

The low 12 bits are separated off, and the resulting VPN together with
the current value of the ASID field in EntryHi is used as the key to the
TLB, as modified in effect by the PageMask and G fields in TLB entries.

• TLB matches key: The matching entry is selected. The PFN is glued to
the low-order bits of the program address to form a complete physical
address.

• Valid? The V and D bits are consulted. If it isn’t valid or a store is being
attempted with D onset, the CPU takes a trap. As with all translation
traps, the BadVaddr register will be filled with the offending program
address; as with any TLB exception, the TLB EntryHi register will be
preloaded with the VPN of the offending address.

Don’t use the convenience registers Context (and XContext on 64-bit
CPUs) other than in TLB miss processing. At other times they might
track things like BadVaddr or they might not; either would be a legiti-
mate implementation.

• Cached? If the C bit is set the CPU looks in the cache for a copy of the
physical location’s data; if it isn’t there it will be fetched from memory



136 6.3. MMU Registers Described

and a copy left in the cache. Where the C bit is clear the CPU neither
looks in nor refills the cache.

Of course, the number of entries in the TLB permits you to translate only
a relatively small number of program addresses — a few hundred KB worth.
This is far from enough for most systerns. The TLB is almost always going to
be used as a software-maintained cache for a much lamer set of translations.

When a program address lookup in the TLB fails, a TLB refill trap is taken.1

System software has the following job:

• It figures out whether there is a correct translation; if not, the trap will
be dispatched to the software that handles address errors.

• If there is a correct translation , it constructs a TLB entry that will im-
plement it.

• If the TLB is already full (and it almost always is full in running systems),
the software selects an entry that can be discarded.

• The software writes the new entry into the TLB.

See Section 6.7 for how this can be tackled, but note here that although
special CPU features help out with one particular class of implementations,
the software can refill the TLB any way it likes.

6.3 MMU Registers Described

We’ll now put aside our top-down approach and get down to the details of the
MIPS implementation. I hope you’ve got enough background to set the bits
in context; once we’ve set out the details, we can show how the facilities are
used.

Like everything else in a MIPS CPU, MMU control is effected by a rather
small number of extra instructions and a set of registers taken from the co-
processor 0 set. Table 6.1 lists the control registers, and we’ll get around to
the instructions in Section 6.4.

6.3.1 EntryHi, EntryLo, and PageMask

Figure 6.4 shows these registers, which are the programmer’s only view of a
TLB entry and are best considered together.

The fields in EntryHi are as follows:
1Should this be called a “TLB miss” (which is what just happened) or a “TLB refill” (which

is what we’re going to do to sort it out)? I’m afraid we probably use both terms in MIPS
documentation.
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EntryHi register (TLB key fields) R3000-style CPUs

EntryLo register (TLB data field) R3000-style CPUs

EntryHi register (TLB key fields) R4000-style CPUs

EntryLo0, 1 register (TLB data field) R4000-style CPUs

PageMask register 64-bit CPUs only

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

VPN ASID

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

63 62 59 56 55 47 40 39 3860 53 52 51 484950 37 36 333435 325861 57 54 444546 43 42 41

VPN2 ASID

R VPN2

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

PFN N D V G

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

C D V GPFN

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

Mask

Figure 6.4: EntryHi, EntryLo, and PageMask register fields

• VPN, VPN2 (virtual page number): These are the high-order bits of a pro-
gram address (with bits 0-12 omitted). VPN2 omits bit 13 too, because
it’s used where each TLB entry will map a pair of 4KB virtual pages. Fol-
lowing a refill exception this field is set up automatically to match the
program address that could not be translated. When you want to write
a different TLB entry, or attempt a TLB probe, you have to set it up by
hand.

Table 6.1: CPU control registers for memory management

Register CP0 Description
mnemonic register

number

EntryHi 10

EntryLo/ 2

EntryLo0

EntryLo1 3

PageMask 5 Together these registers hold everything needed for a TLB entry. All
reads and writes to the TLB must be staged through them. EntryHi
holds the VPN and ASID; EntryrLo holds the PFN and flags. The
field EntryHi(ASID) does double duty, since it remembers the cur-
rently active ASID. In some CPUs (all 64-bit CPUs to date) each entry
maps two consecutive VPNs to different physical pages, specified
independently by two registers called EntryLo0 and EntryrLo1.
EntryHi grows to 64 bits in 64-bit CPUs but in such a way as to pre-
serve the illusion of a 32-bit layout for software that doesn’t need
long addresses. PageMask can be used to create entries that map
pages bigger than 4KB; see Section 6.3.1.

Index 0 This determines which TLB entry will be read/written by appropriate
instructions.

— continued —
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Table 6.1: continued

Register CP0 Description
mnemonic register

number

Random 1 This pseudo-random value (actually a free-running counter) is used
by a tlbwr to write a new TLB entry into a randomly selected lo-
cation. Saves time when processing TLB refill traps, for software that
likes the idea of random replacement (there is probably no viable
alternative).

Context 4

XContext 20 These are convenience registers, provided to speed up the pro-
cessing of TLB refill traps. The high-order bits are read/write; the
low-order bits are taken from the VPN of the address that couldn’t
be translated. The register fields are laid out so that, if you use the
favored arrangement of memory-held copies of memory transla-
tion records, then following a TLB refill trap Context will contain
a pointer to the page table record needed to map the offend-
ing address. See Section 6.3.5. Xcontext does the same job for
traps from processes using more than 32-bits of effective address
space; a straightforward extension of the Context layout to larger
spaces would be unworkable because of the size of the resulting
data structures. Some 64-bit CPU software is happy with 32-bit vir-
tual address spaces, but for when that’s not enough 64-bit CPUs
are equipped with “mode bits” SR(UX), SR(KX) which can be set
to cause an alternative TLB refill handler to be invoked; in turn that
handler can use XContext to support a huge but manageable
page table format.

The 64-bit systems (so far) don’t actually support virtual address spaces
as huge as is implied by the above. VPN2 is actually a 27-bit field in
R4x00 CPUs, corresponding to a 40-bit program address space. Higher
bits of VPN2 must be written as all ones or all zeros, matching the most-
significant bit of the EntryLo register; equivalently, the higher bits are
all 1 when accessing kernel-only address spaces and all 0 otherwise.

If you are only using the 32-bit instruction set this will happen auto-
matically, because when you work this way all register values contain
the 64-bit sign extension of a 32-bit number.

• ASID (address space identifier): This is normally left holding the operat-
ing system’s idea of the current address space. This is not changed by
exceptions, so after a refill exception, this will still have the right value
in it for the currently running process.

Most software systems will deliberately write this field only to set up the
current address space. However, you have to be careful when using tlbr
to inspect TLB entries; that operation overwrites the whole of EntryHi,
so you will have to restore the correct current ASID value afterward.

• R: This is an address region. You can consistently regard this field
as just more bits of EntryHi(VPN2); it’s just the highest-order bits of
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the 64-bit MIPS virtual address. However, if you remember the 64-bit
extended-memory map (see Figure 2.1 in Section 2.8, you can see that
these high-order bits select memory areas with different access privi-
leges. Also, they’re unlike the high bits of VPN2 because they can in-
deed take on different values — an implementation-defined number of
high-order bits of EntryHi(VPN2) must be all ones or all zeros.

Fields in EntryLo are as follows:

• PFN : These are the high-order bits of the physical address to which
values matching EntryHi’s VPN will be translated.

• N (noncacheable): Set 0 to make the access cacheable, 1 for uncacheable.

• C: For R4000 and later CPUs there’s a much richer choice of cache algo-
rithm to use for this access, encoded into a 3-bit field. But values other
than uncached (2) and cached without multiprocessor signalling (3) are
used different by cache-coherent multiprocessors and later embedded
CPUs.

• D (dirty):This functions as a write-enable bit. Set 1 to allow writes, 0 to
cause any store using this translation to be trapped. See Section 6.8 for
an explanation of the term “dirty”.

• V (valid): If set 0, any use of an address matching this entry will cause
an exception. Used either to mark a page that is not available for access
(in a true virtual memory system), or to mark one EntryLo part of a
paired translation as not available.

• G (global): When the G bit in a TLB entry is set, that TLB entry will match
solely on the VPN field, regardless of whether the TLB entry’s ASID field
matches the value in EntryHi. This allows us to implement parts of
the address space that are shared between all processes without adding
additional page tables.

• Fields called 0: These fields always return zero, but unlike many re-
served fields, they do not need to be written as zero (nothing happens
regardless of the data written). This is important; it means that the
memory-resident data that is used to generate EntryLo when refill-
ing the TLB can contain some software-interpreted data in these fields,
which the TLB hardware will ignore without the need to spend precious
CPU cycles masking it out.

The PageMask register has been implemented in all 64-bit CPUs to date.
The current mask field is copied into a TLB entry as it’s made, and 1 bits have
the effect of causing the corresponding bit of the virtual address to be ignored
when matching the TLB entry (and causing that bit to be carried unchanged
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to the resulting physical address), effectively matching a larger page size.
Masked bits in the address are copied directly to the physical address, too.

No MIPS CPU permits arbitrary bit patterns in Mask. Most allow page
sizes between 4KB and 16MB in ×4 steps:

PageMask bits Page size
24-21 20-17 16-13

0000 0000 0000 4KB

0000 0000 0011 16KB

0000 0000 1111 64KB

0000 0011 1111 256KB

0000 1111 1111 1MB

0011 1111 1111 4MB

1111 1111 1111 16MB

NEC’s Vr4200 CPU supports only 4KB and 16MB pages but uses the stan-
dard encodings for those sizes.

6.3.2 Index

The Index register is used to specify a TLB index when you deliberately want
to write a particular entry and is used to return a TLB index after you look
up a translation with tlbp.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

P IndexX X

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

MIPS I CPUs

All MIPS III and higher CPUs to date

P X Index

Figure 6.5: Fields in the Index register

Figure 6.5 shows that Index is not quite just a number. The P field is set
when a tlbp instruction fails to find a valid translation; since it is the top bit
it appears to make the 32-bit value negative, which is e to test for.

Note the different position of the field in early MIPS CPUs and that there
are only 6 significant bits (addressing a maximum of 64 TLB entries).

Random holds an index into the TLB that counts (downward, if that’s im-
portart to you) with each instruction the CPU executes. It acts as an index
into the TLB for the write-entry instruction tlbwr , supporting a random
replacement strategy when you need to write a TLB entry.
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6.3.3 Random

You never have to read or write the Random register (shown as Figure 6.6) in
normal use, but it may be useful for diagnostics. The hardware is supposed to
set the Random field to its maximum value — matching the highest-numbered
entry in the TLB — on reset, and it decrements every clock period until it
reaches a floor value, when it wraps back to 63 and starts again.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

RandomX X

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

32-bit CPUs to date

64-bit CPUs to date

Random

Figure 6.6: Fields in the Random register

TLB entries from 0 and whose index is less than the floor value are there-
fore immune from random replacement, and an OS can use those slots for
permanent translation entries — they are referred to as “wired” in MIPS OS
documentation.

In early CPUs the floor value is fixed to 8, but there were complaints about
the arbitrary nature of this constant and 64-bit CPUs introduced the Wired
register, which allows you to change the floor and thus the range of Random.

6.3.4 Wired

This is just a number, but the effect of writing nmbers lager than the highest
index in your TLB is unlikely to be helpful. When you write Wired the Random
is automatically reset to point to the top of the TLB.

6.3.5 Context and XContext

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

Bad VPNPTEBase

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

Context register for R3x00 CPUs

Context register for R4x00 and subsequent CPUs

63 62 59 56 55 47 40 39 3860 53 52 51 484950 37 36 333435 325861 57 54 444546 43 42 41

PTEBase

PTEBase Bad VPN2

XContext register for R4x00 and subsequent CPUs only

63 62 59 56 55 47 40 39 3860 53 52 51 484950 37 36 333435 325861 57 54 444546 43 42 41

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

RPTEBase

R Bad VPN2

Figure 6.7: Fields in the Context/XContaxt registers
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When the CPU takes an exception because a translation isn’t in the TLB,
the virtual address whose translation wasn’t available is already in BadVaddr,
and the VPN (which is all that matters) is already in EntryHi. This is clearly
sufficient; however, in order to speed the processing of this exception, the
Context or XContext register repackages the same information in a format
that can be a ready-made pointer to a memory-based page table.

Figure 6.7 shows these registers, and the fields are described in the notes
following:

• PTEBase: This is a location that just stores what you put in it. To
implement the “standard” refill handler, this will be the high-order bits
of the (appropriately aligned) starting address of a memory-resident page
table. The starting address must be picked to have zeros in bits 20 and
downward, since Context is an “or” of its fields, not their sum. That
constrains the memory-held page table to start on a 1MB boundary in
kernel virtual address — probably not much of a problem.

• Bad VPN/Bad VPN2: Following an addressing exception this holds the
high-order bits of the address, which are exactly the same as the high-
order bits of BadVaddr. Why is it VPN2? If your CPU’s TLB stores pairs
of entry, then bit 12 of the address is not part of the TLB key field.

The VPN or VPN2 value is shifted left, so as to precalculate a pointer into
a structure whose entries are bigger than bytes. The 2-bit shift for 32-bit
CPUs allows a 4-byte entry, which is large enough to hold information to
fill the EntryLo register which forms the other half of the TLB entry The
64-bit CPUs not only have 64-bit EntryLo and EntryLo1 registers, but
they have two of them because each TLB entry maps two pages; hence
the page table is expected to have entries 16 bytes in size, and the VPN
is shifted left by four.

• Fields marked 0: These will always read zero.

6.4 MMU Control Instructions

The instructions

tlbr # read TLB entxy at index
tlbwi # write TLB entry at index

move MMU data between the TLB entry selected by the index register and
the EntryHi and EntryLo registers.

You won’t often read a TLB entry; when you do, remember that you’ll
have overwritten the EntrsHi(ASID) field , which is supposed to relate to
the address map of the currently running process. So put it back again.

The instruction
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tlbwr # write TLB eatry selected by Random

copies the contents of EntryHi (including the included ASID field), EntryLo,
and PageMask into the TLB entry indexed by the random register — this saves
time if you are adopting a random replacement policy. In practice, tlbwr will
be used to write a new TLB entry in a TLB refill exception handler; tlbwi will
be used anywhere else.

The instruction

tlbp # TLB lookup

searches the TLB for an entry whose virtual page number and ASID matches
those currently in EntryHi and stores the index of that entry in the Index
register. Index(P) is set if nothing matches — this makes the value look
negative, which is easy to test.

If more than one entry m atches, anything might happen. This is a horrible
error and is never supposed to happen.

Note that tlbp does not fetch data from the TLB; you have to run a sub-
sequent tlbr (TLB read indexed) instruction to do that.

The TLB is internally pipelined, and these management/diagnostic in-
structions cheat. Many implementations require that the instruction follow-
ing a tlbp not be a load or store.

6.5 Programming the TLB

TLB entries are set up by writing the required fields into EntryHi and EntryLo
and by using a tlbwr or tlbwi instruction to copy that entry into the TLB
proper.

When you are handling a TLB refill exception, you wail hnd that EntryHi
has been set up for you already.

Be very careful not to create two entries that will match the same pro-
gram address/ASID pair. If the TLB contains duplicate entries an attempt to
translate such an address, or probe for it, has the potential to damage the
CPU chip. Some CPUs protect themselves in these circumstances by a TLB
shutdown, which shows up as the SR(TS) bit being set. The TLB will now
match nothing until a hardware reset.

System software often won’t need to read TLB entries at all. But if you need
to read them, you can find the TLB entry matching some particular program
address using tlbp to set up the index register. Don’t forget to save EntryHi
and restore it afterward because its ASID field is likely to be important.
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Use a tlbr to read the TLB entry into EntryHi and EntryLo.

You’ll see references in the CPU documentation to separate ITLB and DTLB
structures that perform translation for instruction and data addresses, re-
spectively; these are tiny hardware-managed caches whose operation is com-
pletely transparent to software.

6.5.1 How Refill Happens

When a program makes an access in any of the translated address regions
(normally kuseg for application programs under a protected OS and kseg2
for kernel-privilege mappings), and no translation record is present, the CPU
takes a TLB refill exception.

The TLB can only map a fraction of the physical memory range of a modern
server or workstation. Large OSs maintain some kind of memory-held page
table that holds a large number of pale translations and uses the TLB as a
cache of recently used translations. Most often the page table will be an array
of ready-to-use TLB entries, set out so that you can use the Context register
as a pointer into it.

Since MIPS systems usually put their OS kernel into the untranslated
kseg0 memory region, the common situation will be a user-privilege program
that wants to translate a kuseg address. Several hardware features are pro-
vided with the aim of speeding up the exception handler in this common
case. Firstly, these refill exceptions are vectored through a low-memory ad-
dress used for no other exception.1 Secondly, a series of cunning tricks allow
the memory-held page table to be located in kernel virtual memory (the kseg2
region or its 64- bit alternative) so that physical memory space is not needed
for the parts of the page table that map “holes” in the process’s address map.

And to top it off, the Context or XContext register can be used to give
immediate access to the ngtit entry from a memory-held page table.

We’ll work through this process in Section 6.7. But before we get too far
into it, we should note that use of all these features is not compulsory. In a
smaller system the TLB can be used to produce a fixed or rarely changing
translation from program (virtual) to physical addresses; in these cases it
won’t even need to be a cache.

Even some big virtual memory OSs implemented for MIPS have not used
the “standard” page table. Early versions of the portable NetBSD kernel orga-
nized a relatively large software-managed second-level cache of translations
that was searched by the regular refill code; access to pages whose transla-
tions aren’t present in the second-level cache are rare and can be handed off

1On the original MIPS architecture this is the only event deemed worthy of its own entry
point. The exact criteria for use of the special entry point changed between the R3000 and
R4000 generations of the CPU, but the aim is the same.
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to a relatively heavyweight handler written in C and drawing on a machine-
independent page table.

6.5.2 Using ASIDs

By setting up TLB entries with a particular ASID setting and with the EntryLo
G bit set 0, those entries will only ever match a program address when the
CPU’s EntryHi(ASID) register field matches the TLB enttry’s value. This
allows you to map up to 64 or 256 different address spaces simultaneously,
without requiring that you clear out the TLB on a context change.1 If you do
run out of ASIDs you will have to go through the TLB and discard mappings
for the address space(s) whose ASID you want to revoke.

6.5.3 The Random Register and Wired Entries

The hardware offers you no way of finding out which TLB entries have been
used most recently. When you are using the TLB as a cache and you need
to install a new mapping, the only practicable strategy is to replace an entry
at random. The CPU makes this easy for you by maintaining the Random
register, which counts (down, actually) with every processor cycle.

Random replacement sounds horribly inefficient; you may end up discard-
ing the translation entry that has been in heaviest use recently and that will
almost certainly be needed again very soon. But in fact this doesn’t happen
so open as to be a real problem when you have a reasonable number of pos-
sible victims to choose from, and most MIPS OSs leave themselves at least
40.

However, it is often useful to have some TLB entries that are guaranteed
to stay there until you choose to remove them. These may be useful to map
pages that you know will be required very often, but they are really important
because they allow you to map pages and guarantee that no refill exception
will be generated on them.

The stable TLB entries are described as “wired”: On R3000 CPUs they con-
sist of TLB entries 0 through 7 and on R4x00 and subsequent CPUs they are
between 0 and whatever value you programmed into the Wired register. The
TLB itself does nothing special about these entries; the magic is in the Random
register, which never takes values 0 through “wired-1”; it cycles directly from
“wired-1” to its maximum value. So conventional random replacement leaves
TLB entries 0 through “wired-1” unaffected, and entries written there will
stay until explicitly removed.

1The exact number depends on the width of the ASID field, which has grown from 6 bits
to 8 bits during the evolutian of MIPS.
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6.6 Memory Translation: Setup

The following code fragments initialize the TLB to ensure that there is no
match on any kuseg or kseg2 address. We’ve done the usual R3000- and
R4000-style TLB arrangements separately Here is a simple TLB initialization
for an R3000 or similar CPU:

#include <mips/r3kc0.h>

LEAF(mips_init_tlb)
mfc0 t0, C0_ENTRYHI # save ASID
mtc0 zero, C0_ENTRYLO # tlblo = !valid
li a1, NTLBID << TLBIDX_SHIFT # index
li a0, KSEG1_BASE # tlbhi = impossible VPN

.set noreorder
1: subu a1, 1 << TLBIDX_SHIFT

dmtc0 a0, C0_ENTRYHI
dmtc0 a1, C0_INDEX
addu a0, 0x1000 # increment VPN, so all entries differ
bnez a1, lb
tlbwi
.set reorder

mtc0 t0, C0_ENTRYHI # restore ASID
j ra

END(mips_init_tlb)

Here is a simple TLB initialization for an R4000 or similar CPU:

#include <mips/r4kc0.h>

LEAF(mips_init_tlb)
dmfc0 t0, C0_ENTRYHI # save for ASID field
li a1, NTLBID # start once above top of TLB
li a0, KSEG1_BASE # impossible VPN
mtc0 zero, C0_ENTRYLO0 # zero is invalid
mtc0 zero, C0_ENTRYLO1

1: subu a1, 1
dmtc0 a0, C0_ENTRYHI
dmtc0 a1, C0_INDEX
addu a0, 0x2000 # increment VPN, so all entries differ
tlbwi
bnez a1, lb

.set noreorder
nop # tlbwi uses entryhi late
dmtc0 t0, C0_ENTRYHI # restore ASID
.set reorder
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j ra
END(mips_init_tlb)

Let’s look at the TLB initialization process.

• Both routines start at the top of the TLB (constant NTLBID) is found in
the include file, which Algorithmics calls r3kc0.h or r4kc0.h.

• The zero value of EntryLo0 and EntryLo1 means that any translation
is not valid, but that may, not on its own be enough to prevent trouble
with duplicated entries.

• Note that the R3000 version of Index has the field shifted up the regis-
ter, so we can’t just add one to it.

• The VPN stored in each entry is that of a page in the kseg1 area, which by
definition is a nontranslated address and can therefore never be looked
up. But even so, we make sure that all the VPNs are different.

6.7 TLB Exception Sample Code

This routine implements the translation mechanism that the MIPS architects
undoubtedly had in mind for user addresses in a UNIX-like OS. It relies upon
building a page table in memory for each address space. The page table
consists of a linear array of entries, indexed by the VPN, whose format is
matched to the bitfields of the EntryLo register. R3000-type single-entry
TLBs need one word per entry, while R4000-type paired TLBs need four (each
entry having grown to accommodate the bigger address space).

Such a scheme is simple but opens up other problems. Since each 4KB
of user address space takes 4 bytes of table space, the entire 2GB of user
space needs a 2MB table, which is an embarrassingly large chunk of data. 1

Of course, most user address spaces are only filled at the bottom (for code
and data) and at the top (for a downward growing stack) with a huge gap in
between. The solution MIPS adopted is inspired by DEC’s VAX architecture
and is to locate the page table itself in virtual memory in the kseg2 region.
This neatly solves two problems at once:

• It saves physical memory; since the unused gap in the middle of the
page table will never be referenced, no physical memory need actually
be allocated for those entries.

1On an R4000-type 64-bit CPU each 8KB of address space takes 16 bytes of table space,
needing a 4MB table for a 2GB “compatibility mode” task and much more for an application
that is taking advantage of R4000’s potential 0.5TB user space.
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• It provides an easy mechanism for remapping a new user page table
when changing context, without having to find enough virtual addresses
in the OS to map all the page tables at once. Instead, you just change the
ASID value, and the kseg2 pointer to the page table is now automatically
remapped onto the correct page table. It’s nearly magic.

Of course, it also seems to lead to a fatal vicious circle, where a TLB refill
(to load the kseg2 mapping for the page table) is required to process a TLB
refill. We can solve that problem too:

• The superfast TLB refill routine is not used for all refill exceptions; a
nested TLB miss on the page table address is dispatched to the general
exception entry point.

• A limited mechanism is provided that allows us to handle a nested ex-
ception (the kernel TLB miss) from within the user TLB miss exception
handler. We’ll discuss it under the individual examples, because the
R4x00 and subsequent 64-bit CPUs use a trick different from the R2000
and 32-bit CPUs.

The MIPS architecture supports this kind of linear page table in the form
of the Context register (or XContext for extended addressing in 64-bit CPUs).

If you make your page table start at a 1MB boundary (since it is in virtual
memory any gap created won’t use up physical memory space) and set up
the Context, PTEBase held with the hiigh-order bits of the page table start-
ing the aaaress, men following a user refill exception the Context register
will contain the address of the entry you need for the refill with no further
calculation needed.

6.7.1 The 32-Bit R3000-Style User TLB Miss Exception Han-
dler

The 32-bit CPUs have one special TLB miss exception entry point that is used
for TLB misses resulting from a user-accessible address. TLB misses caused
by privileged-access addresses (in the top half of the memory map) are sent
through the standard exception entry point. Here’s a typical refill routine for
a TLB miss handler for a 32-bit CPU:

.set noreorder

.set noat

TLBmissR3K:
mfc0 k1, C0_CONTEXT # (1)
mfc0 k0, C0_EPC # (2)
lw k1, 0(k1) # (3)
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nop # (4)
mtc0 k1, C0_ENTRYLO # (5)
nop # (6)
tlbwr # (7)
jr k0 # (8)
rfe # (9)

.set at

.set reorder

The UTLB miss exception is a very low level piece of code, so the .set
noreorder tells the assembler that we’re taking responsibility for making
sure this code sequence runs OK on the CPU’s pipeline, and we don’t want the
assembler worrying about it. The .set noat tells the assembler that it is not
allowed to use the at register to synthesize instructions — this is essential,
because we’ve arrived from an arbitrary exception and at has unsaved user
state in it.

k0 and k1 are by convention ours to play with, so we can use them without
worrying about what previous value we’re overwriting.

Following is a line-by-line analysis of this code:

(1) The Context register is a pointer to the page table. The mfc0 instruc-
tion does not take immediate effect in the MIPS five-stage pipeline,
so we won’t be able to use the pointer value until line (3).

(2) We need to get the return address sometime; do it now in the load
delay slot. This is also required in case the load from the page table
entry itself suffers a TLB miss exception.

(3) At this point the address of the page table entry may itself not have
a valid translation entry in the TLB, in which case we’ll take another
exception here. We’ll deal with that case below.

(4) The load takes two clock cycles, so we need to wait before we can
use the value from the page table.

(5) Store the new value in EntryLo, EatryHi(VPN) was set up auto-
matically by the hardware for the TLB miss exception to refer to
the missing translation. EntryHi still contains the EntryHi(ASID)
value we stored there, presumably the last time the OS did a process
context switch.

(6) Wait while the new value reaches EntryLo.
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(7) Write it to wherever in the TLB the Random register happens to be
pointing, discarding. . . who knows what. Never mind, that’s the fun
of random replacement.

(8) We go back to the user program, but in every branch the delay slot
instruction is executed before we get there. . .

(9) The rfe instruction restores the CPU state held in SR back to how it
was before the exception.

So we’ve taken nine instructions and are off back to the program that
suffered the translation miss. In practice, the biggest overhead is likely to be
felt when the load from the page table misses in the data cache.1

But we promised to tell you what happens if you are unlucky and the page
table entry address does not have a translation entry.

One thing isn’t a problem: Double translation faults like this are not very
common, so we don’t have to worry too much about efficiency. It’s OK to
implement the TLB miss on the page table (in the privileged address space)
with a heavyweight general-purpose exception handler.

MIPS exceptions really only do three things:

• Then modify SR to disable interrupts and put the CPU in kernel mode.

• Then store the restart location in EPC.

• Then vector to the exception handler.

In order to survive a second exception and still get back to the original
program correctly, we need to avoid losing the original return address and to
be able to restore SR to its pre-exception value.

There’s no hardware support for saving the return address, but as you
can see above, the exception handler has already saved it in k0; we just need
to make sure that the general-purpose exception handler treats k0 like most
other registers and preserves its value.2

The status register is more complicated, but here the hardware does help.
The 2 bits that do the work are the interrupt enable bit SR(IEc) and the
kernel-mode flag SR(KUc). The status register is in fact provided with a

1That highlights an unexpected virtue of the MIPS do-it-in-software approach: By using
software and not microcode to refill the TLB, the TLB refill job gets the benefit of working
through the CPU’s cache hierarchy and not always having to go out to memory.

2This is why the register conventions reserve two general-purpose registers for the use of
exception handlers.
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three-entry stack for this pair of bits, which is pushed on exceptions and
popped by the end-of-exception rfe instruction, as shown in Figure 6.8.

Because the SR(KUx, IEx), forms a three-deep stack, even after the sec-
ond exception the user program values are still safe in SR(KUo, IEo) and
ready to be popped back into place.

6.7.2 TLB Miss Exception Handler for R4x00 CPU

The R4000 and subsequent CpUs use a TLB with pairs of entries and handle
the double-exception condition differently, leading to this different handler
code.

Also, the R4000 has two special entry points. The handler at the same lo-
cation as the R3000’s is used to handle translations for processes using only
32 bits of address space; an additional entry point is provided and invoked
for programs marked as using the bigger address spaces available with 64-bit
pointers.

Exception

End-of-Exception
rfe instruction

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

KUo IEo IEcKUcIEpKUp

Figure 6.8: Status register fields in exceptions (32-bit MIPS)

The R4000 status register has three fields, SR(UX), SR(SX), and SR(KX),
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that select which exception handler to use, based on the CPU privilege level
at the time of the failed translation.1

The R4000 has a different criteria for deciding when a TLB miss can use
the special entry point and when it should be sent to the general excep-
tion handler. The R4000 always uses the special entry point unless it’s al-
ready handling an exception — that is, unless SR(EXL) is set. This deals
with the double-exception condition as above; but since misses on kernel ad-
dresses normally go through the same TLB handler as user address misses,
the R4000’s page table must be big enough to span kernel virtual addresses
too (but with yet more big holes).

Here is the code for a TLB miss handler for an R4000-type CPU with a
32-bit address space:

.set noreorder

.set noat

TLBmissR4K:
dmfc0 k1, C0_CONTEXT # (1)
nop # (2)
lw k0, 0(k1) # (3)
lw k1, 8(k1) # (4)
mtc0 k0, C0_ENTRYLO0 # (5)
mtc0 k1, C0_ENTRYLO1 # (6)
nop # (7)
tlbwr # (8)
eret # (9)

.set at

.set reorder

Following is a line-by-line analysis of the code:

(1) Oddly enough, the 64-bit move here is probably unnecessary: If the
page table is located in kseg2 as usual, the page table base part
of Context is guaranteed to be all ones in its high bits, so the k1
register will end up with the same value if you used a 32-bit-wide
mfc0 instruction.

(2, 7) Some CPUs (typically those with pipelines longer than five stages,
such as the R4000) will need an extra nop in these positions.

1SR(UX) is something of a 64-bit mode bit for user programs; when it’s zero, 64-bit
instructions are not available to a user program. But the other two bits are only used to
select the TLB refill routine.
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(3-6) The entries are paired here, but EntryLo0 and EntryLo1 are still
only 32-bit registers. However, the Context register is set up for
16-byte page table entries; EntryLo0 and EntryLo1 on these CPUs
have no don’t-care bits, and software routines need some page table
space to keep software-only information.

No nop is required because we interleave the second load so there’s
always at least one instruction between the load and mtc0.

As before, we may get another exception here if the page table entry’s
address does not have a valid translation in the TLB. Again, we’ll deal
with that later.

(7) The sequence may need an extra nop on some CPUs; you need one
on the long-pipeline R4000.

(8) This is random replacement of a translation pair as discussed.

(9) MIPS III and subsequent CPUs have the eret instruction to return
from exception and undo the exception-caused changes to SR. (For
MIPS III CPUs all an exception does to SR is to set the SR(EXL) bit.)

What happens on one of these later CPUs when you get another TLB miss?
As beefore, the second miss is sent through the general-purpose exception
entry point, but this time that happens because SR(EXL) is set (we’re already
handling an exception).

The outcome is quite different too. With SR(EXL) set a second exception
is allowed to happen, but this doesn’t alter the exception return register EPC.

In effect, the kernel TLB miss exception causes control to transfer into the
general exception handler with the Cause register and with all the address
registers set up to show a TLB miss on the page table entry address, but with
EPC pointing back at the offending user-space instruction. The kernel page
table miss will be fixed up (if it can be) and the general exception handler
will return into the user program. Of course, we haven’t done anything about
the user address that originally caused the user-space TLB miss, so it will
immediately miss again. But this time, the required kernel translation will
be available and the user miss handler will complete successfully.
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6.7.3 XTLB Miss Handler

With the appropriate status bit set (usually just SR(UX), a TLB miss is sent to
a different vector, where we should have a routine that will reload translations
for a huge address space. The handler code (of an XTLB miss handler for a
CPU with 64-bit address space) looks identical, except for the use of the
XContext register in place of Context:

.set noreorder

.set noat

TLBmissR4K :
dmfc0 k1, C0_XCONTEXT
nop
lw k0, 0(k1)
lw k1, 8(k1)
mtc0 k0, C0_ENTRYLO0
mtc0 k1, C0_ENTRYLO1
nop
tlbwr
eret

.set at

.set reorder

Note, though, that the resulting page table structure in kernel virtual
memory is far bigger and we’ll need to make significant changes in the kernel
memory map and translation code to accommodate it.

6.8 Keeping Track of Modified Pages (Simulating
“Dirty” Bits)

An operating system that provides a page for an application program to use
often wants to keep track of whether that page has been modified since the
OS last obtained it (perhaps from disc or network) or saved a copy of it.
Nonmodified (“clean”) pages may be quietly discarded, since they can easily
be recovered from a tile system if they’re ever needed again.

In OS parlance the modified pages are called “dirty” and the OS must take
care of them until the application program exits or the dirty page is cleaned
by being saved away to backing store. To help out with this process it is
common for CISC CPUs to maintain a bit in the memory-resident page table
indicating that a write operation to the page has occurred. The MIPS CPU
does not support this feature, even in the TLB entries. The D bit of the page
table (found in the EntryLo register) is a write-enable and is of course used
to flag read-only pages.

So here’s the trick:
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• When a writable page is first loaded into memory you mark its page table
entry with D clear (leaving it read-only).

• When any write is attempted to the page a trap will result; system soft-
ware will recognize this as a legitimate write but will use the event to
set a modified bit in the memory resident tables — which, since it’s in
the EntryLo(D) position, permits feature writes to be done without an
exception.

• You will also want to set the D bit in the TLB entry so that the write can
proceed, but since TLB entries are randomly and unpredictably replaced
this would be useless as a way of remembering the modified state.

6.9 Memory Translation and 64-Bit Pointers

When the MIPS architecture was invented, 32-bit CPUs had been around for
a while and the largest programs’ data sets were already moving up toward
100MB — the address space had only 4 bits or so to spare.1 There was
therefore every reason to be reasonably careful with the 32-bit space and
not to reduce it by profligate fragmentation; this is why application programs
(running with user privilege) keep 31 bits’ worth of addressing for themselves.

When the MIPS III instruction set introduced 64-bit registers in 1991 it
was leading the industry, and as we discussed in Section 2.8.2 MIPS was
probably 4-6 years ahead of real pressure on a 32-bit address boundary The
doubling of register size only had to yield a few bits of extra address space
to be remarkably future-proof; it’s been more important to be cautious about
the potentially exploding size of OS data structures than to make efficient
use of all address space.

The limitations to the practical address space resulting from the basic 64-
bit memory map are not going to be reached for a while; they permit the
mapped user and other spaces to grow to 61 bits without any reorganization.
However, the XContext(VPN2) field is “only” 27 bits, limiting the mappable
user virtual address to 40 bits. So how do we go about implementing a 40-bit
user space?

A page table compatible with the layout of XContext has 229 entries (one
for each value of R/VPN2, each 16 bytes long). That’s 8GB of space, which
is larger than the whole of kseg0, ksegl, and kseg2 combined. Fortunately,
the R4x00 CPU and its successors have another 240-byte, kernel-privilege,
mapped region starting at 0xC000 0000 0000 0000 that can be used. Most
of this page table is likely to be empty, since the 40-bit user program ad-
dress space (for which R == 0) has an immense gap between stack and data
segments, and there’ll be even less in the privileged areas. The part of the

1Historically, application program demand for memory space seems to have gown at
about 3

4 bit per year, and this rate appears to be currently sustained.
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page table corresponding to the gap will never be accessed and need not be
mapped to physical memory at all. Clearly it’s going to be useful to have some
relatively compact data structure to map the kernel-privilege addresses, but
that’s straying into the design of operating systems and is beyond the scope
of this book.

6.10 Everyday Use of the MIPS TLB

If you’re using a big OS, then it will use the TLB and you’ll hardly see it. If
not, you may wonder whether it’s useful. Because the MIPS TLB provides a
rather general address translation service, there are a number of ways you
might take advantage of it.

The TLB mechanism permits you to translate addresses (at page granu-
larity) from any mapped address to any physical address and therefore to
relocate regions of program space to any location in your machine’s address
map. There’s no need to support a TLB refill exception or a separate memory-
held page table if your mapping requirements are modest enough that you
can accommodate all the translations you need in the TLB.

The TLB also allows you to define some address as temporarily or perma-
nently unavailable, so that accesses to those locations will cause an excep-
tion that can be used to run some operating system service routine. By us-
ing user-privilege programs you can give some software access only to those
addresses you want it to have, and by using address space IDs in the trans-
lation entries you can efficiently manage multiple mutually inaccessible user
programs. You can write-protect some parts of memory.

The applications for this are endless, but here’s a list to indicate the range:

• Accessing inconvenient physical address ranges: Hardware registers for
a MIPS system are most conveniently located in the physical address
range 0-512MB, where you can access them with a corresponding pointer
from the ksegl region. But where the hardware can’t stay within this de-
sirable area, you can map an arbitrary page of higher physical memory
into a convenient mapped area such as kseg2. The TLB flags for this
translation should be set to ensure uncached access, but then the pro-
gram can be written exactly as though the address was in the convenient
place.

• Memory resources for an exception routine: Suppose you’d like to run
an exception handler without using the reserved k0/k1 registers to save
context. If so, you’d have trouble because a MIPS CPU normally has
nowhere to save any registers without overwriting at least one of these.
You can do loads or stores using the zero register as a base address,
but with a positive offset these addresses are located in the first 32KB
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of kuseg, and with a negative offset they are located in the last 32KB of
kseg2. Without the TLB, these go nowhere. With the TLB, you could map
one or more pages in this region into readlwrite memory and then use
zero-based stores to save context and rescue your exception handler.

• Extendable stacks and heaps in a non-VM system: Even when you don’t
have a disk and have no intention of supporting full demand paging, it
can still be useful to grow an application’s stack and heap on demand
while monitoring its growth. In this case you’ll need the TLB to map the
stack/heap addresses, and you’ll use TLB miss events to decide whether
to allocate more memory or whether the application is out of control.

• Emulating hardware: If you have hardware that is sometimes present
and sometimes not, then accessing registers through a mapped region
caw connect directly to the hardware in properly equipped systems and
invoke a software handler on others.

The main idea is that the TLB, with all the ingenuity of a specification that
fits so well into a big OS, is a useful, straightforward general resource for
programmers.

6.11 Memory Management in a Non-UNIX OS

OSs designed for use off the desktop are generally called real-time OSs (RTOSs),
hijacking a term that once meant something about real time. The UNIX-style
system outlined in the first part of this chapter has all the elements you’re
likely to find in a smaller OS, but many RTOSs are much simpler.

This field is new enough that there are no real standards. The likely pio-
neer in this area is Microsoft’s Windows/CE, and internal descriptions of that
OS may not yet be freely available. So we’ll limit ourselves to a few general
points.

Off-desktop systems are likely to be providing a single fairly tightly inte-
grated function; without the need to support a diverse range of programs,
including third-party and customer-written software, process protection is
much less of an issue. We expect smaller OSs to be more permissive, since
the applications writers have more influence. It’s not clear that this is actu-
ally a good thing, but older RTOSs had no protection at all.

Demand paging makes a lot of sense as a way of loading a program, since
you don’t have to do the work of loading parts of the program that aren’t
used. Systems without a disk probably won’t page out dirty data; however,
demand paging remains useful without it.

When you’re trying to understand a new memory management system, the
first thing is to figure out the memory maps, both the virtual map presented
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to application software and the physical map of the system. It’s the simple-
minded virtual address map that makes UNIX memory management relatively
straightforward to describe. But operating systems targeted at embedded ap-
plications do not usually have their roots in hardware with memory man-
agement, and the process memory map often has the fossils of unmapped
memory maps hidden inside it. The use of a pencil, paper, and patience will
sort it out.



Chapter 7
Floating-Point Support

You are increasingly unlikely to meet a MIPS floating-point coprocessor
— always known as floating-point accelerator, or FPA — in the flesh. In

newer MIPS CPUs the FPA is either part of the CPU or isn’t there at all.

In 1987 the MIPS FPA set a new benchmark for performance for micropro-
cessor math performance in affordable workstations. Unlike the CPU, which
was mostly a rather straightforward implementation relying on its basic ar-
chitecture for its performance, the FPA was a heroic silicon design brisling
with innovation and ingenuity. Of course, now everyone has learned how to
do it!

Since then the MIPS FPA has been pulled onward by Silicon Graphics’s
need for math performance that would once have been the preserve of su-
percompeters. I expect to see a lot more embedded applications that need
very high floating-point performance in the next few years, so even the most
abstruse and high-end features may move rapidly down the MIPS family.

7.1 A Basic Description of Floating Point

Floating-point math retains a great deal of mystery. You probably have a
very clear idea of what it is for, but you may be hazy about the details. This
section describes the various components of the data and what they mean.
In so doing we are bound to tell most of you things you already know; please
skip ahead but keep an eye on the text!

People who deal with numbers that may be very large or very small are
used to using exponential (scientific) notation; for example, the distance from
the earth to the sun is

93× 106 miles

The number is defined by 93, themantissa, and 6, the exponent.

159
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The same distance can be written

9.3× 107 miles

Numerical analysts like to use the second form; a decimal exponent with
a mantissa between 1.0 and 9.999. . . ... is called normalized.1 The normal-
ized form is useful for computer representation, since we don’t have to keep
separate information about the position of the decimal point.

Computer-held floating-point numbers are an exponential form, but in
base 2 instead of base 10. Both mantissa and exponent are held as binary
fields. Just changing the exponent into a power of two, the distance quoted
above is

1.38580799102783203125× 226 miles

The mantissa can be expressed as a binary “decimal”, which is just like a
real decimal; for example,

1.38580799102783203125 = 1 + 3× 1

10
+ 8× 1

100
+ 5× 1

1000
+ . . .

is the same value as binary

1.01100010110001000101 = 1 + 0× 1

2
+ 1× 1

4
+ 1× 1

8
+ . . .

However, neither the mantissa nor the exponent are stored just like this
in standard formats — and to understand why, we need to review a little
history.

7.2 The IEEE754 Standard and Its Background

Because floating point deals with the approximate representations of num-
bers (in the same way as decimals do), computer implementations used to
differ in the details of their behavior with regard to very small or large num-
bers. This meant that numerical routines, identically coded, might behave
differently. In some sense these differences shouldn’t have mattered: You
only got different answers in circumstances where no implementation could
really produce a “correct” answer.

The use of calculators shows the irritating consequences of this: If you
take the square root of a whole number and square it, you will rarely get
back the whole number you put in, but rather something with lots of nines.

Numerical routines are intrinsically hard to write and hard to prove cor-
rect. Many heavily used functions (common trigonometric operations, for

1In this form the mantissa may also be called “the fractional part” or “fraction” — it’s
certainly easier to remember.
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example) are calculated by repeated approximation. Such a routine might re-
liably converge to the correct result on one CPU and loop forever on another
when fed a difficult value.

The ANSI/IEEE Std 754 — 1985 IEEE Standard for Binary Floating-Point
Arithmetic (usually referred to simply as the IEEE 754 standard) was intro-
duced to bring order to this situation. The standard defines exactly what
result will be produced by a small class of basic operations, even under ex-
treme situations, ensuring that programmers can obtain identical results
from identical inputs regardless of what machine they are using. Its ap-
proach is to require as much precision as is possible within each supported
data format.

Perhaps IEEE754 has too many options, but it is a huge improvement on
the chaos that motivated it; since it became a real international standard in
1985, it has become the basis for all new implementations.

The operations regulated by IEEE754 include every operation that MIP-
S FPAs can do in hardware, plus some that must be emulated by software.
IEEE754 legislates the following:

• Rounding and precision of results: Even results of the simplest opera-
tions may not be representable as finite fractions; for example, in deci-
mals

1

3
= 0.33333 . . .

is infinitely recurring and can’t be written precisely. IEEE754 allows
the user to choose between four options: round up, round down, round
toward zero, or round to nearest. The rounded result is what would have
been achieved by computing with infinite precision and then rounding.
This would leave an ambiguity in round to nearest when the infinite-
precision result is exactly halfway between two representable forms; the
rules provide that in this case you should pick the value whose least-
significant bit is zero.

• When is a result exceptional? IEEE754 has its own meaning for the word
“exception”. A computation can produce a result that is

– Nonsense, such as the square root of −1 (“invalid”)

– “Infinite”, resulting from an explicit or implicit division by zero

– Too big to represent (“overflow”)

– So small that its representation becomes problematic and precision
is lost (“underffow”)

– Not perfectly represented, like 1
3

(“inexact”) — needless to say, for
most purposes the nearest approximation is acceptable.
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All of these are bundled together and described as exceptional results.

• Action taken when an operation produces an exception result: For each
class of exceptional result listed above the user can choose between the
following:

– The user can have the computation interrupted and the user pro-
gram signalled in some OS- and language-dependent manner. Partly
because the standard doesn’t actually define a language binding for
user exceptions, they’re pretty much never used. Some Fortran
compiler systems are wired to cause a fatal error invalid or infinite
results.

– Most often, the user program doesn’t want to know about the IEEE
exception. In this case, the standard specifies what value should
then be produced. Overflows and division by zero generate infin-
ity (with a positive and negative type); invalid operations generate
NaN (not a number) in two flavors called “quiet” and “signalling”.
Very small numbers get a “denormalized” representation that loses
precision and fades gradually into zero.
The standard also defines the result when operations are carried out
on exceptional values. Infinities and NaNs necessarily produce fur-
ther NaNs and infinities, but while a quiet NaN as operand will not
trigger the exception-reporting mechanism, a signalling NaN causes
a new exception whenever it is used.

Most programs leave the IEEE exception reporting off but do rely on the
system producing the correct exceptional values.

7.3 How IEEE Floating-Point Numbers Are Stored

IEEE recommends a number of different binary formats for encoding floating-
point numbers, at several different sizes. But all of them have some common
ingenious features, which are built on the experience of implementors in the
early chaotic years.1

The first thing is that the exponent is not stored as a signed binary num-
ber, but biased so that the exponent field is always positive: The exponent
value 1 represents the tiniest (most negative) legitimate exponent value; for
the 64-bit IEEE format the exponent field is 11 bits long and can hold num-
bers from 0 to 2047. The values 0 and 2047 (all ones, in binary) are kept

1IEEE754 is a model of how good standardization should be done; a fair period of chaotic
experimentation allowed identifiably good practice to evolve, and it was then standardized
by a small committee of strong-minded users (numerical programmers in this case), who
well understood the technology. However, the ecology of standards committees, while a
fascinating study, is a bit off the point.
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back for special purposes we’ll come to in a moment, so we can represent a
range of exponents from -1022 to +1023.

For a number

mantissa× 2exponent

we actually store the binary representation of

exponent + 1023

in the exponent field.

The biased exponent (together with careful ordering of the fields) has the
useful effect of ensuring that FP comparisons (equality, greater than, less
than, etc.) have the same result as is obtained from comparing two signed
integers composed of the same bits. FP compare operations can therefore be
provided by cheap, fast, and familiar logic.

7.3.1 IEEE Mantissa and Normalization

The IEEE format uses a single sign bit separate from the mantissa (0 for
positive, 1 for negative). So the stored mantissa only has to represent positive
numbers. All properly represented numbers in IEEE format are normalized,
so

1 ≤ mantissa < 2

This means that the most significant bit of the mantissa (the single binary
digit before the point) is always a 1, so we don’t actually need to store it. The
IEEE standard calls this the hidden bit.

So now the number 93,000,000, whose normalized representation has a
binary mantissa of 1.01100010110001000101 and a binary exponent of 26,
is represented in IEEE 64-bit format by setting the fields

mantissafield = 01100010110001000101000 . . .

exponentfield = 1049 = 10000011001

Looking at it the other way, a 64-bit IEEE number with an exponent field
of E and a mantissa field of m represents the number num where

num = 1.m× 2E−1023

(provided that you accept that 1.m represents the binary fraction with 1
before the point and the mantissa field contents after it).
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7.3.2 Reserved Exponent Values for Use with Strange Val-
ues

The smallest and biggest exponent field values are used to represent otherwise-
illegal quantities.

E == 0 is used to represent zero (with a zero mantissa) and denormal-
ized forms, for numbers too small to represent in the standard form. The
denormalized number with E zero and mantissa m represents num where

num = 0.m× 2−1022

As denormalized numbers get smaller, precision is progressively lost. No
R3000-series MIPS FPA is able to cope with either generating denormalized
numbers or computing with them, and operations creating or involving them
will be punted to the software exception handler. The R4000 and its suc-
cessors can be configured to replace denormalized results by zero and keep
going.

E == 111 . . . 1 (i.e., the binary representation of 2047 in the 11-bit field
used for an IEEE double) is used to represent the following:

• With the mantissa zero, it is the illegal values +inf , −inf (distinguished
by the usual sign bit).

• With the mantissa nonzero, it is a NaN. For MIPS, the most significant
bit of the mantissa determines whether the NaN is quiet (MS bit 0) or
signalling (MS bit 1).

7.3.3 FP Data Formats

The MIPS architecture uses two FP formats recommended by IEEE754:

• Single precision: These are fitted into 32 bits of storage. Compilers for
MIPS use single precision for float variables.

• Double precision: These use 64 bits of storage. C compilers use double
precision for C double types.

The memory and register layout is shown in Figure 7.1, with some exam-
ples of how the data works cut. Note that the float representation can’t hold
a number as big as 93,000,000 exactly.

The way that the two words making up a double are ordered in memory
(most-significant bits first, or least-significant bits first) is a configuration
option on a MIPS CPU. It needs to be done consistently with the choice of
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93000000

Signalling NaN

Quiet NaN

-Infinity

+Infinity

Single

0

30 2331 22 0

03101931 30 20

93000000

Signalling NaN

Quiet NaN

-Infinity

+Infinity

0

Double

0

x

x

1

0

0

0001 1010

1111 1111

1111 1111

1111 1111

1111 1111

0000 0000

101 1000 1011 0001 0001

1xx xxxx xxxx xxxx xxxx

000 0000 0000 0000 0000

0xx xxxx xxxx xxxx xxxx

000 0000 0000 0000 0000

000 0000 0000 0000 0000

Sign Exponent Mantissa

Exponent Mantissa

000 0001 1010

111 1111 1111

000 0000 0000

111 1111 1111

111 1111 1111

111 1111 1111

1011 0001 0110 0010 0010 1000 0000 ....

0000 0000 0000 0000 0000 0000 ....     

0000 0000 0000 0000 0000 0000 ....     

0000 0000 0000 0000 0000 0000 ....     

0xxx xxxx xxxx xxxx xxxx xxxx ....     

0xxx xxxx xxxx xxxx xxxx ....          

0

x

x

1

0

0

Sign

Figure 7.1: Floating-point data format

how integers are stored in memory, a matter that is also configurable. This
endianness is discussed to the point of exhaustion in Section 11.6.

The C structure definition following defines the fields of the two FP types
for a MIPS CPU (this works on most MIPS CPUs, but note that, in general,
C structure layout is dependent on a particular compiler and not just on the
target CPU):

#if BYTE_ORDER == BIG_ENDIAN

struct ieee754dp_konst{
unsigned sign:1;
unsigned bexp:11;
unsigned manthi:20; /* cannot get 52 bits into */
unsigned mantlo:32; /* a regular C bitfield */

};

struct ieee754sp_ konst{
unsigned sign;1;
unsigned bexp:8;
unsigned mant:23;

};

#else /* little_endian */

struct ieee754dp_konst{
unsigned mantlo:32;
unsigned manthi:20;
unsigned bexp:11;
unsigned sign:1;
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};

struct ieee754sp_konst(
unsigned mant:23;
unsigned bexp:8;
unsigned sign:1;

};

#endif

7.4 MIPS Implementation of IEEE754

IEEE754 is quite demanding and in the ability to detect excePtional sets two
major problems. Firstly, building to the ability to detect exceptional results
makes pipelining harder. You might want to do this to implement the IEEE
exception signalling mechanism, but the deeper reason is to be able to de-
tect certain cases where the hardware cannot produce the correct result and
needs help.

If the user opts to be told when an IEEE exceptional result is produced,
then to be useful this should happen synchronously;1 after the trap, the
user will want to see all previous instructions complete and all FP registers
still in the pre-instruction state and will want to be sure that no subsequent
instruction has had any effect.

In the MIPS architecture hardware traps (as noted in Section 5.1 above)
were traditionally like this. This does limit the opportunities for pipelining
FP operations, because you cannot commit the following instruction until the
hardware can be sure that the FP operation will not produce a trap. To avoid
adding to the execution time, an FP operation must decide to trap or not
in the first clock phase after the operands are fetched. For most kinds of
exceptional result, the FPA can guess reliably and stop the pipeline for any
calculation that might trap;2 however, if you configure the FPA to signal IEEE
inexact exceptional results, all FP pipelining is inhibited and everything slows
down. You probably won’t do that.

The MIPS IV instruction set version introduces (as an implementation op-
tion) a mode switch that relaxes the synchronous trap requirement. The
resulting computational model may not be truly IEEE754 compliant but may
go faster.

1Elsewhere in this manual and in the MIPS documentation you will see exactly this con-
dition referred to as a “precise exception”. But since both “precise” and “exception” are used
to mean different things by the IEEE standard, we will instead tall: about a “synchronous
trap”. (Sorry for any confusion.)

2Some CPUs may use heuristics for this that sometimes stop the pipeline for an operation
that in the end does not trap; that’s only a performance issue and is not important if they
don’t do it often.
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The second big problem regarding IEEE754 is the use of exceptional re-
sults, particularly with denormalized numbers — which are legitimate operands.
Chip designs like the MIPS FPA are highly structured pieces of logic, and the
exceptional results don’t fit in well. Where correct operation is beyond the
hardware, it traps with an unimplemented operation code in the Cause(ExcCode)
field. This immediately make an exception handler compulsory for FP appli-
cations.

7.4.1 Need for FP Trap Handler and Emulator in All MIPS
CPUs

The MIPS architecture does not prescribe exactly what calculations will be per-
formed without software intervention. A complete software floating-point em-
ulator is mandatory for serious FP code.

In practice, the FPA traps only on a very small proportion of the calcula-
tions that your program is likely to produce. Simple uses of floating point are
quite likely never to produce anything that the hardware can’t handle.

A good rule of thumb, which seems to cover the right cases, follows:

• MIPS FPAs take the unimplemented trap whenever an operation should
produce any IEEE exception or exceptional result other than inexact
and overflow. For overflow, the hardware will generate an infinity or a
largest-possible value (depending on the current rounding mode). The
FPA hardware will not accept or produce denormalized numbers or NaNs.

• MIPS FPAs from the R4000 onward (i.e., those using instruction set
MIPS III and after) offer you a non-IEEE optional mode for underflow,
where a denormalized (tiny) result can be automatically written as zero.

The unimplemented trap is a MIPS architecture implementation trick and
is quite different from the IEEE exceptions, which are standardized condi-
tions. You can run a program and ignore IEEE exceptions, and offending
instructions will produce well-defined exceptional values; but you can’t ig-
nore the unimplemented trap without producing results that are nonsense.

7.5 Floating-Point Registers

MIPS CPUs have 32 floating-point registers, usually referred to as $f0-$f31.
However, even 32-bit MIPS CPUs support the 64-bit IEEE double-precision
format, hence 32-bit CPUs only do arithmetic in the 16 even-numbered reg-
isters $f0-$f30. In those early CPUs the 16 odd-numbered registers are
used to take care of the high-order bits of a 64-bit double value stored in
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the preceding even-numbered register.1 The odd-numbered registers can
be accessed by move and load/store instructions; however, the assembler
provides synthetic macro instructions for move and load/store double, so
you will probably never see the odd-numbered registers when writing 32-bit-
compatible code.

The 64-bit CPUs (MIPS III and above) give you the option of either emu-
lating the MIPS I register organization or of exposing 32 genuine full 64-bit
registers. Bear in mind that this is not a free personal choice; you need to
check what your compiler will support, and the entire system (including all
libraries and other imported code) needs to be consistent in its register usage.

Table 7.1: FP register usage conventions(16 FP registers)

Register Name Use
numbers

$f0, $f2 fv0-fv1 Value returned by function. fv1 is used only for “complex” data
type; it is not available in C.

$f4, $f6

$f8, $f10 ft0-ft3 Temporaries — subroutines can use without saving.

$f12, $14 fa0-fa1 Function arguments.

$f16, $f18 ft4-ft5 Temporaries.

$f20, $f22

$f24, $f26

$f28, $f30 fs0-fs5 Register variables: A function that will write one of these must save
the old value and restore it before it exits. The calling routine can
rely on the value being preserved.

It’s worth pointing out that MIPS FP registers sometimes get used for stor-
ing and manipulating signed integer data (32 or 64 bits); all registeger/FP
conversion operations operate entirely within the FPA and don’t touch the
general-purpose registers.

7.5.1 Conventional Names and Uses of Floating-Point Reg-
isters

Like the general-purpose registers, the MIPS calling conventions add a whole
bunch of rules about register use that have nothing to do with the hardware;
they tell you which FP registers are used for passing arguments, which regis-
ter values are expected to be preserved over function calls, and so on. Table
7.1 shows these for a program compiled to run on MIPS I CPUs or later CPUs
with the compatibility bit set. For that reason, there are no odd-numbered
registers in the table. Standards for using all 32 registers were first defined
with SGI’s n32/n64 compiler options and are described in Section 10.8.

1It may be worth stressing that the role of the odd-numbered registers is not affected by
the CPU’s endianness.
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The division of functions is much the same as for the integer registers,
without the special cases.

7.6 Floating-Point Exceptions/Interrupts

Floating-point exceptions (for reporting IEEE exceptional results, where they’re
enabled, or for the unimplemented operation trap) are reported by a MIPS ex-
ception, as described in Chapter 5. In MIPS I CPUs, where early implernenta-
tions had the FPA as a separate chip, the floating-point exception is signalled
using one of the CPU’s interrupt lines. The choice of which interrupt input
to use was a board layout decision, though most programmers followed MIPS
Corporation’s systems and used Int3*.

31 30 27 24 23 15 8 7 628 161718 5 4 123 02629 25 22 121314 11 10 9

 FCC7-1 FS  C  Unlmp  Cause  Enable Flag  RM

Figure 7.2: FPA control/status register fields

In Iater MIPS I CPUs with on-chip floating-point units (such as IDT’s
R3081), the interrupt bit was either chosen arbitrarily by the hardware man-
ufacturer or configured through a programmable register. The second was
preferred, because despite MIPS Corporation’s lead and the fact that the
choice of interrupt was wholly arbitrary, DEC systems seem to mostly use
the seventh interrupt bit (corresponding to hardware input Int5*).

One drawback of using the general interrupt mechanism is that the in-
terrupt signal can be masked. Failure to accept an FPA emulation request
interrupt will leave the destination register of the unemulated operation con-
taining whatever was in it before, which is incorrect and erratic behavior.
You can’t even escape the consequences of this by leaving all IEEE signalling
disabled: The hardware will still attempt to trap on some operation/operand
combinations that fall outside its limits.

So long as the appropriate interrupt is not disabled, a floating-point tion
will happen (on a MIPS I CPU) immediately: No FP or integer operation fol-
lowing the FP instruction that caused the exception will have had any effect.
At this point EPC will point to the correct place to restart the instruction. As
described in Chapter 5 above, EPC will either point to the offending instruc-
tion or to a branch instruction immediately preceding it. If it is the branch
instruction, the BD bit will be set in the CPU status register SR.

In MIPS III CPUs, the FPA gets a dedicated exception cause and there’s
much less trouble.
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7.7 Floating-Point Control: The Control/Status
Register

The floating-point controhstatus register (Figure 7.2) is coprocessor 1, control
register 31 (mnemonic FCR31) and is accessed by mtcl, mfcl instructions. In
accordance with MIPS coprocessor rules, those transfer data between FCR31
and general-purpose registers.

The following are notes regarding Figure 7.2. The field marked 0 will read,
and should be written, as zero.

• FCC7-1, C: These are condition bits, set by FP compare instructions and
tested by conditional branches. The 7 additional bits called FCC7-1 are
a 1995 invention, present only in ISA version MIPS IV and higher. Note
that here, as elsewhere, the floating-point implementation cuts across
the RISC principles we talked about in Chapter 1. There are a number
of reasons for this:

– The original FPA was a separate chip. The conditional branches
that tested FP conditions had to execute inside the integer unit (it
was responsible for finding the address of the branch target), so
they were remote from the FP registers. A single condition bit cor-
responds to a single hardware signal.

– FP operations are just too computationally demanding to be carried
out in one clock cycle, so a pure and simple pipeline didn’t deliver
the best performance.

MIPS IV branch or set instructions have an additional 3-bit field that
specifies which of 8 possible condition bits they will set or test. That
field was reserved in previous ISA versions, and all good assemblers
made sure it was zero — so this should still be backward compatible.

• FS (flusk to zero): This causes a result that is too small for the stan-
dard representation (a denormalized result) to be quietly replaced with
zero. This is not IEEE compatible, but it makes it much more plausible
that you can run code without depending on an FP trap handler and
emulator.

• RM (rounding mode): This is required by IEEE754. The values are as
shown in Table 7.2.

Most systems define RN as the default behavior. You’ll probably never
use anything else.

• Unlmp: Following an FPA trap, this bit will be set to mark an unimple-
mented instruction exception.1

1The M1PS documentation looks slightly different because it treats this as part of the
Cause held.
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Table 7.2: Rounding modes encoded in FP control/status register

RM value Description

0 RN (round to nearest): Round a result to the nearest representable value; if the
result is exactly halfway between the two representable values, round to zero.

1 RZ (round to zero): Round a result to the cloest representable value whose ab-
solute value is less than or equal to the infinitely accurate result.

2 RP (round up, or toward +infinity): Round a result to the next representable value
up.

3 RN (round down, or toward -infinity): Round a result to the next representable
value down.

This bit wlll be set and an interrupt raised whenever there really is no
instruction like this that the FPA will perform (but the instruction is
a coprocessor 1 encoding) or the FPA is not confident that it can pro-
duce an IEEE754 — correct result and/or exception signalling on this
operation, using these operands.

For whatever reason, when UnImp is set you should arrange for the
offending instruction to be re-executed by a software emulator.

If you run FP operations without the interrupt enabled, then any FPA
operation that wants to take an exception will leave the destination reg-
ister unaffected and the FP Cause bits undefined.

• Causes/Enables/Flags: Each of these is a 5-bit field, one bit for IEEE
exception type:

Bit 4 Invalid operation

Bit 3 Division by zero

Bit 2 Overflow

Bit 1 Underflow

Bit 0 Inexact

The three different fields work as follows:

– Cause: Bits are set (by hardware or emulation software) according
to the result of the last completed FP instruction.

– Flag: Bits are “sticky” versions of the FCR31(Cause) bits and are
the logical “or” of the exceptional results that have occurred since
the register was last cleared. The Flag bits can only be zeroed again
by writing FCR31.

– Enable: If one of these bits is set when an operation produces an ex-
ceptional result that would have set the corresponding FCR31(Cause)
bit, then the CPU will trap so that software can do whatever is nec-
essary to report the exceptional result.
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The architecture promises you that if an operation doesn’t set the FCR31
(UnImp) bit but does set one of the FCR31(Cause) bits, then both the Cause
bit setting and the result produced (if the corresponding FCR31(Enable) bit
is off) are in accordance with the IEEE754 standard.

MIPS FPAs rely on software emulation (i.e., use the unimplemented trap)
for several purposes:

• Any operation that is given a denormalized operand or underflows (pro-
duces a denormalized result) will trap to the emulator. The emulator
itself must test whether the enable underflow bit is set and either cause
an IEEE-compliant exception or produce the correct result.

• Operations that should produce the invalid trap are correctly identified,
so if the IEEE exception is enabled the emulator need do nothing. But if
the IEEE invalid exception is disabled, the software emulator is invoked
because the hardware is unable to generate the appropriate result (usu-
ally a quiet NaN).

Exactly the same is done with a signalling NaN operand.

• FP hardware can handle overflow on regular arithmetic (producing ei-
ther the extreme finite value or a signed infinity, depending on the
rounding mode). But the software emulator is needed to implement a
convert-to-integer operation that overflows.

The Cause bits are undefined after an unimplemented operation traps to
the emulator.

It is normal practice to provide a full emulator (capable of delivering IEEE-
compatible arithmetic on a CPU with no FPA fitted) to back up the FPA hard-
ware. If your system provides less than this, it is hard to figure out where it’s
safe to leave functions out.

7.8 Floating-Point Implementation/Revision Reg-
ister

This read-only register’s fields are shown in Figure 7.3

This register is coprocessor 1, control register 0 (mnemonic FCR0) and is
accessed by mtcl and mfcl instructions.

31 30 27 24 23 15 8 7 628 21 20 19 161718 5 4 123 02629 25 22 121314 11 10 9

 Rev Imp

Figure 7.3: FPA implementation/revision register
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The FCR0(Imp) field is probably more useful than the corresponding one
for the main CPU. It will return one of the values listed in Table 7.3 (unless
your CPU is newer than those discusse d in this book), but note that zero
means there’s no FPA. The entries called “CPU” in Table 7.3 are for integrated
CPUs and mostly have the same ID value as the CPU has in its PRId(Imp)
field — but that’s a helpful convention rather than a guarantee.

Reading this register is zth recommended way of sensing the presence of
an FPA. You have to enable coprocessor 1 instructions before you try it. A
skeptical programmer will be ready to get an exception, or garbage returned,
and will probe further.

Table 7.3: MIPS FP accelerator ID codes from FCR0

Hardware type Imp value

No FPA hardware 0

R2360 (R2000 accelerator board) 1

R2010 (R2000 FPA chip) 2

R3010 (R3000 FPA chip) 3

R6010 (R6000 FPA chip) 4

R4000 CPU 5

LSI LR3xxxx CPU 6

R10000 CPU 9

Vr4200 CPU 10

R8000 CPU 16

R4600 32

Sony R3xxx CPU 33

Toshiba R3xxx CPU 34

R5000 CPU 35

QED RM5230/5260 CPU 40

The Rev field is for use at the whim of implementors; it is probably useful
to make this field visible to commissioning or test engineers, and it may have
some meaning defined by your component supplier.

7.9 Guide to FP Instructions

This section gives a summary of FP instructions by function. FP instructions
are listed in mnemonic order in Table 8.4.

We’ve divided the instructions up into the following categories:

• Load/store: Moving data directly between FP registers and memory.

• Move between registers: Data movement between FP and general-purpose
registers.
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• Three-operand operations: The regular add, multiply, etc.

• Multiply-add operations: Fancy (and distinctly non-RISC) high-performance
instructions, introduced with the MIPS IV ISA. (If you think this is com-
plicated, just wait for MIPS IV. . . )

• Sign changing: Simple operations, separated out because their dumb
implementation means no IEEE exceptions.

• Conversion operations: Conversion between single, double, and integer
values.

• Conditional branch and test instructions: Where the FP unit meets the
integer pipeline again.

7.9.1 Load/Store

These operations load or store 32 or 64 bits of memory in or out of an FP
register.1 On loads and stores, note the following points:

• The data is unconverted and uninspected, so no exception will occur
even if it does not represent a valid FP value.

• These operations can specify the odd-numbered FP registers; on the
32-bit CPUs this is required to load the second half of 64-bit (double-
precision) floating-point values. For the 32-bit CPUs, these data move-
ments are the only instructions that ever access odd-numbered regis-
ters.

• The load operation has a delay of one clock cycle, and (like loading to
an integer register) this is not interlocked before MIPS III. The compiler
and/or assembler will usually take care of this for you, but it is invalid
for an FP load to be immediately followed by an instruction using the
loaded value.

• When writing assembler, the synthetic instructions are preferred; they
can be used for all CPUs, and the assembler will use multiple instruc-
tions for CPUs that don’t implement the machine instruction. You can
feed them any addressing mode that the assembler can understand (as
described in Section 9.4 below).

• The address for an FP load/store operation must be aligned to the size
of the object being loaded — on a 4-byte boundary for single-precision or
word values or an 8-byte boundary for double-precision or 64-bit integer
type.

1The 64-bit loads appear only from the MIPS III ISA and R4000 CPU forward.
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Machine instructions (disp is signed 16 bit):

lwcl fd, disp(rs) fd = *(rs + disp);
swcl fs, disp(rs) *(rs + disp) = fd;

From MIPS III ISA onward we get 64-bit loads/stores:

ldcl fd, disp(rs) fd = (double)*(rs + disp);
sdcl fd, disp(rs) *(rs + disp) = (double)fd;

From MIPS IV ISA onward we get indexed addressing, with two registers:

lwxcl fd, ri(rs) fd = *(rs + ri);
swxcl fd, ri(rs) *(rs + ri) = fd;
ldxcl fd, ri(rs) fd = (double)*(rs + ri);
sdxcl fd, ri(rs) *(rs + ri) = (double)fd;

But in fact you don’t have to remember any of these when you’re writing
assembler. Instead, “addr” can be any address mode the assembler under-
stands:

1.d fd, addr fd = (double)*addr;
l.s fd, addr fd = (float)*addr;
s.d fs, addr (double)*addr = fs;
s.s fd, addr (float)*addr = fs;

The assembler will generate the appropriate instructions, including allow-
ing a choice of valid address modes. Double-predsion loads on a 32-bit CPU
will assemble to two load instructions.

7.9.2 Move between Registers

No data conversion is done here (bit patterns are copied as is) and no excep-
tion results from any value. These instructions can specify the odd-numbered
FP registers:

Between integer and FP registers:

mtcl rs, fd fd = rs; /* 32b uninterpreted */
mfcl rd, fs rd = fs;
dmtcl rs, fd fd = (long long) rs; /* 64 bits */
dmfcl rs, fd rs = (long long) fd;

Between FP registers:

mov.d fd, fs fd = fs; /* move 64b between register pairs */
mov.s fd, fs fd = fs; /* 32b between registers */
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Conditional moves (added in MIPS IV) — the .s versions are omitted to
save space:

movt.d fd, fg, cc if(fpcondition(cc)) fd = fs;
movf.d fd, fs, cc if(!fpcondition(cc)) fd = fs;
movz.d fd, fs, rt if(rt == 0) fd = fs; /* rt is an integer register */
movn.d fd, fs, rt if(rt != 0) fd = fs;

The FP condition code called fpcondition(cc) is a hard-to-avoid forward
reference; you’ll see more in Section 7.9.7. If you want to know why condi-
tional move instructions are useful, see Section 8.4.3.

7.9.3 Three-Operand Arithmetic Operations

Note the following points:

• All arithmetic operations can cause any IEEE exception type and may
result in an unimplemented trap if the hardware is not happy with the
operands.

• All these instructions come in single-precision (32-bit, C float) and
double-precision (64-bit, C double) versions; the instructions are dis-
tinguished by “.s” or “.d” on the op-code. We’ll only show the double-
precision version. Note that you can’t mix formats; both source values
and the result will all be either single or double. To mix singles and
doubles you need to use explicit conversion operations.

In all ISA versions:

add.d fd, fs1, fs2 fd = fs1 + fs2;
div.d fd, fs1, fs2 fd = fs1 / fs2;
mul.d fd, fs1, fs2 fd = fs1 * fs2;
sub.d fd, fs1, fs2 fd = fs1 - fs2;

Added in MIPS II:

eqrt.d fd, fs fd = squarerootof(fs);

Added in MIPS IV for speed, and not IEEE accurate:

recip.d fd, fs fd = 1/fs;
rsqrt.d fd, fs fd = 1/(squarerootof(fs));



Chapter 7. Floating-Point Support 177

7.9.4 Multiply-Add Operations

These appeared in the MIPS IV version of the ISA, in response to Silicon
Graphics’s interest in achieving supercomputer-like performance in very high-
end graphics systems (related to the 1995 SGI acquisition of Cray Research,
Inc.). IBM’s PowerPC chips seemed to get lots of FP performance out of their
multiply-add, too. Although it’s against RISC principles to have a single in-
struction doing two jobs, a combined multiply-add is widely used in common
repetitive FP operations (typically the manipulation of matrices or vectors).

Moreover, it saves a significant amount of time by avoiding the interme-
diate rounding and renormalization step that IEEE mandates when a result
gets written back into a register.

Multiply-add comes in various forms, all of which take three register oper-
ands and an independent result register:

madd.d fd, fs1, fs2, fs3 fd = fs2 * fs3 + fs1;
msub.d fd, fs1, fs2, fs3 fd = fs2 * fs3 - fs1;
nmadd.d fd, fs1, fs2, fs3 fd = -(fs2 * fs3 + fs1);
nmsub.d fd, fs1, fs2, fs3 fd = -(fs2 * fs3 - fs1);

IEEE754 does not rule specifically for multiply-add operations, but to con-
form to the standard the result produced should be identical to that coming
out of a two-instruction multiply-then-add sequence. Since every FP opera-
tion may involve some rounding, this means that IEEE754 mandates some-
what poorer precision for multiply-add than could be achieved. The MIPS
R8000 supercomputer chip set falls into this trap, and its multiply-add in-
structions do not meet (but exceed) the accuracy prescribed by IEEE. The
R10000 and all subsequent implementations are IEEE compatible.

7.9.5 Unary (Sign-Changing) Operations

Although nominally arithmetic functions, these operations only change the
sign bit and so can’t produce most IEEE exceptions. They can produce an
invalid trap if fed with a signalling NaN value. They are as follows:

abs.d fd, fs fd = abs(fs);
neg.d fd, fs fd = -fs;

7.9.6 Conversion Operations

Note that “convert from single to double” is written “cvt.d.s” — and as usual
the destination register is specified first. Conversion operators work between
data in the FP registers: When converting data from CPU integer registers,



178 7.9. Guide to FP Instructions

the move from FP to CPU registers must be coded separately from the con-
version operation. Conversion operations can result in any IEEE exception
that makes sense in the context.

Originally, all this was done by the one family of instructions

cvt.x.y fd, fs

where x and y specify the destination and source format, respectively, as
one of the following:

s C float, IEEE single, 32-bit floating point

d C double, IEEE double, 64-bit floating point

w C int, “word”, 32-bit integer

l C long, “long”, 64-bit integer (available in MIPS III and higher CPUs only)

The instructions are as follows:

cvt.s.d fd, fs /* double fs -> float, leave in fd */
cvt.w.s fd, fs /* float fs -> int, leave in fd */
cvt.d.l fd, fs /* long long fs -> double, leave infd */

There’s more than one reasonable way of converting from floating-point to
integer formats, dnd the result depends on the current rounding mode (as set
up in the FCR31 register, described in Section 7.7). But FP calculations quite
often want to round to the integer explicitly (for example, the ceiling operator
rounds upward), and it’s a nuisance trying to generate code to modify and
restore FCR31. So at MIPS II, explicit rounding conversions were introduced.

Conversions to integer with explicit rounding:

rouad.x.y fd, fs /* round to nearest */
trunc.x.y fd, fs /* round toward zero */
ceil.x.y fd, fs /* round up */
floor.x.y fd, fs /* round down */

These instructions are only valid with x representing an integer format.
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7.9.7 Conditional Branch and Test Instructions

The FP branch and test instructions are separate. We’ll discuss the test
instructions below — they have names like c.1e.s, and they connpare two
FP values and set the FPA condition bit accordingly.

The branch instructions, therefore, just have to test whether the condition
bit is true (set) or false (zero):

bc1t label if (fpcondition(0)) branch-to-label;
bc1t cc, label if (fpcondition(cc)) branch-to-label;
bc1f 0, 1abel if (!fpcondition(0)) branch-to-label;
bc1f cc, label if (!fpcondition(cc)) branch-to-label;

Instructions added by MIPS II (see Section 8.4.4):

bc1tl label /* branch-likely form of bc1t... */

bc1fl label

Like the CPU’s other instructions called branch, the target label is en-
coded as a 16-bit signed word displacement from the next instruction plus
one (pipelining works in strange ways). If label was more than 128KB away,
you’d be in trouble and you would have to resort to a jr instruction.

MIPS CPUs up to and including MIPS III had only one FP condition bit,
called “C”, in the FP control/status register FCR31. In MIPS IV there are 7
extra condition bits, called FCC7-1. If you leave the cc specification out of
branch or compare instructions, you implicitly pick the old “C” bit, which
has the honorary title of FCC0. That’s compatible with older instruction set
versions. (See Section 8.4.7 if you’re interested in why this extension was
introduced.) In all the instruction sets cc is optional.

But before you can branch, you have to set the condition bit appropriately.
The comparison operators are as follows:

c.cond.d fs1, fs2 /* compare fs1 and fs2 and set C */
c.coad.d cc, fs1, fs2 /* compare fsl and fs2; set FCC(cc) */

In these instructions, cond can be a mnemonic for any 16 conditions.
The mnemonic is sometimes meaningful (eQ) and sometimes more mysterious
(ult). Why so many? It turns out that when you’re comparing FP values there
are four mutually incompatible outcomes:

fsl < fs2
fsl == fs2
fsl > fs2
unordered(fsl, fs2)
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The IEEE standard sometimes defines unordered as true when either of
the operands is an IEEE NaN value.

It turns out we can always synthesize greater than by reversing the order
of the operands or by setting up a less than or equal to and inverting the
test, so we’ve got three outcomes to allow for. MIPS provides instructions to
test for any “or” combination of the three conditions. On top of that, each
test comes in two flavors, one that takes an invalid trap if the operands are
unordered and one that never takes such a trap.

We don’t have to provide tests for conditions like not equal; we test for
equal but then use a bc1f rather than a bc1t branch. Table 7.4 may help.

The compare instruction produces its result too late for the branch in-
struction to be the immediately following instruction; thus a delay slot is
required. In MIPS IV and later CPUs the delay is enforced with an interlock,
but in earlier CPUs the branch instruction will misfire if run directly after the
test.

Table 7.4: FP test instructions
“C” bit is set if. . . Mnemonic

No trap Trap

always false f sf

unordered(fs1, fs2) un ngle

fs1 == fs2 || eq esq

fs1 < fs2 olt lt

fs1 < fs2 || unordered(fs1, fs2) ult nge

fs1 < fs2 || fs1 == fs2 ole le

fs1 < fs2 || fs1 == fs2 || unordered(fs1, fs2) ule ngt

Note the following examples:

if(f0 <= f2) goto foo; /* and don’t branch if unordered */
c.le.d $f0, $f2
nop # the assembler will do this for you
bc1t foo

if(f0 > f2) goto foo; /* and trap if unordered */
c.ole.d $f0, $f2
nop # the assembler will do this for you
bc1t foo

Fortunately, you usually leave the compiler to cope with this!

7.10 Instruction Timing Requirements

Normal FP arithmetic instructions are interlocked, and there is no need to
interpose nops or to reorganize code for correctness. But to get the best
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performance the compiler should lay out FP instructions to make the best
use of overlapped execution of integer instructions and of the FP pipeline.

However, the compiler, the assembler, or (in the end) the programmer must
take care about the timing of the following:

• Operations on the FP control and status register: When altering FCR31
take care with the pipeline. Its fields can affect any FP operation, which
may be running in parallel. Make sure that at the point you write FCR31
there are no FP operations live (started, but whose results have not yet
been collected). The register is probably written late, too, so it’s wise to
allow one or two instructions to separate the ctcl rd, FCR31 from an
affected computational instruction.

• Moves between FP and general purpose registers: These complete late,
and the resulting value cannot be used in the following instruction. On
moves to FP registers (and on all kinds of moves in MIPS III and subse-
quent CPUs), this is interlocked.

• FP register loads: Like integer loads, these take effect late. The value
can’t be used in the following instruction.

• Test condition and branch: The test of the FP condition bit using the
bc1t, bc1f instructions must be carefully coded, because the condition
bit is tested a clock cycle earlier than you might expect. So the condi-
tional branch cannot immediately follow a test instruction.

7.11 Instruction Timing for Speed

All MIPS FPAs take more than one clock cycle for most arithmetic instruc-
tions, hence the pipeline becomes visible. The pipeline can show up in three
ways:

• Hazards: These occur where the software must ensure instructions to
work correctly. the separation of instructions to work correctly.

• Interlocks: These occur where the hardware will protect you by delaying
use of an operand until it is ready. Knowledgeable rearrangement of the
code will improve performance.

• Visible pipelining This occurs where the hardware is prepared to start
one operation before another has completed (provided there are no data
dependencies). Compilers, and determined assembler programmers,
can write code that works the hardware to the limit by keeping the
pipeline full.
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Hazards and interlocks arise when instructions fail to stick to the gen-
eral MIPS rule of taking exactly one clock period between needing operands
and making results ready. Some instructions either need operands earlier
(branches, particularly), or produce results late (you’ve already met this in
loads).

7.12 Initialization and Enabling on Demand

From reset you will normally have initialized the CPU’s SR register to disable
all optional coprocessors, which includes the FPA (coprocessor 1).The SR bit
CU1 has to be set for the FPA to work. For MIPS III and subsequent FPAs,
you can either use the registers in pairs (for MIPS I compatibility) or as 32
separate 64-bit registers.

You should read the FPA implementation register; if it reads zero, no FP is
fitted and you should run the system with CU1 off.

Once CU1 is switched on you should set up the control/status register
FCR31 with your choice of rounding modes and trap enables. Anything except
round to nearest and all traps disabled is uncommon. With MIPS III CPUs
there’s also the choice of setting the FS bit to cause very small results to be
returned as zero, saving a trap to the emulator. This is not IEEE compatible,
but the hardware can’t produce the specified denormalized result.

Once the FPA is operating, you need to ensure that the FP registers are
saved and restored during interrupts and context switches. Since this is
(relatively) time consuming, you can optimize this, as some UNIX systems do,
by doing the following:

• Leave the FPA disabled by default when running a new task. Since the
task cannot now access the FPA, you don’t have to save and restore
registers when scheduling or parking it.

• On a CU1-unusable trap, mark the task as an FP user and enable the
FP before returning to it.

• Disable FP operations while in the kernel or in any software called di-
rectly or indirectly from an interrupt routine. Then you can avoid saving
FP registers on an interrupt; instead, FP registers need to be saved only
when you are context-switching to or from an FP-using task.

7.13 Floating-Point Emulation

Some low-cost MIPS CPUs (including all ASIC cores to date) do not have a
hardware FPA. Floating-point functions for these processors are provided by
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software and are perhaps 50-300 times slower than the hardware. Software
FP is useful for systems where floating point is employed in some rarely used
routines.

There are two approaches, as follows:

• Soft float: Some compilers can he requested to implement floating-point
operations with software. FP arithmetic operations are likely to be im-
plemented with a hidden library function, but housekeeping tasks such
as moves, loads, and stores can be handled in line.

• Run-time emulation: The compiler can produce the regular FP instruc-
tion set. The CPU will then take a trap on each FP instruction that is
caught by the FP emulator. The emulator decodes the instruction and
performs the requested operation in software. Part of the emulator’s job
will be emulating the FP register set in memory.

As described here, a run-time emulator is also required to back up FP
hardware for very small operands or obscure operations; since the architec-
ture is deliberately vague about the limits of the hardware’s responsibility,
the emulator is usually complete. However, it will be written to ensure exact
IEEE compatibility and is only expected to be called occasionally, so it will
probably be coded for correctness rather than speed.

Compiled-in floating point is much more efficient; the emulator has a high
overhead on each instruction from the trap handler, instruction decoder, and
emulated register file.

Some compilers don’t offer soft float operation: The history of the MIPS
architecture is in workstations where FP hardware was mandatory.
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Chapter 8
Complete Guide to the MIPS
Instruction Set

Chapter 8 and Chapter 9 are written for the programmer who wants to
understand or generate assembly code (whether in person or indirectly

because you’re writing or fixing a compiler). While Chapter 9 discusses real
assembler language programming, this chapter only concerns itself with as-
sembler language instructions; broadly speaking, you can skip Chapter 9 if
you only want to read disassembly listings. We begin with a simple piece of
MIPS code and an overview.

8.1 A Simple Example

This is an implementation of the C library function strcmp(1), which com-
pares two character strings and returns zero on equal, a positive value if the
first string is greater (in string order) than the second, and a negative value
otherwise. Here’s a naive C algorithm:

int strcmp(char *strl, char *str2)
{

char c1, c2;

do{
c1 = *strl++;
c2 = *str2++;

}while(c1 != 0 && c2 != 0 && c1 == c2);

return c1 - c2; /* cunning: 0, +ve or -ve appropriately */
}

In assembler code the two arguments of the C function arrive in the reg-
isters called a0 and al. (See Table 2.1 if you’ve forgotten about the naming
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conventions for registers; the MIPS standard calling convention is described
in detail in Section 10.1). A simple subroutine like this one is free to use the
temporary register t0 and so on without saving and restoring their values,
so they’re the obvious choices for temporaries. The function returns a value,
which by convention needs to be in the register v0 at the time we return. So
let’s have a go at it:

strcmp:
1:

lbu t0, 0(a0)
addu a0, a0, 1
lbu t1, 0(a1)
addu al, a1, 1

beq t0, zero, .t01 # end of first string?
beq t1, zero, .t01 # end of second string?
beq t2, t1, 1b

.t01:
subu v0, t0, t1
j ra

We will examine it from the top:

• Labels: “strcmp” is a familiar named label, which in assembler can de-
fine a function entry point, an intermediate branch, or even a data stor-
age location.

“.t01”is a legitimate label; the full-stop “.” character is legal in labels
and must not be confused with a C name elsewhere in your program.

“1:” is a numeric label, which most assemblers will accept as a local
label. You can have as many labels called “1” as you like in a program;
“1f” refers to the next one in sequence and “1b” the previous one. This
is useful.

• Register names: The unadorned names shown here are common usage,
but they require that the assembly code be passed through some kind
of macraprocessor before getting to the real MIPS assembler: Typically,
the C preprocessor is used and most toolkits have ways to make this
straightforward.

It would hardly be worth writing such a function in assembler as this; the
compiler will probably do a better job. But we’ll see later (Section 9.1) how
much more clever we could have been.
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8.2 Assembler Mnemonics and What They Mean

This section consists of a long list of all legal mnemonics in most MIPS as-
semblers up to and including MIPS IV instructions. After some agonizing
and experimentation, I decided that this table should contain a mixture of
real machine operations and the assembler’s synthesized instructions. So for
each instruction we’ll list the following:

• Assembler format: How the instruction is written.

• Machine instructions generated: For assembler instructions that are
aliases for machine code or expanded into a sequence of machine in-
structions, we’ll put a “⇒” to show a macro expansion and list typical
instructions in an expansion.

• Function: A description of what the instruction does, in pseudo-C code,
which is meant to combine precision with brevity. C typecasts, where
used, are necessary.

Not every possible combination of instruction and operands is listed, be-
cause it gets too long. So we won’t list the following:

• Two-operand forms of three-operand instructions: For example, MIPS as-
semblers allow you to write

addu $1, $2 # $1 = $1 + $2

which would otherwise have to be written as:

addu $1, $1, $2

You can do that pretty much anywhere it makes sense.

• All possible load/store address formats (addr): MIPS machine instruc-
tions always generate addresses for load/store operations using just
the contents of a register plus a 16-bit signed displacement,1 written,
for example, 1w $1, 14($2). MIPS assemblers support quite a few
other addressing mode formats; notably 1w $1, thing, which loads
data from the location whose assembler code label (or external C name)
is “thing”. See Section 9.4 for details; note that all of these modes are
quietly available to any assembler instruction that specifies a memory
address. We’ll just write 1w t, addr for the assembler instruction and
the base+displacement format for the machine code.

1Someone always has to break things; the MIPS IV ISA adds register+register address
formats but only for load/stores with floating-point registers. This is done in deference to
the importance of multidimensional-array organizations in floating-point codes.
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The la (load address) instruction provided by the assembler uses the
same addressing-mode syntax, even though it loads or stores nothing —
it just generates the address value in the destination register.

When synthesizing some address formats (particularly on stores) the
assembler needs a scratch register and quietly uses at. Programmers
working at a very low level need to take care.

• Immediate versions of instructions: A constant value embedded within
an instruction is, by ancient convention, called an immediate value.
MIPS CPUs offer some real hardware instructions supporting up to im-
mediates of up to 16 bits in size;1 however, the assembler allows you to
specify a constant source operand (always as the last operand) for any
instruction. You’ll see the immediate forms when we’re discussing ma-
chine instructions (Table 8.6, for example) and in disassembly listings.

Moreover, in assembly language you’re not limited to 16 bits; if you write
an arbitrary constant, the assembler will synthesize away, as described
in Section 9.3.1.

Once again, the assembler may need to use the temporary register at
for some complicated cases.

8.2.1 U and Non-U Mnemonics

Before we get started, there’s a particularly confusing thing about the way
instruction mnemonics are written. A “u” suffix on the assembler mnemonac
is usually read as “unsigned”. But that’s not always what it means (at least,
not without a big stretch of your powers of imagination). There are a number
of subtly different meanings for a “u” suffix, depending on context:

• Overflow trap vs. no trap: In most arithmetic operations U denotes “no
overflow test”. Unsuffixed arithmetic operations like add cause a CPU
exception if the result overflows into bit 31 (the sign bit when we’re
thinking of integers as signed). The suffixed variant addu produces ex-
actly the same result for all combinations of operands but never takes
an exception. If you’re dealing with unsigned numbers, the overflow test
is certainly unwelcome; however, if you’re writing C, C++, and assembler
the overflow test is probably unwelcome anyway, and you are unlikely
to ever generate anything but the suffixed versions.

• Set if : The universal test operations slt (set if less than) and situ (set
if less than, unsigned) have to produce genuinely different results when
confronted by operands, one of which has the top bit set and the other
doesn’t.

1These are recognized by the assembler as real instructions, so you can write them if you
like; but probably only compilers generating assembler intermediate code should ever do so.



Chapter 8. Complete Guide to the MIPS Instruction Set 189

• Multiply and divide: Integer multiply operations produce a result with
twice the precision of the operands, and that means that they need
to produce genuinely different results for signed and unsigned inputs:
hence there are two instructions mult and multu. Note that the low part
of the result, left in the lo register, will be the same for both the signed
and the unsigned version; it’s the way that overflows into hi are handled
that differs.

Integer divide instructions are also sign dependent (think about dividing
0xFFFFFFFE by 2), so there’s a div and a divu. The same variation
exists for shift right instructions (shift right by one is really just divide
by two), but this was obviously a U too far; the shift instructions are
called sra (shift right arithmetic, suitable for signed numbers) and srl
(shift right logical). The world is indeed a wonderful place.

Partial-registes loads: Loads of less-than-register-size chunks of data
must decide what to do with the excess bits in the register. For the
un-signed instructions such as lbu, the byte value is loaded into the
register and the remaming bits are cleared to zero (we say that the value
has been zero-extended). If the byte value represented a signed number,
its top bit would tell us if it was negative. In this case we’li translate to
the corresponding register-sized representation by filling the remaining
bits of the register with copies of the sign bit, using the instruction 1b.
That’s called sign-extending.

8.2.2 Divide Mnemonics

We’ve mentioned earlier that in machine code for integer multiply and divide
there are separate initiation and result-collecting instructions. The assem-
bler likes to cover this up, generating macro expansions for a three-operand
format and doing a divide-by-zero check at the same time. This would be
OK except that unfortunately the assembler macro name for divide is div,
which is also the name for the basic machine code instruction. That means
there’s no way to write a machine code divide instruction in assembler; this
is kludged by defining that a three-operand assembler divide with zero as
the destination should just produce the machine start-divide operation and
nothing else.

For reasons of consistency the assembler multiply instruction mnemonic
mul behaves similarly — even though there’s a distinct mnemonic mult for
the machine code in this case.

Some toolchains have offered a better way out of this mess, by defining
new mnemonics divd (divide direct) to mean just the hardware operation
and divo (divide with overflow check) for the complicated macro. This didn’t
catch on, but you may see it in some codes.
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8.2.3 Inventory of Instructions

In the assembler descriptions we use the conventions given in Table 8.1.
Table 8.2 gives a full inventory of the instruction descriptions in mnemonic
order.

Table 8.1: Conventions used in instruction tables
Word Used for

s, t CPU registers used as operands.

d CPU register that receives the result.

j “Immediate” constant.

label The name of an entry point in the instruction stream.

offs The 16-bit PC-relative word offset representing the distance in
instructions to a label.

addr One of a number of different legitimate data address expres-
sions usable when writing load/store (or load address) instruc-
tions in assembler. (See Section 9.4 for a description of how the
assembler implements the various options.)

at The assembler temporary register, which is really $1.

zero The register, $0, always contains a zero value.

ra The return address register $31.

hilo The double-precision integer multiply result formed by concate-
nating hi and lo. Each of hi and lo holds the same number of
bits as a machine register, so hilo can hold a 64-bit integer on
a 32-bit machine and a 128-bit result on a 64-bit machine.

MAXNEG32BIT The most negative number representable in twos complement

MAXNEG64BIT arithmetic, 32- and 64-bit, respectively. It’s a feature of
twos complement numbers that the positive number —
MAXNEG32BIT is not representable in 32 bits.

cd Coprocessor register that is written by instruction.

cs Coprocessor register that is read by instruction.

exception(CAUSE, code) Take a CPU trap; CAUSE determines the setting of the

exception(CAUSE) Cause(ExcCode) register field. “code” is a value not inter-
preted by the hardware, but rather one encoded in a don’t-
care field of the instruction, where system software can find it by
reading the instruction. Not every such instruction sets a “code”
value, so sometimes we’ll leave it out.

const31...16 Denotes the number obtained by just using bits 31 through 16 of
the binary number “const”. The MIPS books use a similar con-
vention.
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Table 8.2: Assembler instruction in alphabetical order

Assembler/machine code Description

abs d, s Õ
sra at, s, 31
xor d, s, at
sub d, d, at

d = s < 0 ? -s: s;

add d, s, j Õ
addi d, s, j

d = s + (signed)j; /* trap on overflow, rare

*/

add d, s, t d = s + t; /* trap on overflow, rare */

addciu t, r, j /* LSI MiniRISC only - "add with circular
mask immediate," an instruction for
computing circular buffer index values.
CMASK is a special coprocessor 0 register,
which holds a number between 0 and 15. */
t = ((unsigned)r + (unsigned)j) % (2 **
CMASK);

addu d, s, j Õ
addiu d, s, j

d = s + (signed)j;
/* more complex unless -32768 ≤ j < 32768

*/

addu d, s, t d = s + t;

and d, s, j Õ
andi d, s, j

d = s & (unsigned)j; /* more complex unless
0 ≤ j < 65535 */

and d, s, j d = s & j;

b label Õ
beq zero, zero, offs

goto label;

bal label Õ
bgezal zero, offs

Function call (limited range but PC-relative addressing).
Note that the return address that is left in ra is that of the
next instruction but one: The next instruction in memory
order is in the branch delay slot and gets executed be-
fore the function is invoked.

bc0f label
bc0fl label
bc0t label
bc0tl label

Branch on coprocessor 0 condition. On early 32-bit
CPUs, This tested the state of a CPU input pin; on more
modern CPUs there’s no pin and the instruction is use-
less. The l suffix is for branch-likely variants; see Section
8.4.4.

— continued —
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Table 8.2: continued

Assembler/machine code Description

bc1f label
bc1f N, label

bc1fl label
bc1fl N, label
bc1t label
bc1t N, label

bc1tl label

bc1fl N, label

Branch on floating-point (coprocessor 1) condition
set/true (t) or clear/false (f); described in Section 7.9.7.
From MIPS IV there are multiple FP condition bits, se-
lected by N=0. . . 7. Suffix l in bc1fl means branch-likely
instructions; see Section 8.4.4.

bc2f label

bc2fl label

bc2t label

bc2tl label

Branch on coprocessor 2 condition. Useful only if a CPU
uses the CP2 instruction set or offers an external pin.

beq s, t, label if(s == t) goto label

beql s, t, label Branch-likely variants of conditional branches above.
The delay slot instruction is only executed if the branch is
taken; see Section 8.4.4.

beqz s, label Õ
beq s, $zero, offs

if(s == t) goto label

beqzl Branch-likely variant of beqz; see Section 8.4.4.

bge s, t, label if((signed)s ≥ (signed)t) goto label;

bgel s, t, label Õ
slt at, s, t
beql at $zero, offs

“Likely” form of bge, deprecated. Macro forms are of
dubious use: Branch-likely is really for compilers and de-
mon tuners to optimize out branch delay slot, and you
can’t realistically so that with macro-instructions. See
Section 8.4.4.

bgeu s, t, label Õ
sltu at, s, t
beq at, $zero, offs

if((unsigned)s ≥ (unsigned)t) goto label;

bgeul s, t, label Deprecated branch-likely macros; see Section 8.4.4.

bgez s, label if(s ≥ 0) goto label;

bgezal s, label if(s ≥ 0) label();

bgezall s, label Branch-likely variant; see Section 8.4.4.

— continued —
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Table 8.2: continued

Assembler/machine code Description

bgezl s, label Branch-likely variant; see Section 8.4.4.

bgt, s, t, label Õ
slt, at, t, s
bne, at, $zero, offs

if((signed)s > (signed)t) goto label;

bgtl, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

bgtu, s, t, label Õ
slt, at, t, s
beq, at, $zero, offs

if((unsigned)s > (unsigned)t) goto label;

bgtul, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

bgtz, s, label if(s > 0) goto label;

bgtzl, s, label Branch-likely version of bgtz; see Section 8.4.4.

ble, s, t, label Õ
sltu, at, t, s
beq, at, $zero, offs

if((signed)s > (signed)t) goto label;

blel, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

bleu, s, t, label Õ
sltu, at, t, s
beq, at, $zero, offs

if((unsigned)s > (unsigned)t) goto label;

bleul, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

blez, s, label if(s ≤ 0) goto label;

blezl, s, label Branch-likely variant of blez; see Section 8.4.4.

blt, s, t, label Õ
slt, at, t, s
bne, at, $zero, offs

if((signed)s < (signed)t) goto label;

bltl, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

bltu, s, t, label Õ
sltu, at, t, s
bne, at, $zero, offs

if((unsigned)s < (unsigned)t) goto label;

bltul, s, t, label Deprecated branch-likely macro; see Section 8.4.4.

bltz, s, label if(s < 0) goto label;

bltzal, s, label if(s < 0) label();

— continued —
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Table 8.2: continued

Assembler/machine code Description

bltzall, s, label Branch-likely variant; see Section 8.4.4.

bltzl, s, label Branch-likely variant; see Section 8.4.4.

bne, s, t, label if(s != t) goto label;

bnel, s, t, label Branch-likely variant; see Section 8.4.4.

bnez, s, label if(s != 0) goto label;

bnezl, s, t, label Branch-likely variant; see Section 8.4.4.

break code Breakpoint instruction. The value code has no hardware
effect, but the breakpoint exception routine can retrieve
it by reading the exception-causing instruction.

cache k, addr Do smething to a cache line, as describrd in Section 4.10
above. Available only from MIPS III on.

cfc0 t, cs
cfc1 t, cs
cfc2 t, cs

Move data from coprocessor control register cs to
general-purpose register t. Only useful for a coproces-
sor that uses the auxiliary control register set: So far this
means only the floating-point coprocessor CP1, which
has just one control register — the floating-point control
and status register.

ctc0 t, cd
ctc1 t, cd
ctc2 t, cd

Move data from general-purpose register t to coppro-
cessor control register cd.

dabs d, s Õ
dsra at, s, 31
xor d, s, at
dsub d, d, at

d = s < 0 : -s : s; /* 64-bit */

dadd d, s, t d = s + t; /* 64-bit, overflow trap, rare

*/

daddi d, s, t d = s + t; /* 64-bit, overflow trap, rare

*/

daddiu d, s, t d = s + t; /* 64-bit */

daddu d, s, t d = s + t; /* 64-bit */

ddiv $zero, s, t Õ
ddiv s, t

/* plain 64-bit hardware divide instruction

*/
lo = (long long)s / (long long)t;
hi = (long long)s % (long long)t;

— continued —
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Table 8.2: continued

Assembler/machine code Description

ddiv d, s, t Õ
benz t, 1f
ddiv $zero, s, t
break 0x7

1:
li at, -1
bne t, at 2f
lui at, 32768
dsll32 at, at, 0
bne s, at, 2f
nop
break 0x6

2:
mflo d

/* 64-bit signed divide with checks */
lo = (long long)s / (long long)t;
hi = (long long)s % (long long)t;
if(t == 0)

exception(BREAK, 7);
/* result overflow */
if(t == -1 && s == MAXNEG64BIT)

exception(BREAK, 6);

ddivd s, t Another way of writing plain hardware instruction, but
use ddiv $zero, ... instead.

ddivdu s, t Another way of writing plain hardware instruction, but
use ddivu $zero, s, t instead.

ddivu $zero, s, t Õ
ddivu s, t

/* plain unsigned 64-bit hardware divide instruction */
lo = (unsigned long long)s / (unsigned long long)t;
hi = (unsigned long long)s % (unsigned long long)t;

ddivu d, s, t Õ
divu s, t
bne t, $zero, 1f
nop
break 7

1:
mflo d

/* 64-bit unsigned divide with check */
lo = (unsigned long long)s / (unsigned long long)t;
hi = (unsigned long long)s % (unsigned long long)t;
if(t == 0)

exception(BREAK, 7);
d = lo;

div $zero, s, t Õ
div s, t

/* plain signed 32-bit hardware divide */
lo = s / t
hi = s % t

div d, s, t Õ
div s, t
bne t, $zero, 1f
nop
break 7

1:
li at, -1
bne t, at, 2f
nop
lui at, 0x8000
bne s, at, 2f
nop
break 6

2:
mflo d

/* signed 32-bit division with checks */
lo = s / t;
hi = s % t;
if(t == 0)

exception(BREAK, 7);
if(t == -1 && s == MAXNEG32BIT)

exception(BREAK, 6); /* result overflows

*/
d = lo;

divd s, t Sometimes gives hardware instruction, but use div
$zero, s, t instead.

divdu s, t Hardware division, not available in all toolchains; use
divu $zero, s, t instead.

— continued —
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Table 8.2: continued

Assembler/machine code Description

divo d, s, t
divou d, s, t

Same as div/divu, but the name explicitly reminds you
about overflow check.

divu d, s, t Õ
divu s, t
bne t, $zero, 1f
nop
break 7

1:
mflo d

/* unsigned divide with check */
lo = (unsigned)s / (unsigned)t;
hi = (unsigned)s % (unsigned)t;
if(t == 0)

exception(BREAK, 7);
d = lo;

divu $zero, s, t Õ
divu s, t

/* $zero as destination means no checks */
lo = s / t;
hi = s % t;

dla t, addr Õ
# various ...

Load 64-bit address; see Section 9.4.

dli t, const Õ
# biggest case:
lui t, const63...48
ori t, const47...32
dsll t, 16
ori t, const31...16
dsll t, 16
ori t, const15...0

Load 64-bit constant. Seperate mnemonic from li
required only for values between 0x8000 0000 and
0xFFFF FFFF, where 32 Õ64 bit transition rules require
li to flood the high-order 32 bits with ones.

dmadd16 s, t /* found only on NEC Vr4100 CPU */
(long long)lo = (long long)lo + ((short)s *
(short)t);

dmfc0 t, cs
dmfc1 t, cs
dmfc2 t, cs

Move 64 bits from coprocessor register cs to general-
purpose register t. dmfc1 is for floating-point registers.

dmtc0 t, cd
dmtc1 t, cd
dmtc2 t, cd

Move 64 bits from general-purpose register t to copro-
cessor register cd.

dmul d, s, t Õ
dmultu s, t
mflo d

/* no overflow check - and with a 64-bit
result from 64-bit operands, a signed and
unsigned version will do the same thing */
d = (long long)s * (long long)t;

dmulo d, s, t Õ
dmult s, t
mflo d
dsra32 d, d, 31
mfhi at
beq d, at 1f
nop
break 0x6

1:
mflo d

/* signed multiply, trap if result overflows
64-bit signed limit */
hilo = (long long)s * (long long)t;
if((lo ≥ 0 && hi != 0) || (lo < 0 && hi !=
-1))

exception(BREAK, 6);
d = lo;

— continued —
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Table 8.2: continued

Assembler/machine code Description

dmulou d, s, t Õ
dmultu s, t
mfhi at
mflo d
beqz at 1f
nop
break 0x6

1:
mflo d

/* unsigned multiply, trap if result
overflows 64-bit limit */
hilo = (long long)s * (long long)t;
if(hi != 0)

exception(BREAK, 6);
d = lo;

dmult s, t /* machine instruction: "hi" correct for
signed 64-bit multiplication */
hilo = (long long)s * (long long)t;

dmultu s, t /* machine instruction: "hi" correct for unsigned
64-bit multiplication */
hilo = (unsigned long long)s * (unsigned long long)t;

dneg d, s Õ
dsub d, $zero, s

(long long)d = -(long long)s; /* trap on
overflow */

dnegu d, s Õ
dsubu d, $zero, s

(long long)d = -(long long)s;

drem d, s, t Õ
bnez t, 1f
ddiv $zero, s, t
break 0x7

1:
li at, -1
bne t, at, 2f
lui at, 32768
dsll32 at, at, 0
bne s, at, 2f
nop
break 0x6

2:
mfhi d

/* 64-bit remainder with overflow check */
/* divide by zero? */
if(t == 0)

exception(BREAK, 7);
/* result overflows 64-bit signed value? */
if(s == MAXNEG64BIT && t == -1)

exception(BREAK, 6);
d = (long long)s % (long long)t;

dremu d, s, t Õ
bnez t, 1f
ddivu $zero, s, t
break 0x7

1:
mfhi d

/* 64-bit unsigned remainder */
if(t == 0) exception(BREAK, 7); /* divide by
zero? */
d = (unsigned long long)s % (unsigned long
long)t;

dret Special exception return; only applies to the obslete
R6000 CPU.

drol d, s, t Õ
dnegu at, t
dsrlv at, s, at
dsllv d, s, t
or d, d, at

/* 64-bit rotate left */
d = (s << t) | ( s >> (64 - t));

— continued —
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Table 8.2: continued

Assembler/machine code Description

dror d, s, t Õ
dnegu at, t
dsllv at, s, at
dsrlv d, s, t
or d, d, at

/* 64-bit rotate right */
d = (s >> t) | ( s << (64 - t));

dsll d, s, shft d = (long long)s << shft; /* 0 ≤ shft < 31

*/

dsll d, s, shft Õ
dsll32 d, s, shft-32

d = (long long)s << shft; /* 32 ≤ shft < 63

*/

dsll d, s, t Õ
dsllv d, s, t
dsllv d, s, t

d = (long long)s << (t % 64);

dsll32 d, s, shft d = (long long)s << (shft + 32); /* 0 ≤ shft
< 31 */

dsra d, s, shft /* 0 ≤ shft < 31 */
/* algebraic shifting, whucg replicates old
bit 63 into top bits, producing a correct
division by power of 2 for negative numbers

*/
d = (long long signed)s >> shft % 32;

dsra d, s, shft Õ
dsra32 d, s, shft-32

As above, for 32 ≤ shft < 63.

dsra32 d, s, shft /* 64-bit shift right arithmetic by 32-63
bits */
d = (long long signed)s >> (shft % 32 +
32);

dsra d, s, t Õ
drsav d, s, t
drsav d, s, t

d = (long long signed)s >> (t % 64);

dsrl d, s, shft /* 0 ≤ shft < 31 */
d = (long long unsigned)s >> shft % 32;

dsrl d, s, shft Õ
dsrl32 d, s, shft-32

As above, for 32 ≤ shft < 63.

dsrl d, s, t Õ
drslv d, s, t
drslv d, s, t

d = (long long unsigned)s >> (t % 64);

dsrl32 d, s, shft /* 64-bit shift right logical by 32-63 bits

*/
d = (long long unsigned)s >> (shft % 32 +
32);

dsub d, s, t d = s - t; /* 64-bit, trap on overflow,
rarely used */

dsubu d, s, t d = s - t; /* 64-bit */

eret Return from exception(MIPS III on). Clears the SR(EXL)
bit and branches to the location saved in EPC. See Sec-
tion 12.3.

ffc d, s
ffs d, s

Find first clear/set. LSI MiniRISC 4010 CPUs only. Set d to
the lowest numbered bit that is 0/1, respectivrly in s.

— continued —
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Table 8.2: continued

Assembler/machine code Description

flushd Invalidate entire cache (LSI MiniRISC only).

j label /* limited to a label within 2**28-byte
"page" */ goto label;

j s Õ
jr s
jr s

Go to the address found in s. This is the only way of
transferring control to an arbitrary address, since all the
address-in-instruction formats span less than 32 bits.

jal d, addr Õ
la at addr
jalr d, at

Call with nonstandard return address. Synthesized with
jalr. It’s cheating to use the instruction la in the ma-
chine code expansion, as la is itself a macro. That’s to
avoid dealing with addressing modes here (see Section
9.4 instead).

jal label Subsoutine call, with return address in ra ($31). Not that
the return address is the next instruction but one: The
immediately following instruction position is the branch
delay slot, and the instruction there is always executed
before you reach the subroutine.

jalr d, s Call the subroutine whose address is in s, but put the
return address in d.

jal s Õ
jalr $31, s
jalr s
jalr $31, s

Use ra if d is not specified.

la d, addr Õ
# many options

Load address. la will work with any of the addressing
modes described in Section 9.4.

lb t, addr /* load byte and sign-extend */
t = *((signed char *)addr);

lbu t, addr /* load byte and zero-extend */
t = *((unsigned char *)addr);

ld t, addr /* will trap if address is not 8 byte
aligned */
t = *((long long *)addr);

ldl t, addr
ldr t, addr

Load double left/right — the two halves of a 64-bit un-
aligned load (see Section 2.5.2).

ldxcl fd, t(b) /* indexed load to floating-point register
-- MIPS IV only. Not that the role of the
two registers is not quite symmetrical --
b is expected to hold an address and t an
offset, and it’s an offense for (b + t) to
end up in a different section of the overall
MIPS address map than b (defined by the top
2 bits of the 64-bit address). */
fd = *((double *)(b + t)); /* b, t, both
registers */

lh t, addr /* load 16 bit (halfword) and sign-extend */
t = *((short *)addr).

lhu t, addr /* load 16 bit (halfword) and zero-extend */
t = *((unsigned short *)addr).

— continued —



200 8.2. Assembler Mnemonics and What They Mean

Table 8.2: continued

Assembler/machine code Description

li d, j Õ
ori d, $zero, j

Load register with constant value. This expansion is for 0
≤ j ≤ 65535.

li d, j Õ
addiu d, $zero, j

This one is for -32768 ≤ j < 0.

li d, j Õ
lui d, hi16(j)
ori d, d, lo16(j)

This one is for any other value of j that is representable
as a 32-bit integer.

ll t, addr
lld t, addr

Load-link. Load 32 bits/64 bits respectively with link side
effects; used together with sc and scd to implement a
lockless semaphore (see Section 8.4.2).

lui t, u /* load upper immediate (constant u is
sign-extended into 64-bit registers) */
t = u << 16;

lw t, addr /* 32-bit load, sign-extended for 64-bit
CPUs */ t = *((* int)(addr));

lwc1 fd, addr Load FP single to FP register file — more often called l.s.
Instructions to load other coprocessors’ registers are de-
fined but have never been implemented.

lwl t, addr
lwr t, addr

Load word left/right. See Section 2.5.2 for how these in-
structions work together to perform an unaligned 32-bit
load operation.

lwu t, addr /* 32-bit zero-extending load, only found on
64-bit CPUs */
t = (unsigned long long)*((unsigned int

*)addr);

lwxcl fd, t(b) /* load FP single with indexed (register +
register) address */
fd = *((float *)(t + b));

maddu d, s, t /* genuine three-operand integer
multiply-accumulate, as implemented on
Toshiba 3900 series cores */
hilo += (long long) s * (long long) t;
d = lo;

maddu d, s, t /* unsigned version */

mad s, t
madu s, t

/* 32-bit integer multiply-accumulate, as
implemented on IDT R4640/50. Encoding and
action are compatible with the R3900 form,
so long as d is actually zero. mad is for
signed operands. madu for unsigned. */
hilo = hilo + ((long long) s * (long long)
t);

madd s, t
maddu s, t

LSI MiniRISC name for integer multiply-accumulate. En-
coding is incompatible with other versions, clashing with
the MIPS III code for dmult. Signed and unsigned ver-
sion.

madd16 s, t /* NEC Vr4100 integer multiply-accumulate;
handles only 16-bit operands */
lo = lo + ((short)s * (short)t);

— continued —
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Table 8.2: continued

Assembler/machine code Description

max d, s, t /* LSI MiniRISC only */
d = (s > t) ? s : t;

mfc0, t, cs
mfc1, t, fs
mfc2, t, cs

Move 32-bit contents of coprocessor register cs into
general-purpose register t. mfc0 is vital for access to the
CPU control registers, mfc1 for putting floating-point unit
data back into integer registers. mfc2 is only useful if
coprocessor 2 is implemented, which never happens on
standard CPUs.

mfhi d
mflo d

Move integer multiply unit results to general-purpose reg-
ister d. lo contains the result of a division, the least-
significant 32 bits of the result of a mul, or the least-
significant 64 bits of the result of a dmul. hi contains
the remainder of a division or the most-significant bits of
a multiplication. These instructions stall the pipeline if the
multiply/divide operation is still m progress.

min d, s, t /* LSI MinRISC only */
d = (s < t) ? s : t;

move d, s Õ
or d, s, $zero

d = s;

movf d, s, N if (!fpcondition(N)) d = s;

movn d, s, t if (t) d = s;

movt d, s, N if (fpcondition(N)) d = s;

movt.d fd, fs, N
movt.s fd, fs, N

if (fpcondition(N)) fd = fs;

movn d, s, t if (!t) d = s;

msub s, t
msubu s, t

/* 32-bit integer multiply-subtract for LSI
MiniRISC only; see madd instruction */
hilo = hilo - ((long long) s * (long long)
t);

mtc0 t, cd
mtc1 t, cs
mtc2 t, cs

Move 32 bits from general-purpose register t to copro-
cessor register cd. Note that this instruction doesn’t obey
the usual convention of writing the destination register
first.
mtc0 is for the CPU control registers, mtc1 is for putting in-
teger data into floating-point registers (although they’re
more often loaded directly from memory), and mtc2 is
implemented only if the CPU uses coprocessor 2 instruc-
tions (very rare).

mthi s
mtlo s

Move contents of general-purpose register s into the
multiply-unit result registers hi and lo, respectively. This
may not seem useful, but they are required to restore the
CPU state when returning from an exception.

mul d, s, t
mulu d, s, t

/* genuine three-operand 32-bit integer
mu1tip1y, available on IDT R4650 and some
other CPUs; signed and unsigned versions */
hilo = (long long) s * (long long) t;
d = to;

— continued —
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Table 8.2: continued

Assembler/machine code Description

mul d, s, t Õ
multu s, t
mflo d

d = (signed)s*(signed)t; /* no checks */

mulo d, s, t Õ
mult s, t
mflo d
sra d, d, 31
mfhi at
beq d, at, 1f
nop
break 6

1:
mflo d

/* 32-bit multiply with overflow check */
lo = (signed)s * (signed)t;
if ((s ≥ 0 && hi != 0) || (s < 0) && hi !=
-1)

exception(BREAK, 6);

mulou d, s, t Õ
multu s, t
mfhi at
mflo d
beq at, $zero, 1f
nop
break 6

/* 32-bit unsigned muitiply with overflow
check */
hilo = (unsigned)s * (unsigned)t;
if (hi != 0)

exception(BREAK, 6);

mult s, t hilo = (signed)s * (signed)t;

multu s, t hilo = (unsigned)s * (unsigned)t;

neg d, s Õ
sub d, $zero, s

d = -s; /* trap on overflow, rare */

negu d, s Õ
subu d, $zero, s

d = -s;

nop Õ
sll $zero, $zero, $zero

/* no-op, instruction code == 0 */

nor d, s, t d = (s | t);

not d, s Õ
nor d, s, $zero

d = s;

or d, s, t d = s | t

or d, s, j Õ
ori d, s, t

ori t, r, j

d = s | (unsigned)j;

perf hint, addr
prefx hint, t(b)

Prefetch instruction, for memory reference optimization
(MIPS IV and later). The cache line that contains the ad-
dressed item might be prefetched into the cache while
the CPU keeps running. No side effects (other than the
possible load into the cache) will occur. Implementa-
tions are entitled to treat this as a no-op — the R5000
does, for example. hint says something to the hard-
ware about how the data will be used; see Section 8.4.8.
The two versions use ordinary base+offset or regis-
ter+register indexed addressing.

r2u, s LSI ATMizer-II only; converts to strange floating-point for-
mat. Result appears in lo.

— continued —
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Table 8.2: continued

Assembler/machine code Description

radd, s, t LSI ATMizer-II only; strange floating-point add. Result ap-
pears in lo.

rem d, s, t Õ
bnez t, 1f
div $aero, s, t
break 0x7

1:
li at, -1
bne t, at, 2f
lui at, 32768
ben s, at, 2f
nop
break 0x6

2:
mfhi d

/* 32-bit remainder with overflow check */
lo = s / t;
hi = s % t;
if (t == 0)

exception(BREAK, 7);
if (t == 1 && s == MAXNEG32BIT)

exception(BREAK, 6); /* result overflows

*/
d = hi;

remu d, s, t Õ
bnez t, 1f
divu $aero, s, t
break 0x7

1:
mfhi d

/* as above, only divide-by-zero check */

rfe Restore CPU state when returning from exception —
MIPS I only. Pops the interrupt-enable/kernel-state stack
inside the status register SR. Can only be sensibly used in
the delay slot of a jr instruction that is returning from the
exception handler. See Section 3.1 and Section 3.3.2.

rmul s, t ISI ATMizer-II only; strange floating-point multiply. Result
appears in lo.

rol d, s, t Õ
negu at, t
srlv at, s, at
sllv d, s, t
or d, d, at

/* d = s rotated left by t */

ror d, s, t Õ
negu at, t
sllv at, s, at
srlv d, s, t
or d, d, at

/* d = s rotated right by t */

rsub s, t LSI ATMizer-II only; strange floating-point multiply. Result
appears in lo.

sb t, addr *((char *)addr) = t;

sc t, addr
scd t, addr

Store word/double conditional; explained in Section
8.4.2.

sd t, addr *((long long *)addr) = t;

adbbp c Extra breakpoint. LSI MiniRISC only.

— continued —
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Table 8.2: continued

Assembler/machine code Description

sdc1 ft, addr Store floating-point double register to memory; more of-
ten called s.d. sdc0 and sdc2 (store 64-bit coproces-
sor register) are defined but have never been imple-
mented.

sdl t, addr
sdr t, addr

Store double left/right; see Section 2.5.2 for an explana-
tion.

sdxcl fs, t(b) /* indexed FP store double (both t and b are
registers), usually written s.d */

*((double *)(t+b)) = fs;

selsl d, s, t /* LSI MiniRISC instruction. Combine and
shift. Uses ROTATE register (CP0 register
23), of which anly bits 4:0 are used. */
long long dbw;
dbw = ((long long) s << 32 | t):
d = (((long long) 0xffffffff & (dbw <<
ROTATE)) >> 32);

selsr d, s, t /* as above, but shifting right */
long long dbw;
dbw = ((long long) s << 32 | t):
d = (unsigned) 0xffffffff & (dbw >>
ROTATE);

seq d, s, t Õ
xor d, s, t
sltiu d, d, 1

d = (s == t) ? 1 : 0;

sge d, s, t Õ
slt d, s, t
xori d, d, 1

d = ((signed)s ≥ (signed)t) ? 1 : 0;

sgeu d, s, t Õ
sltu d, s, t
xori d, d, 1

d = ((unsigned)s ≥ (unsigned)t) ? 1 : 0;

sgt d, s, t Õ
slt d, t, s

d = ((signed)s > (signed)t) ? 1 : 0;

sgtu d, s, t Õ
sltu d, t, s

d = ((unsigned)s > (unsigned)t) ? 1 : 0;

sh t, addr /* store halfword */

*((short *)addr) = t;

sle d, s, t Õ
slt d, t, s
xori d, d, 1

d = ((signed)s ≤ (signed)t) ? 1 : 0;

sleu d, s, t Õ
sltu d, t, s
xori d, d, 1

d = ((unsigned)s ≤ (unsigned)t) ? 1 : 0;

sll d, s, shft d = s << shft; /* 0 ≤ shft < 32 */

sll d, t, s Õ
sllv d, t, s

sllv d, t, s

d = t << (s % 32)

slt d, s, t d = ((signed) s < (signed) t) ? 1 : 0;

— continued —
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Table 8.2: continued

Assembler/machine code Description

slt d, s, j Õ
slti d, s, j

slti d, s, j

/* j constant */
d = ((signed) s < (signed) j) ? 1 : 0;

sltiu d, s, j Õ /* j constant */
d = ((unsigned) s < (unsigned) j) ? 1 :
0;

sltu d, s, t d = ((unsigned) s < (unsigned) t) ? 1 :
0;

sne d, s, t Õ
sltu d, $zero, d

d = (s == t) ? 1 : 0;

sra d, s, shft /* 0 < shft < 31 */
/* algebraic shifting, which replicates old
bit 31 into top bits, producing a correct
division by power of 2 for negative numbers

*/
d = (signed) s >> shft;

sra d, s, t Õ
srav d, s, t

srav d, s, t

d = (signed) s >> (t % 32)

srl d, s, shft d = (unsigned) s >> shft; /* 0 ≤ shft < 32

*/

srl d, s, t Õ
slrv d, s, t

srlv d, s, t

d = (unsigned) s >> (t % 32);

standby Enter one of the power-down modes. NEC Vr4100 CPU
only.

sub d, s, t d = s - t; /* trap on overflow, little used

*/

subu d, s, j Õ
addiu d, s, -j

d = s - j;

subu d, s, t d = s - t; /* trap on overflow, little used

*/

suspend Enter one of the power-down modes. NEC Vr4100 CPU
only.

sw t, addr /* store word */ *((int *)addr) = t;

swcl ft, addr Floating-point store single; more often written s.s. The
instruction set defines swc0 and swc2 for coprocessor
0 and 2 registers, but neither have ever been imple-
mented.

swl t, addr
swr t, addr

Store word left/right; see Section 2.5.2.

swxcl fs, t(b) /* store floating-point single; indexed
(two-register) addressing; usually written
with s.s */

*((float *)(t + b)) = fs;

sync Load/store barrier for multiprocessors; see Section 8.4.9.

— continued —
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Table 8.2: continued

Assembler/machine code Description

syscall B /* system call exception */
exception(SYSCALL, B);

teq s, t /* conditional trap instructions, which
generate a trap exception if the appropriate
condition is satisfied; this one is... */
if (s == t)

exception(TRAP);

teqi s, j if (s == j)
exception(TRAP);

tge s, t if ((signed) s ≥ (signed) t)
exception(TRAP);

tgei s, j if ((signed) s ≥ (signed) j)
exception(TRAP);

tgeiu s, j if ((unsigned) s ≥ (unsigned) j)
exception(TRAP);

tgeu s, t if ((unsigned) s ≥ (unsigned) t)
exception(TRAP);

tlbp TLB maintenance; see Chapter 6.
if the virtual page number currently in EntryLo matches
a TLB entry, sets Index to that entry. Otherwise sets
Index to the illegal value 0x8000 0000 (top bit set).

tlbr TLB maintenance; see Chapter 6.
Copies information from the TLB entry selected by Index
into the registers EntryLo, EntryHi1 and EntryHi0,
and PageMask.

tlbwi
tlbwr

TLB maintenance; see Chapter 6.
Writes the TLB entry selected by Index (instruction
tlbwi) or Random (instruction tlbwr), respectively, us-
ing data from EntryLo, EntryHi1 and EntryHi0, and
PageMask.

tlt s, t /* more conditional traps */
if ((signed) s < (signed) t)

exception(TRAP);

tlti s, j if ((signed) s < (signed) j)
exception(TRAP);

tltiu s, j if ((unsigned) s < (unsigned) j)
exception(TRAP);

tltu s, t if ((unsigned) s < (unsigned) j)
exception(TRAP);

tne s, t if (t != s)
exception(TRAP);

tnei s, j if (t != j)
exception(TRAP);

u2r s LSI ATMizer-II only; converts unsigned to strange floating
point. Resuit appears in lo.

— continued —
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Table 8.2: continued

Assembler/machine code Description

uld d, addr Õ
ldl d, addr
ldr d, addr + 7

Unaligned load double, synthesized from load-left and
load-right as detailed in Section 2.5.2 (shown for big-
endian only).

ulh d, addr Õ
lb d, addr
lbu at, addr + 1
sll d, d, 8
or d, d, at

Unaligned load halfword and sign-extend. Expan-
sion may be more complex, depending on addressing
mode.

ulhu d, addr Õ
lbu d, addr
lbu at, addr + 1
sll d, d, 8
or d, d, at

Unaligned load halfword and zero-extend.

ulw d, addr Õ
lwl d, addr
lwr at, addr + 3

Load word unaligned; sign-extend if 64 bits (shown for
big-endian only). See Section 2.5.2.

usd d, addr Õ
sdl d, addr
sdr d, addr + 7

Unaligned store double.

ush d, addr Õ
sb d, addr + 1
srl d, d, 8
sb d, addr

Unaligned store half.

usw s, addr Õ
swl s, addr
swr s, addr + 3

Store word unaligned; see Section 2.5.2.

waiti Suspend execution until an interrupt is activated. LSI
MiniRISC only.

wb addr Write back the eight-word cache line containing this ad-
dress if it’s dirty. LSI MiniRISC only. On R4000 and similar
CPUs this would be done with a cache instruction.

xor d, s, t d = s ∧ t;

xor d, s, j Õ
xori d, s, j

xori d, s, j

d = s ∧ j;

8.3 Floating-Point instructions

There’s a relatively small and sensible set of MIPS floating-point instructions
(see Tables 8.3 and 8.4 on pages 208 and 208, but they quickly develop their
own complications. Note the following points:

• Pretty much every FP instruction comes in a single-precision version and
a double-precision version distinguished by .s or .d in the mnemonic.
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Table 8.4 only lists single-precision versions, so long as the double-
precision version requires no special extra description.

Table 8.3: Floating-point register and identifier conventions

Word Used for

fs, ft Floating-point register operands.

fd Floating-point register which receives the result.

fdhi

fdlo Pair of adjacent FP registers in a 32-bit processor, used together to store an FP dou-
ble. Use of the high-order (odd-numbered) register is implicit in normal arithmetic
instructions.

M The floating-point condition bit found in the FP control/status register and tested by
the bc1f and bc0t instructions.

There’s been evolution here; the MIPS I through MIPS III ISAs have 1 condition bit
but MIPS IV has 8. An instruction that omits to specify which condition bit to use will
quietly use the original one.

• The FP instruction set has evolved much more than the integer instruc-
tion set ever did (at user level, the integer instruction set has been re-
markably stable), so it’s more important to keep clear what version is
what.

• FP computational and type conversion instructions can cause excep-
tions. This is true both in the IEEE sense, where they detect conditions
that a programmer may be interested in, and in a low-level architecture
sense: MIPS FP hardware, if faced with a combination of operands and
an operation it can’t do correctly, will take an unimplemented exception
with the aim of getting a software routine to carry out the FP operation
for it.

Data movement instructions (loads, stores, and moves between regis-
ters) don’t ever cause exceptions. Neither do the neg.s, neg.d, abs.s,
or abs.d instructions (which just flip the sign bit without inspecting the
contents).

Table 8.4: Floating-point instruction description in
mnemonic order

Assembler ISA Function
code number

abs.s fd, fs I fd = (fs < 0) ? -fs;

add.s fd, fs, ft I fd = fs + ft;

bc1f label

bc1t label

I Several branch on FP condition instructions, all found in
Table 8.2.

— continued —
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Table 8.4: continued

Assembler ISA Function
code number

c.eq.s M, fs, ft
c.f.s M, fs, ft
c.lq.s M, fs, ft
c.lt.s M, fs, ft
c.nge.s M, fs, ft
c.ngl.s M, fs, ft
c.ngt.s M, fs, ft
c.ole.s M, fs, ft
c.olt.s M, fs, ft
c.seq.s M, fs, ft
c.sf.s M, fs, ft
c.ueq.s M, fs, ft
c.ule.s M, fs, ft
c.ult.s M, fs, ft
c.un.s M, fs, ft

I FP compare instructions, which compare fs and ft and
store a result in FP condition bit M. They are described at
length in Section 7.9.7.

ceil.l.d fd, fs
ceil.l.s fd, fs

III Convert FP to equal or next-higher signed 64-bit integer
value.

ceil.w.d fd, fs
ceil.w.s fd, fs

II Convert FP to equal or next-higher signed 32-bit integer
value.

cvt.d.l fd, fs III Floating-point type conversions, where the types d, 1, s,
and w (double, long long, float, and int, respectively) are
the destination and source type in that order.
Where the conversion is losing precision, the rounding
mode currenly defined by the field FCR31(RM) in the
floating-point status register is used to determine how
the approximation is done. For integer conversions
where the desired approximation is specific to the algo-
rithm, you’re better off writing instructions like floor.w.s
and so on; however these will just be assembler macros

for MIPS I machines, since the specific conversion instruc-
tions were only introduced with MIPS II.

cvt.d.s fd, fs
cvt.d.w fd, fs

I

cvt.l.d fd, fs
cvt.l.s fd, fs

III

cvt.s.d fd, fs I

cvt.s.l fd, fs III

cvt.s.w fd, fs
cvt.w.d fd, fs
cvt.w.s fd, fs

I

div.s fd, fs, ft I fd = fs / ft;

dmfcl rs, fd III Move 64-bit value from floating point (coprocessor 1) to
integer register with no conversion.

dmtcl rs, fd III Move 64-bit value from integer to floating point (copro-
cessor 1) register with no conversion or validity check.

floor.l.d fd, fs
floor.l.s fd, fs

III Convert FP to equal or next-lower 64-bit integer value.

floor.w.d fd, fs
floor.w.s fd, fs

II Convert FP to equal or next-lower 32-bit integer value.

l.d fd, addr Õ
ldcl fd, addr

II /* load FP double, must be 8 byte aligned */
fd = *((double *)(o+b));

l.d fd, addr Õ
lwcl fdhi, addr
lwcl fdlo, addr+4

I /* load FP double into register pair; note
that the expansion (which half goes at what
address) depends on CPU endianness */
fd = *((double *) addr);

— continued —
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Table 8.4: continued

Assembler ISA Function
code number

l.s fd, addr Õ
lwcl fd, addr

I /* load FP single, must be 4 byte aligned */
fd = *((float *)(o+b));

ldcl fd, disp(rs) III Deprecated equivalent of l.d.

ldxcl fd, ri(rs) IV Explicit machine instruction for double-indexed load;
preferred to use l.d with the appropriate address
mode.

li.s fd, const
li.d fd, const

I Load floating-point constant, synthesized by placing the
constant in a memory location and loading it.

lwcl fd, disp(rs) III Deprecated equivalent of l.s.

lwxcl fd, ri(rs) IV Explicit double-indexed load instruction; usually better to
use l.s with the appropriate address erode.

madd.s fd, fr, fs, ft IV fd = fr + fs * ft;

mfc1 rs, fd I Move 32-bit value from floating point (coprocessor 1) to
integer register with no conversion.

mov.s fd, fs IV fd = fs;

movf.s fd, fs, N IV if (!fpcondition(N))
fd = fs;

movn.s fd, fs, t IV if (t != 0)
fd = fs; /* t is a GPR */

movt.s fd, fs, N IV if (fpcondition(N))
fd = fs;

movz.s fd, fs, t IV if (t == 0)
fd = fs; /* t is a GPR */

msub.s fd, fr, fs, ft IV nfd = fs * ft - fr;

mtcl rs, fd I Move 32-hit value from integer to floating point (copro-
cessor 1) register with no conversion or validity check.

mul.s fd, fs, ft I fd = fs * ft;

neg.s fd, fs I fd = -fs;

nmadd.s fd, fr, fs, ft IV nfd = -(fs * ft + fr);

nmsub.s fd, fr, fs, ft IV nfd = fr - ft * ft;

recip fd, fs IV fd = 1/fs; /* fast but not IEEE accurate */

round.l.d fd, fs
round.l.s fd, fs

III Convert FP to equal or closet 64-bit integer value.

round.w.d fd, fs
round.w.s fd, fs

II Convert FP to equal or closet 32-bit integer value.

rsqrt.s fd, fs IV /* fast but not IEEE accurate */
fd = sqrt(1/fs);

s.d ft, addr Õ
sdcl ft, addr

III /* FP store double; address must be 8 byte
aligned */

*((double *)addr) = ft;
/* synthesized for 32-bit CPUs */

s.d ft, addr Õ
swcl fthi, addr
swcl ftlo, addr+4

I

— continued —
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Table 8.4: continued

Assembler ISA Function
code number

s.s ft, addr Õ
swcl ft, addr

I /* FP store single; address must be 4 byte aligned */
*((float*)addr) = ft:

sdcl fd, disp(rs) III Deprecated equivalent to s.d.

sdxcl fd, ri(rs) IV Explicit double-indexed store double; usually better to
write s.d with an appropriate addressing mode.

sqrt.s fd, fs III fd = sqrt(fs); /* IEEE compliant */

sub.s fd, fs, ft I fd = fs - ft;

swcl fd, disp(rs) III Deprecated equivalent to s.s.

swxcl fd, ri(rs) IV Explicit double-indexed store of 32-bit FP value; usu-
ally better to write s.s with an appropriate addressing
mode.

trunc.l.d fd, fs
trunc.l.s fd, fs

III Convert FP to equal or next-nearest-to-zero 64-bit inte-
ger value.

trunc.w.d fd, fs
trunc.w.s fd, fs

II Convert FP to equal or next-nearest-to-zero 32-bit inte-
ger value.

8.4 Peculiar Instructions and Their Purposes

MIPS has never avoided innovation, and the instruction set contains features
whose ingenuity might go unheeded (and unused) because they are hard to
understand and have not been well explained. This section discusses those
features.

8.4.1 Load Left/Load Right: Unaligned Load and Store

Any CPU is going to be more efficient if frequently used data as arranged
in memory is aligned on memory boundaries that fit the hardware. For a
machine with a 32-bit bus, this favors 32-bit data items that are stored on
an aligned 32-bit boundary; similarly, a 64-bit bus favors 64-bit data items
stored on an aligned 64-bit boundary.

If a CPU must fetch or store unaligned data, it will need two bus cycles.
RISC pipeline simplicity will not let the CPU perform two bus cycles for one
instruction, so an unaligned transfer will take at least two instructions.

The ultimate RISC attitude is that we’ve got byte-sized operations and
that any unaligned operation you like can be built out of those. If a piece
of data (formatted as a 4- or 8-byte integer value) might be unaligned, the
prograrnmer/compiler can always read it as a sequence of byte values and
then use shift/mask operations to build it up in a register. The sequence for



212 8.4. Peculiar Instructions and Their Purposes

a word-sized load looks something like this (assuming a big-endian CPU, and
without optimizing for the load delay in the CPU pipeline):

lbu rt, o(b)
sll rt, rt, 24
lbu rtmp, o+1(b)
sll rtmp, rtmp, 16
or rt, rt, rtmp
lbu rtmp, o+2(b)
sll rtmp, rtmp, 8
or rt, rt, rtmp
lbu rtmp, o+3(b)
or rt, rt, rtmp

That’s 10 instructions, four loads, and needs a temporary register and is
likely to be quite a performance hit if you do it a lot. The MIPS solution to this
is a pair of instructions, each of which can obtain as much of the unaligned
word as fits into an aligned word-sized chunk of memory.

The instructions that MIPS invented are used to perform a relatively ef-
ficient unaligned load/store (word or double size) operation and were men-
tioned in Section 2.5.2.

The hardware that accesses the memory (or cache) transfers 4 or 8 bytes
of aligned data. Partial-word stores are implemented either by a hardware
signal that instructs the memory controller to leave certain bytes unchanged
or by a read-modify-write (RMW) sequence on the entire word/doubleword.
MIPS CPUs mostly have RMW hardware available for writes to the data cache,
but don’t do that for memory — the memory controller must implement
partial-word writes for itself.

We said that there need to be two instructions, because there are two
bus cycles. The instructions are called load word left and load word right
(mnemonics lwl and lwr) for 32-bit operations; they are called load dou-
ble left and load double right (1d1 and ldr) for 64-bit operations. The “left”
instruction deals with the high-order bits of the unaligned integer, and the
“right” instruction fetches the low-order bits, so “left” is used in the same
sense as in “shift left”. Because the instructions are defined in terms of more-
significant and less-significant bits but must deal with a byte-addressed
memory, their detailed use depends on the endianness of the CPU (see Sec-
tion 11.6). A big-endian CPU keeps more-significant bits earlier, in lower byte
addresses, and a little-endian CPU keeps more-significant bits later, in higher
addresses.

Figure 8.1 is an attempt to show what’s happening for a big-endian CPU
when the unaligned pseudo-operation uld rd, 0(rb) is coded as

ldl rd, 0(rb)
ldr rd, 7(rb)



Chapter 8. Complete Guide to the MIPS Instruction Set 213

What’s going on in Figure 8.1?

• ldl rd, 0(rb): The 0 offset marks the lowest byte of the unaligned
doubleword, and since we’re big-endian that’s the 8 most-significant
bits. ldl is looking for bits to load into the left (most-significant bits) of
the register, so it takes the addressed byte and then the ones after it in
memory to the end of the word. They’re going up in memory address,
so they’re going down in significance; they want to be butted up against
the high-numbered end of the register as shown.

• ldr rd, 7(rb): The 7 is a bit odd, but it points at the highest byte
of the doubleword — rb + 8 would point at the first byte of the next
double-word, of course. ldr is concerned with the rightmost, least-
significant bits; it takes the remaining bytes of our original data and
butts them against the low-numbered bits of the register, and the job’s
done.

If you’re skeptical about whether this works for words in any alignment, go
ahead and try it. Note that in the case where the address is in fact correctly
aligned (so the data could have been loaded with a conventional ld instruc-
tion), uld loads the same data twice; this is not particularly interesting but
usually harmless.

The situation can get more confusing for people who are used to little-
endian integer ordering because little-endians often write data structures
with the least-significant bits to the left. Once you’ve done that, the “left” in
the instruction name becomes “right” on the picture (though it’s still move-
ment toward more-significant bits). On a little-endian CPU roles of ldl/ldr
are exchanged, and the code sequence is

1dr rd, 0(rb)
ldl rd, 7(rb)

Figure 8.2 shows you what happens: The most significant bits are reluc-
tant1y kept on the left, so it’s the mirror image of the diagram I’d “naturally”
have drawn.

With these figures in front of us, we can try to formulate an exact descrip-
tion of what the instructions do:

• Load/store left: Find the addressed byte and enclosing word (or dou-
bleword, for 64-bit operations). Operate on the addressed byte and any
more bytes between it and the least-significant end of that memory word
(higher byte addresses for big-endian and lower byte addresses for little-
endian).
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ldr rd, 7(rb)

0 7654321

0

8

63 0

63 0

0x550x440x330x220x11

0x66 0x880x77

0x11 hgf0x550x440x330x22

0x11 0x880x770x660x550x440x330x22

In memory

Register rd

Register rd

rb+7

rb+0

ldl rd, 0(rb)

Figure 8.1: Unaligned load double on a big-endian CPU

Load: Grab all those bytes and shift them to higher bit numbers until
they’re up against the top of the register. Leave any lower-bit-numbered
byte positions within the register unchanged.

Store: Replace those bytes with as many bytes of the register as there’s
room from, starting at the most-significant byte in the register.

• Load/store right: Find the addressed byte and enclosing word/doubleword.
Operate on the addressed byte and any more bytes between it and the
most-significant end of that memory word (lower byte addresses for big-
endian and higher byte addresses for little-endian).

Load: Grab all those bytes and shift them to lower bit numbers until
they’re down against the bottom of the register. Leave any higher-bit-
numbered byte positions within the register unchanged.
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7 0123456

0

8

63 0

63 0

ldl rd, 7(rb)

0x44 0x880x770x660x55

0x330x220x11

h 0x880x770x660x550x44fg

0x11 0x880x770x660x550x440x330x22

In memory

Register rd

Register rd

rb+7

rb+0

ldr rd, 0(rb)

Figure 8.2: Unaligned load double on a little-endian CPU

Store: Replace those bytes with as many bytes of the register as there’s
room from, starting with the least-significant byte in the register.

The load/store 1eft/right instructions do not require the memory con-
troller to offer selective operations on arbitrary groups of bytes within a word;
the active byte lanes are always together at one end of a word or doubleword.

Note that these instructions do not perform all possible realignments;
there’s no special support for unaligned load half (which has to be imple-
mented with byte loads, shifts, masks, and combines).
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8.4.2 Load-Linked/Store-Conditional

The instructions 11 (load-linked) and sc (store-conditional) provide an alter-
native to the atomic test-and-set sequence that is part of most traditional
instruction sets. They provide a test-and-set sequence that operates without
any guarantee of atomicity but that succeeds (and tells you it’s succeeded)
only if it turned out to be atomic. See Section 5.8.4 for what they’re for and
how they’re used.

Here’s how they work. The instruction ll rt, o(b) performs a 32-bit
load from the usual base+offset address. But as a side effect it remembers
that a load-link has happened (setting an otherwise-invisible linked status bit
inside the CPU). It also keeps the address of the load in the register LLAddr.

A subsequent sc rt, o(b) first checks whether it can be sure that the
read-modify-write sequence that began with the last-executed 11 will com-
plete atomically. If it can be sure, then the value of rt is stored into the
location and the “true” value 1 is returned in rt. If it can’t be sure that the
operation was atomic, no store happens and rt is set 0.

CAUTION
The test for atomiciiy is unlikely to be exhaus-
tive. The instruction is not defined to fail

only if the memory location really has been
changed by another CPU or task but to fail if
it might have been.

There are two reasons why sc could fail. The first is that the CPU took
an exception somewhere between executing the ll and the sc. Its excep-
tion handler, or a task switch triggered by the exception, might have done
something non-atomic.

The second type of failure happens only in a multiprocessor, when another
CPU has written the memory location or one near it (commonly in the same
line, but some implementations may monitor the whole memory translation
page). For efficiency reasons this detector is only enabled when both partici-
pating CPUs have agreed to map this data as a shared area — strictly, if the
other CPU has completed a coherent store to the sensitive block.

Let’s emphasize again: The failure of the sc is not evidence that some
other task or CPU has in fact written the variable; implementations are en-
courased to rraae orr a rair number of raise warnings against simplicity or
performance.

Multiprocessor CPUs must keep track of the address used by the last 11,
and they keep it in the coprocessor 0 register LLAddr where software can
read and write it. But the only reasons to read and write this register are
diagnostic; on a CPU without multiprocessor features it is redundant. You’re
recommended not to rely on its existence.

Note that this is the only part of the MIPS III specification that has been
regarded as optional by one chip vendor: NEC omitted ll/sc instructions
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from its core Vr4100 CPU, probably unaware that uniprocessors can benefit
from these instructions too.

8.4.3 Conditional Move Instructions

A conditional move instruction copies data from one register to another, but
only if some condition is satisfied — otherwise it does nothing. They were
fealured in other RISC architectures (ARM may have been first) before mak-
ing a MIPS debut with the MIPS IV instruction set (first implemented in the
R8000, R10000, and R5000 in 1995-96). Conditional moves allow compil-
ers to genetate code with fewer conditional branches because conditional
branches are bad for pipeline efficiency.

CPUs built with the simple five-stage pipeline described in Chapter 1 don’t
have much trouble with branches; the branch delay slot instruction is usually
executed, and the CPU then moves straight to the branch target. With these
simple CPUs, most branches are free (provided the branch delay slot contains
a useful instruction) and the others cost only one clock cycle.

But more extravagant implementations of the MIPS ISA may lose many
instruction-execution opportunities while waiting for the branch condition to
be resolved and the target instruction to be fetched. The long-pipeline R4400,
for example, always pays a two-clock-cycle penalty on every taken branch. In
the highly superscalar R10000 (which can issue four instructions per clock
cycle) you might lose seven instruction issue opportunities waiting for the
branch condition to be resolved. To reduce the effort of this the R10000 has
special branch prediction circuits that guess the branch outcome and run
ahead accordingly, while keeping the ability to back off from those specula-
tive instructions. This is quite complicated: If the compiler can reduce the
frequency with which it relies on the complicated features, it will run faster.

How do conditional move instructions get rid of branches? Consider a
piece of code generating the minimum of two values:

n = (a < b) ? a : b;

Assuming that the compiler has managed to get all the variables into reg-
isters, this would normally compile to a sequence like the following (this is
logical assembler language sequence, before making pipeline adjustments for
delay slots):

slt t0, a, b
move n, a
bne $0, t0, 1f
move n, b

1:
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On a MIPS IV CPU we can replace this with

slt t0, a, b
move n, a
movz n, b, t0

Although the conditional move instruction movz looks strange, its role in
the pipeline is exactly like any other register/register computational instruc-
tion. A branch has been removed and our highly pipelined CPU will go faster.

8.4.4 Branch-Likely

Another pipeline optimization, this one introduced with MIPS II, is branch-
likely.

Compilers are generally reasonably successful in filling branch delay slots,
but they have the hardest time at the end of small loops. Such loop-closing
branches are the most frequently executed, so nops in their delay slots are
significant; however, the loop body is often full of dependent code that can’t
be reorganized.

The branch-likely instruction nullifies the branch delay slot instruction
when the branch is not taken. An instruction is nullified by preventing its
write-back stage from happening — and in MIPS that’s as if the instruction
had never been executed. By executing the delay slot instruction only when
the branch is taken, the delay slot instruction becomes part of the next go
around the loop.

So any loop

loop:
first
second
...
blez t0, loop
nop

can be transformed to

loop:
first

loop2:
second
...
blezl t0, loop2
first
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This means we can fill the branch delay slot on loops almost all the time,
greatly reducing the number of nops actually executed.

If you look at the encodings of the instructions you can sometimes see
how the CPU is designed. Although there are variable encodings, those fields
that are required very early in the pipeline are encoded in a totally regular
way:

You’ll see it implied in some manufacturers’ documentation that branch-
likely instructions, by eliminating nops, make programs smaller; this is a
misunderstanding. You can see from the example that the nop is typically
replaced by a duplicated instruction, so there’s no gain in program size. The
gain is in speed.

8.4.5 Integer Multiply-Accumulate and Multiply-Add Instruc-
tions

Many multimedia algorithms include calculations that are typically a sum
of products. In the inner loops of something like a JPEG image decoder,
the calculation is intensive enough to keep the CPU’s arithmetic units fully
utilized.

The calculations break down into a series of multiply-accumulate opera-
tions, each of which looks like this:

a = a + b * c;

Although the RISC principles described in Chapter 1 would appear to im-
ply that it is better to build this calculation out of simple, separate func-
tions, this is probably a genuine exception to that rule. It’s probably because
multiply is a multiple-clock-cycle operation, leaving a simple RISC with the
problem of scheduling the subsequent (quick) add: If you attempt the add
too early, the machine stalls; if you leave it until too late, you don’t keep the
critical arithmetic units busy. In a floating-point unit, there’s an additional
advantage in that some housekeeping associated with every instruction can
be shared between the multiply and add stages.

Such operations have been added as vendor-specific extensions by a num-
ber of different manufacturers in a number of different implementations. But
there’s a subset of compatible operations to be found on IDT, Toshiba, and
QED CPUs. They operate in the independently clocked integer multiply unit
and so are all multiply-accumulate operations,1 accumulating in the multiply
unit output registers lo and hi. Confusingly, all vendors have called their
instructions mad or madd, though they should have been called “mac”.

1Toshiba’s R3900 and some other CPUs have a three-operand multiply-add but even
there the addend is constrained to come from io/hi. The IDT and QED CPUs offer a two-
operand instruction that is identical to Toshiba’s in the special case where the destination
register is $0.
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8.4.6 Floating-Point Multiply-Add Instructions

All the arguments above apply to floating-point calculations too, though the
criticai applications here are 3D graphics transformations. In a floating-point
unit, there’s an additional advantage to a dual operation, in that some house-
keeping associated with every instruction can be shared between the multiply
and add stages.

There’s no gainsaying actual benchmark performance, and the multiply-
add at the heart of most PowerPC floating-point units has certainly produced
some very impressive figures.

The floating-point operations madd, msnb, nmadd, and nmsub got included
in the MIPS IV instruction set. These are genuine four-operand multiply-add
instructions, performing operations such as

a = b + c * d;

They’re aimed at large graphic/numeric-intensive applications on SGI work-
stations and heavyweight numerical processing in SGI’s range of supercom-
puters.

8.4.7 Multiple FP Condition Bits

Prior to MIPS IV, all tests on floating-point numbers communicated with the
main instruction set through a single condition bit, which was set explicitly
by compare instructions and tested explicitly by special conditional branch
instiuctions. The architecture grew like this because in the early days the
floating-point unit was a separate chip, and the FP condition bit was imple-
mented with a signal wire that passed into the main CPU.

The trouble with the single bit is that it creates dependencies that re-
duce the potential for launching multiple instructions in parallel. There is an
unavoidable write-to-read dependency between the compare instruction that
creates a condition and the branch instruction that tests it, while there’s an
avoidable read-to-write interaction where a subsequent compare instruction
must be delayed until the branch has seen and acted on its previous value.

FP array calculations benefit from a compilation technique called software
pipelining, where a loop is unrolled and the computations of successive loop
iterations are deliberately interleaved to make maximum use of multiple FP
units. But if something in the loop body requires a test and branch, the single
condition unit will make this impossible, hence multiple conditions can make
a big difference.

MIPS IV provides 8 bits, not just 1; previously reserved fields in compare
and FP conditional branch instructions have been found that can specify
which condition bit should be used. Older compilers set reserved fields to
zero, so old code will run correctly using just condition code zero.
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8.4.8 Prefetch

New in MIPS IV, pref provides a way for a program to signal the cache/memory
system that data is going to be needed soon. Implementations that take
advantage of this can prefetch the data into a cache. It’s not really clear
how many applications can foresee what references are likely to cause cache
misses; prefetch is useful for large-array arithmetic functions, however, where
chunks of data can be prefetched in one loop iteration so as to be ready for
the next go-around.

The first argument to pref is a small-integer coded “hint” about how the
program intends to use the data. Legal values are as shown in Table 8.5.

Some newer CPUs (R10000) implement a nonblocking load in which ex-
ecution continues after a load cache miss, just so long as the load target
register is not referenced. However, the pref instruction is better applied to
longer-range prediction of memory accesses.

MIPS IV CPUs are free to ignore pref but of course must not take an illegal
op-code trap; CPUs that aren’t interested treat it as a nop.

Table 8.5: Prefetch “hint” codes
Value MIPS name What it means

0 load We don’t expect to write this location.

1 store Probably will be written.

2-3 – Reserved.

4 load streamed Part of memory area that will be accessed sequentially. It would

5 store streamed be resonable to allow prefetched locations to overwrite each
other in succession.

6 load retained A location that is expected to be used heavily for quite a while,
which may be worth avoiding replacing in the cache: In particu-

7 store retained lar, it would not be sensible to replace it with data marked
“streamed”.

8-31 – Reserved.

8.4.9 Sync: A Load/Store Barrier

Suppose we have a program that consists of a number of cooperating sequen-
tial tasks, each running on a different processor and sharing memory. We’re
probably talking about a multiprocessor using sophisticated cache coherency
algorithms, but the cache management is not relevant right now.

Any task’s robust shared memory algorithm will be dependent on when
shared data is accessed by other tasks: Did they read that data before I
changed it? Have they changed it yet?
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Since each task is strictly sequential, why is this a problem? It turns out
that the problem occurs because CPU tuning features often interfere with the
logical sequence of memory operations; by definition this interference must
be invisible to the program itself, but it will show up when viewed from out-
side. There can be good reasons for breaking natural sequence. For optimum
memory performance, reads — where the CPU is stalled waiting for data —
should overtake pending writes. As long as the CPU stores both the address
and data on a write, it may defer the write for a while. If a CPU does that,
it had better check that the overtaking read is not for a location for which a
write is pending; that can be done.

Another example is when a CPU that implements nonblocking loads ends
up with two reads active simultaneously: For best performance the memory
system should be allowed to choose which one to complete first.

CPUs that allow neither of these changes of sequence, performing all reads
and writes in program order, are called strongly ordered: Most MIPS CPUs,
when configured as uniprocessors, are strongly ordered. But there are excep-
tions: Even some early R3000 systems would allow reads to overtake pending
writes (after checking that the read was not for any pending-write location).

On a MIPS III or subsequent CPU that is not strongly ordered, a sync in-
struction defines a load/store barrier. You are guaranteed that all load/stores
initiated before the sync will be seen before any loadlstore initiated afterward.

Note that in a multiprocessor we have to insist that the phrase “be seen”
means “be seen by any task in the system that correctly implements the
shared memory caching system”. This is usually done by ensuring that
sync produces a reordering barrier for transactions between the CPU and
the cache/memory/bus subsystem.

There are limitations. There is no guarantee about the relative timing of
loadlstores and the execution of the sync itself; it merely separates load/stores
before the instruction from those after. sync does not solve the problem of
ensuring some timing relationship between the CPU’s program execution and
external writes, which we mentioned in Section 4.13.

And inside a multiprocessor sync works only on certain access types (un-
cached and coherent cached accesses). Much “normal” cached memory is
non-coherent; any data space that is known not to be shared is safe, and so
is anything that is read-only to the sharing tasks.

sync does not need to do anything on CPUs that are strongly ordered; in
such cases it is a nop.

8.5 Instruction Encodings

All MIPS instructions (up to and including the MIPS IV ISA) are listed in order
of encoding in Table 8.6. Subsections 8.5.1-8.5.3 provide further notes on the
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material in this table.

Most MIPS manuals say there are only three instruction formats used. I
daresay this corresponds to some reality in the original internal design of
the chip, but it never looked like that to the user, to whom it appears that
different instructions use the fields for quite different purposes. Newer in-
structions use more complex encodings.

The table tells you the binary encoding, the mnemonic of the instruction
in assembler code, and the MIPS instruction set level when the instruction
was introduced. Occasionally this last column will have the name of a specific
CPU that offers a special instruction or will be left blank when the instruction
was implemented with the original instruction.

8.5.1 Fields in the Instruction Encoding Table

The following notes describe the fields in Table 8.6 (starting on page 225).

Field 31-26 The primary op-code “op”, which is b bits long. Instruc-
tions that are having trouble fitting in 32 bits (like the
“long” j and jal instructions or arithmetic with a 16-
bit constant) have a unique “op” field. Other instructions
come in groups that share an “op” value, distinguished by
other fields.

Field 5-0 Subcode field used for the three-register arithmeti-
cal/logical group of instructions (major op-code zero).

Field 25-21 Yet another extended op-code field, this time used by
coprocessor-type instructions.

rs, rt, rw One or two fields identifying source registers.

o(b), offset, rb “o” is a signed offset that fits in a 16-bit field; “b” is a
general-purpose base register whose contents are added
to “o” to yield an address for a load or store instruction.

rd The destination register, to be changed by this instruction.

shft How far to shift, used in shift-by-constant instructions.

broffset A 16-bit signed offset defining the destination of a PC-
relative branch. Offset zero is the delay slot instruction
after the branch, so a branch-to-self has an offset of -1.

target A 26-bit word address to be jumped to (it corresponds to
a 28-bit byte address, which is always word-aligned). The
long jump j instruction is rarely used, so this format is
pretty much exclusively for function calls (ja1).
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The high-order 4 bits of the target address can’t be spec-
ified by this instruction and are taken from the address
of the jump instruction. This means that these instruc-
tions can reach anywhere in the 256MB region around the
instructions’ location. To jump further, use a jr (jump
register) instruction.

constant A 16-bit integer constant for immediate arithmetic or logic
operations. It’s interpreted as signed or unsigned accord-
ing to the instruction context.

cs/cd Coprocessor register as source or destination, respectively.
Each coprocessor section of the instruction set znay have
up to 32 data registers and up to 32 control registers.

fr/fs/ft Floating-point unit source registers.

fd Floating-point destination register (written by the instruc-
tion).

N/M Selector for FP condition code — “N” when it’s being read,
and “M” when it’s being written by a compare instruction.
The field is absent from assembler language and zero in
the machine instructions before MIPS IV; hence all the
floating-point compare instructions have the “M” field as
zero in pre-MIPS IV guise.

hint A hint for the prefetch instruction, described in Section
8.4.8.

cachop This is used with the cache instruction and encodes an
operation to be performed on the cache entry discovered
by the instruction’s address. See Table 4.2 in Section 4.10.

8.5.2 Notes on the Instruction Encoding Table

• Double use of instruction encoding: LSI’s MiniRISC core CPU defines in-
structions whose encodings clash with standard instructions in MIPS III
and higher. We’ve listed both interpretations.

• Instruction aliases: Mostly we have suppressed all but one possible
mnemonic for the same instruction, but occasionally we leave them in.
Instructions such as nop and 1.s are so ubiquitous that it seems sim-
pler to include them than to leave them out.

• Coprocessor instructions: Instructions that were once defined but are
no longer have been expunged. Coprocessor 3 was never used by any
MIPS I CPU and is not usable with MIPS III or higher — and some of the
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compulsory coprocessor op-codes, including memory loads, have been
recycled for different uses.

Table 8.6: Machine instructuin in order of encoding

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

0 0 0 0 0 0 nop

0 0 rw rd shft 0 sll d,w,shft

0 rs N 0 rd 0 1 movf d,s,N MIPS IV

0 rs N 1 rd 0 1 movf d,s,N MIPS IV

0 rs rt rd 0 1 selsr d,s,N MiniRISC-4010

0 0 rw rd shft 2 srl d,w,shft

0 0 rw rd shft 3 sra d,w,shft

0 rs rt rd 0 4 sllv d,t,s

0 rs rt rd 0 5 selsl d,t,s MiniRISC-4010

0 rs rt rd 0 6 srlv d,t,s

0 rs rt rd 0 7 srav d,t,s

0 rs 0 0 0 8 jr s

0 rs 0 31 0 9 jalr s

0 rs 0 rd 0 9 jalr d,s

0 rs × rd 0 10 ffs d,s MiniRISC-4010

0 rs rt rd 0 10 movz d,s,t MIPS IV

0 rs × rd 0 11 ffc d,s MiniRISC-4010

0 rs rt rd 0 11 movn d,s,t MIPS IV

0 code 12 syscall code

0 code × 13 break code

0 code × 14 sdbbp code R3900

0 0 0 0 0 15 sync MIPS II

0 0 0 rd 0 16 mfhi d

0 rs 0 0 0 17 mthi s

0 0 0 rd 0 18 mflo d

0 rs 0 0 0 19 mtlo s

0 rs rt rd 0 20 dsllv d,t,s MIPS III

0 rs rt rd 0 22 dsrlv d,t,s MIPS III

0 rs rt rd 0 23 dsrav d,t,s MIPS III

0 rs rt 0 0 24 mult s,t

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

0 rs rt 0 0 25 multu s,t

0 rs rt 0 0 26 div s,t

0 rs rt 0 0 27 divu s,t

0 rs rt 0 0 28 dmult s,t MIPS III

0 rs rt 0 0 28 madd s,t MiniRISC-4010

0 rs rt 0 0 29 dmultu s,t MIPS III

0 rs rt 0 0 29 maddu s,t MiniRISC-4010

0 rs rt 0 0 30 ddiv s,t MIPS III

0 rs rt 0 0 30 msub s,t MiniRISC-4010

0 rs rt 0 0 31 ddivu s,t MIPS III

0 rs rt 0 0 31 msubu s,t MiniRISC-4010

0 rs rt rd 0 32 add d,s,t

0 rs rt rd 0 33 addu d,s,t

0 rs rt rd 0 34 sub d,s,t

0 rs rt rd 0 35 subu d,s,t

0 rs rt rd 0 36 and d,s,t

0 rs rt rd 0 37 or d,s,t

0 rs rt rd 0 38 xor d,s,t

0 rs rt rd 0 39 nor d,s,t

0 rs rt 0 0 40 madd16 s,t Vr4100

0 rs rt 0 0 41 dmadd16 s,t Vr4100

0 rs rt rd 0 42 slt d,s,t

0 rs rt rd 0 43 sltu d,s,t

0 rs rt rd 0 44 dadd d,s,t MIPS III

0 rs rt rd 0 45 daddu d,s,t MIPS III

0 rs rt rd 0 46 dsub d,s,t MIPS III

0 rs rt rd 0 47 dsubu d,s,t MIPS III

0 rs rt × 48 tge s,t MIPS II

0 rs rt × 49 tgeu s,t MIPS II

0 rs rt × 50 tlt s,t MIPS II

0 rs rt × 51 tltu s,t MIPS II

0 rs rt × 52 teq s,t MIPS II

0 rs rt × 54 tne s,t MIPS II

0 0 rw rd shft 56 dsll d,w,shft MIPS III

0 0 rw rd shft 58 dsrl d,w,shft MIPS III

0 0 rw rd shft 59 dsra d,w,shft MIPS III

0 0 rw rd shft 60 dsll32 d,w,shft MIPS III

0 0 rw rd shft 62 dsrl32 d,w,shft MIPS III

0 0 rw rd shft 63 dsra32 d,w,shft MIPS III

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

1 rs 0 broffset bltz s,p

1 rs 1 broffset bgez s,p

1 rs 2 broffset bltzl s,p MIPS II

1 rs 3 broffset bgezl s,p MIPS II

1 rs 8 constant tegi s,j MIPS II

1 rs 9 constant tegiu s,j MIPS II

1 rs 10 constant tlti s,j MIPS II

1 rs 11 constant tltiu s,j MIPS II

1 rs 12 constant teqi s,j MIPS II

1 rs 14 constant tnei s,j MIPS II

1 rs 16 broffset bltzal s,p

1 rs 17 broffset bgezal s,p

1 rs 18 broffset bltzall s,p MIPS II

1 rs 19 broffset bgezall s,p MIPS II

2 target j target

3 target jal target

4 rs rt broffset beq s,t,p

5 rs rt broffset bne s,t,p

6 rs 0 broffset blez s,p

7 rs 0 broffset bgtz s,p

8 rs rd (signed)const addi d,s,const

9 rs rd (signed)const addiu d,s,const

10 rs rd (signed)const slti d,s,const

11 rs rd (signed)const sltiu d,s,const

12 rs rd (unsigned)const andi d,s,const

13 rs rd (unsigned)const ori d,s,const

14 rs rd (unsigned)const xori d,s,const

15 0 rd (unsigned)const lui d,const

16 0 rt cs 0 0 mfc0 t,cs

16 1 rt cs 0 0 dmfc0 t,cs MIPS III

16 2 rt cs 0 0 cfc0 t,cs

16 4 rt cd 0 0 mtc0 t,cd

16 5 rt cd 0 0 dmtc0 t,cd MIPS III

16 6 rt cd 0 0 ctc0 t,cd

16 16 0 0 0 1 tlbr

16 16 0 0 0 2 tlbwi

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

16 16 0 0 0 6 tlbwr

16 16 0 0 0 8 tlbp

16 16 0 0 0 16 rfe MIPS I only

16 16 0 0 0 24 eret MIPS III

16 16 0 0 0 31 dret MIPS II only

16 16 0 0 0 32 waiti MiniRISC-4010

16 16 0 0 0 33 standby Vr4100

16 16 0 0 0 34 suspend Vr4100

16 8 0 broffset bc0f p

16 8 1 broffset bc0t p

16 8 2 broffset bc0fl p MIPS II

16 8 3 broffset bc0tl p MIPS II

17 0 rt fs 0 0 mfcl t,fs

17 1 rt fs 0 0 dmfcl t,fs MIPS III

17 2 rt cs 0 0 cfcl t,cs

17 4 rt cs 0 0 mtcl t,cs

17 5 rt cs 0 0 dmtcl t,cs MIPS III

17 6 rt cs 0 0 ctcl t,cs

17 16 ft fs fd 0 add.s fd,fs,ft

17 17 ft fs fd 0 add.d fd,fs,ft

17 16 ft fs fd 1 sub.s fd,fs,ft

17 17 ft fs fd 1 sub.d fd,fs,ft

17 16 ft fs fd 2 mul.s fd,fs,ft

17 17 ft fs fd 2 mul.d fd,fs,ft

17 16 ft fs fd 3 div.s fd,fs,ft

17 17 ft fs fd 3 div.d fd,fs,ft

17 16 0 fs fd 4 sqrt.s fd,fs MIPS II

17 17 0 fs fd 4 sqrt.d fd,fs MIPS II

17 16 0 fs fd 5 abs.s fd,fs

17 17 0 fs fd 5 abs.d fd,fs

17 16 0 fs fd 6 mov.s fd,fs

17 17 0 fs fd 6 mov.d fd,fs

17 16 0 fs fd 7 neg.s fd,fs

17 17 0 fs fd 7 neg.d fd,fs

17 16 0 fs fd 8 round.l.s fd,fs MIPS III

17 17 0 fs fd 8 round.l.d fd,fs MIPS III

17 16 0 fs fd 9 trunc.l.s fd,fs MIPS III

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

17 17 0 fs fd 9 trunc.l.d fd,fs MIPS III

17 16 0 fs fd 10 ceil.l.s fd,fs MIPS III

17 17 0 fs fd 10 ceil.l.d fd,fs MIPS III

17 16 0 fs fd 11 floor.l.s fd,fs MIPS III

17 17 0 fs fd 11 floor.l.d fd,fs MIPS III

17 16 0 fs fd 12 round.w.s fd,fs MIPS II

17 17 0 fs fd 12 round.w.d fd,fs MIPS II

17 16 0 fs fd 13 trunc.w.s fd,fs MIPS II

17 17 0 fs fd 13 trunc.w.d fd,fs MIPS II

17 16 0 fs fd 14 ceil.w.s fd,fs MIPS II

17 17 0 fs fd 14 ceil.w.d fd,fs MIPS II

17 16 0 fs fd 15 floor.w.s fd,fs MIPS II

17 17 0 fs fd 15 floor.w.d fd,fs MIPS II

17 16 N 0 fs fd 17 movf.s fd,fs,N MIPS IV

17 16 N 1 fs fd 17 movt.s fd,fs,N MIPS IV

17 17 N 0 fs fd 17 movf.d fd,fs,N MIPS IV

17 17 N 1 fs fd 17 movt.d fd,fs,N MIPS IV

17 16 rt fs fd 18 movz.s fd,fs,t MIPS IV

17 17 rt fs fd 18 movz.d fd,fs,t MIPS IV

17 16 rt fs fd 19 movn.s fd,fs,t MIPS IV

17 17 rt fs fd 19 movn.d fd,fs,t MIPS IV

17 16 0 fs fd 21 recip.s fd,fs MIPS IV

17 17 0 fs fd 21 recip.d fd,fs MIPS IV

17 16 0 fs fd 22 rsqrt.s fd,fs MIPS IV

17 17 0 fs fd 22 rsqrt.d fd,fs MIPS IV

17 17 0 fs fd 32 cvt.s.d fd,fs

17 20 0 fs fd 32 cvt.s.w fd,fs

17 21 0 fs fd 32 cvt.s.l fd,fs MIPS III

17 16 0 fs fd 33 cvt.d.s fd,fs

17 20 0 fs fd 33 cvt.d.w fd,fs

17 21 0 fs fd 33 cvt.d.l fd,fs MIPS III

17 16 0 fs fd 36 cvt.w.s fd,fs

17 17 0 fs fd 36 cvt.w.d fd,fs

17 16 0 fs fd 37 cvt.l.s fd,fs MIPS III

17 17 0 fs fd 37 cvt.l.d fd,fs MIPS III

17 16 ft fs M × 48 c.f.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 48 c.f.d M,fs,ft MIPS IV if M!=0

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

17 16 ft fs M × 49 c.un.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 49 c.un.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 50 c.eq.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 50 c.eq.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 51 c.ueq.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 51 c.ueq.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 52 c.olt.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 52 c.olt.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 53 c.ult.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 53 c.ult.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 54 c.ole.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 54 c.ole.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 55 c.ule.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 55 c.ule.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 56 c.sf.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 56 c.sf.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 58 c.seq.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 58 c.seq.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 59 c.ngl.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 59 c.ngl.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 60 c.lt.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 60 c.lt.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 61 c.nge.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 61 c.nge.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 62 c.le.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 62 c.le.d M,fs,ft MIPS IV if M!=0

17 16 ft fs M × 63 c.ngt.s M,fs,ft MIPS IV if M!=0

17 17 ft fs M × 63 c.ngt.d M,fs,ft MIPS IV if M!=0

17 8 0 broffset bc1f p

17 8 1 broffset bc1t p

17 8 2 broffset bc1fl p MIPS II

17 8 3 broffset bc1tl p MIPS II

17 8 N 0 broffset bc1f N,p MIPS IV

17 8 N 1 broffset bc1t N,p MIPS IV

17 8 N 2 broffset bc1fl N,p MIPS IV

17 8 N 3 broffset bc1tl N,p MIPS IV

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

18 0 rt cs 0 0 mfc2 t,cs

18 2 rt cs 0 0 cfc2 t,cs

18 4 rt cs 0 0 mtc2 t,cs

18 6 rt cs 0 0 ctc2 t,cs

18 8 0 broffset bc2f p

18 8 1 broffset bc2t p

18 8 2 broffset bc2fl p MIPS II

18 8 3 broffset bc2tl p MIPS II

19 rb rt 0 fd 0 lwxc1 fd,t(b) MIPS IV

19 rb rt 0 fd 1 ldxc1 fd,t(b) MIPS IV

19 rb rt fs 0 8 swxc1 fd,t(b) MIPS IV

19 rb rt fs 0 9 sdxc1 fd,t(b) MIPS IV

19 rb rt hint 0 15 prefx hint,t(b) MIPS IV

19 fr ft fs fd 32 madd.s fd,fr,fs,ft MIPS IV

19 fr ft fs fd 33 madd.d fd,fr,fs,ft MIPS IV

19 fr ft fs fd 40 msub.s fd,fr,fs,ft MIPS IV

19 fr ft fs fd 41 msub.d fd,fr,fs,ft MIPS IV

19 fr ft fs fd 48 nmadd.s fd,fr,fs,ft MIPS IV

19 fr ft fs fd 49 nmadd.d fd,fr,fs,ft MIPS IV

19 fr ft fs fd 56 nmsub.s fd,fr,fs,ft MIPS IV

19 fr ft fs fd 57 nmsub.d fd,fr,fs,ft MIPS IV

20 rs rt broffset beq1 s,t,p MIPS II

21 rs 0 broffset bnezl s,p MIPS II

21 rs rt broffset bnel s,t,p MIPS II

22 rs 0 broffset blez1 s,p MIPS II

23 rs 0 broffset bgtzl s,p MIPS II

24 rs rd (signed)const daddi d,s,const MIPS III

25 rs rd (signed)const daddiu d,s,const MIPS III

26 rb rt offset ldl t,o(b) MIPS III

27 rb rt offset ldr t,o(b) MIPS III

28 rs rt 0 0 0 mad s,t R4650

28 rs rt rd 0 0 mad d,s,t R3900

28 rs rt 0 0 1 madu s,t R4650

28 rs rt rd 0 2 mul d,s,t R4650

28 rs rt constant addciu t,r,j MiniRISC-4010

— continued —
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Table 8.6: continued

31-26 25-21 20-18 17-16 15-11 10-8 7-6 5-0 Assembler name ISA level

32 rb rt offset lb t,o(b)

33 rb rt offset lh t,o(b)

34 rb rt offset lwl t,o(b)

35 rb rt offset lw t,o(b)

36 rb rt offset lbu t,o(b)

37 rb rt offset lhu t,o(b)

38 rb rt offset lwr t,o(b)

39 rb rt offset lwu t,o(b) MIPS III

40 rb rt offset sb t,o(b)

41 rb rt offset sh t,o(b)

42 rb rt offset swl t,o(b)

43 rb rt offset sw t,o(b)

44 rb rt offset sdl t,o(b) MIPS III

45 rb rt offset sdr t,o(b) MIPS III

46 rb rt offset swr t,o(b)

47 0 1 0 0 0 flushi MiniRISC-4010

47 0 2 0 0 0 flushd MiniRISC-4010

47 0 3 0 0 0 flushid MiniRISC-4010

47 rb 4 offset wb o(b) MiniRISC-4010

47 rb catchop offset cache catchop,o(b) MIPS III

48 rb rt offset ll t,o(b) MIPS II

49 rb ft offset l.s t,o(b)

50 rb cd offset lwc2 cd,o(b)

51 rb hint offset pref hint,o(b) MIPS IV

52 rb rt offset lld t,o(b) MIPS III

53 rb ft offset l.d ft,o(b) MIPS II

54 rb cd offset ldc2 cd,o(b) MIPS II

55 rb rt offset ld t,o(b) MIPS III

56 rb rt offset sc t,o(b) MIPS II

57 rb ft offset s.s ft,o(b)

57 rb ft offset swc1 ft,o(b)

58 rb cs offset swc2 cs,o(b)

60 rb rt offset scd t,o(b) MIPS III

61 rb ft offset s.d ft,o(b) MIPS II

61 rb ft offset sdc1 ft,o(b) MIPS II

62 rb cs offset sdc2 cs,o(b) MIPS II

63 rb rt offset sd t,o(b) MIPS III
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8.5.3 Encodings and Simple Implementation

If you look at the encodings of the instructions you can sometimes see how
the CPU is designed. Although there are variable encodings, those fields that
are required very early in the pipeline are encoded in a totally regular way:

• Source registers are always in the same place, so that the CPU can
fetch two operands firom the integer register file without any conditional
decoding. In some instructions, both registers will not be needed, but
since the register file is designed to provide two source values on every
clock cycle nothing has been lost.

• The 16-bit constant is always in the same place, permitting the appro-
priate instruction bits to be fed directly into the ALU’s input multiplexes
without conditional shifts.

8.6 Instructions by Functional Group

We’ve divided the instruction set into reasonable chunks, in this order:

• Nop

• Register/register moves: widely used, if not exciting; includes condi-
tional moves added in MIPS IV

• Load constant: integer immediate values and addresses

• Arithmetical/logical instructions

• Integer multiply, divide, and remainder

• Integer multiply-accumulate

• Loads and stores

• Jumps, subroutine calls, and branches

• Breakpoint and trap

• CP0 functions: instructions for CPU control

• Floating point

• ATMizer-II floating point: obscure special instructions
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8.6.1 Nop

nop: The MIPS instruction set is rich in noes, since any instruction with zero
as a destination is guaranteed to do nothing. The favored one is sll zero,
zero, zero whose binary encoding is a zero-valued word.

8.6.2 Register/Register Moves

move: Usually implemented with an or with the $zero register. A few CPUs
— where for some reason adding is better supported than logical operations
— use addu.1

Conditional Move

Useful branch-minimizing addition to instruction set in MIPS IV (see Section
8.4.3).

movf, movt: conditional move of integer register, testing floating-point condi-
tion code.

movn, movx: Conditional move of integer register subject to state of another
register.

8.6.3 Load Constant

d1a, 1a: Macro-instructions to load the address of some labelled location
or variable in the program. You only need dla when using 64-bit pointers
(which you’ll only do in big UNIX-type systems). These instructions accept
the same addressing modes as do all loads and stores (even though they do
quite different things with them).

dli, 1i: Load constant immediate. dli is the 64-bit version, not supported
by all toolchains, and is only needed to load unsigned numbers too big to fit
in 32 bits. This is a macro whose length varies according to the size of the
constant.

lui: Load upper immediate. The 16-bit constant is loaded into bits 16-31
of a register, with bits 32-63 (if applicable) set equal to bit 31 and bits 0-
15 cleared. This instruction is one half of the pair of machine instructions
that load an arbitrary 32-bit constant. Assembler programmers will probably
never write this explicitly; it is used implicitly for macros like li (load imme-
diate), la (load address), and above all for implementing useful addressing
modes.

1For example, some LSI MiniIRISC CPUs have the ability to run two instructions at once
under some circumstances and adds a pair with more instructions than logical operations
do.
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8.6.4 Arithmetical/Logical

The arithmetical/logical instructions are further broken down into the follow-
ing types:

Add

add, addi, dadd, daddi: Obscure and rarely used alternate forms of addu,
which trap when the result would overflow. Probably of use to Cobol compil-
ers.

addciu: Add-with-carry instruction, specific to the LSI MiniRISC core.

addu, addiu, daddu, daddiu: Addition, with separate 32-bit and 64-bit ver-
sions. Here and throughout the instruction set, 64-bit versions of instruc-
tions are marked with a leading “d” (for doubleword); also, you don’t need to
specify the “immediate” mnemonic — you just feed the assembler a constant.
If the constant you need can’t be represented in the 16-bit field provided in
the instruction, then the assembler will produce a sequence of instructions.

dsub, sub: Subtract variants that trap on overflow.

dsubu, subu: Regular 64- and 32-bit subtraction (there isn’t a subtract-
immediate, of course, because the constant in add-immediate can be neg-
ative).

Miscellaneous Arithmetic

abs, dabs: Absolute value; expands to set and branch (or conditional move if
mere is ones).

dneg, neg, dnegu, negu Unary negate; mnemonics without U will trap on
overflow.

max, min: Only available on LSI MiniRISC CPUs.

Bitwise Logical Instructions

and, andi, or, ori, xor, xori, nor: Three-operand bitwise logical operations.
Don’t write the “immediate” types — the assembler will generate them auto-
matically when fed a constant operand. Note that there’s no nori instruction.

not: Two-operand instruction implemented with nor.
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Shift and Rotates

drol, dror, rol, ror: Rotate right and left; expand to four-instruction se-
quence.

dsll, ds1132, dsllv: 64-bit (double) shift left, bringing zeroes into low bits.
The three different instructions provide for different ways of svecifvitia the
shift amount: by a constant 0-31 bits, by a constant 32-63 bits, or by usins
the low 6 bits or the contents of another register. Assembler programmers
should lust write the dsll mnemonic.

dsra, dsra32, dsrav: 64-bit (double) shift right arithmetic. This is “arith-
metic” in that it propagates copies of bit 63 — the sign bit — into high bits.
That means it implements a correct division by a power of two when applied
to signed 64-bit integer data. Always write the dsra mnemonic; the assem-
bler will choose the instruction format according to how the shift amount is
specified.

dsrl, dsr132, dsrlv: 64-bit (double) shift right logical. This is“logical” in
that it brings zeros into high bits. Although there are three different in-
structions, assembler programmers should always use the dsrl mnemonic;
the assembler will choose the instruction format according to how the shift
amount is specified.

s11, sllv: 32-bit shift left. You only need to write the sll mnemonic.

sra, srav: Shift right arithmetic (propagating the sign bit). Always write sra.

srl, srlv: Shift right logical (bringing zeros into high bits). Always write srl.

Set if. . .

s1t, slti, sltiu, sltu: Hardware instructions, which write a 1 if the condi-
tion is satisfied and a 0 otherwise. Write slt or sltu.

seq, sge, sgeu, sgt, sqtu, sle, sleu, sne: Macro-instructions to set the
destination according to more complex conditions.

Obscure Bit-Related Instructions

ffc, ffs: Find first clear bit, find first set bit (LSI MiniRISC only instructions).

selsl, selsr: Provided only on LSI MiniRISC CPUs. Using two registers to
hold a 64-bit bitfield, rotate left/rotate right and select a 32-bit result. The
rotote amount comes from the special CP0 register ROoTATE, which is CP0
register 23 and holds a number between 0 and 31, for which only bits 0-4 are
implemented. This kind of shift is useful for dealing with bits moving between
words in bitmap graphic applications. It also provides a true rotate operation
if the same register is used for both source operands.
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8.6.5 Integer Multiply, Divide, and Remainder

The integer multiply and divide machine instructions are unusual, because
the MIPS multiplier is a separate unit not built in to the normal pipeline
and takes much longer to produce results than regular integer instructions.
Machine instructions are available to fire off a multiply or divide, which then
proceeds in parallel with the instructions.

Integer multiply-accumulate and multiply-add instructions are built with
the same mechanism (see Section 8.6.6).

As a result of being handled by a separate unit, multiply/divide instruc-
tions don’t include overflow or divide-by-zero tests (they can’t cause excep-
tions because they are running asynchronously) and don’t usually deliver
their results into general-purpose registers (it would complicate the pipeline
by fighting a later instruction for the ability to write the register file). Instead,
multiply/devide results appear in the two separate registers hi and lo. You
can only access these values with the two special instructions mfhi and mflo.
Even in the earliest MIPS CPUs, the result registers are interlocked: If you try
to read the result before it is ready, the CPU is stalled until the data arrives.

However, when you write the usual assembler mnemonics for multiply/divide,
the assembler will generate a sequence of instructions that simulate a three-
operand instruction and perform overflow checking. A div (signed divide)
may expand into as many as 13 instructions. The extra instructions run in
parallel with the hardware divider so that, usually, no time is wasted (the
divide itself takes 35-75 cycles on most MIPS CPUs).

MIPS Corporation’s assembler will convert constant multiplication, and
division/remainder by constant powers of two, into the appropriate shifts,
masks, etc. But the assembler found in most toolchains is likely to leave this
to the compiler.

By a less-than-obvious convention, a multiply or divide written with the
destination register zero (as in div zero, s, t) will give you the raw ma-
chine instruction.1 It is then up to you to fetch the result from hi and/or lo
and to do any checking you need.

Following is the comprehensive list of multiply/divide instructions.

ddiv, ddivu, div, divu: Three-operand macro-instruction for integer divi-
sion, with 64-/32-bit and signed/unsigned options. All trap on divide-by-
zero; signed types trap on overrlow. Use destination zero to obtain just the
divide-start instruction.

ddivd, ddivdu, divd, divdu: Mnemonics for raw machine instruction pro-
vided by some toolchains. It is better to use ddiv zero, ... instead.

1Some toolkits interpret speciat mnemonics, mult for multiplication and divd for divi-
sion, for the machine instructions. However, specifying zero as the destination, though
bizarre, is more portable.
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divo, divou: Explicit name for divide with overflow check, but really just the
same as writing div, divu.

dmul, mul, mulu: Three-operand 64-/32-bit multiply macro-instruction. There
is no overflow check; as a result, there doesn’t need to be an unsigned ver-
sion of the macro — the truncated result is the same for signed and unsigned
interpretation.

Toshiba’s R3900, IDT’s R4640/R4650, and QED CPUs implement three-
operand multiply directly; the instruction is called mul. It is completely equiv-
alent to the macro, in that hi and lo still get set, but the least-significant 32
bits of the result are also put directly into the general-purpose register d. The
CPUs implementing mul also have a mu1u; it always returns the same result
in the destination register, but it leaves an appropriate extension in hi.

mulo, mulou, dmulo, dmulou: Multiply macros that trap if the result overflows
beyond what will fit in one general-purpose register.

dmult, dmuitu, mult, multu: The machine instruction that starts off a mul-
tiply, with signed/unsigned and 32-/64-bit variants. The result never over-
flows, because there’s 64 and I28 bits’ worth of result respectively. The least
significant part of a result gets stored in lo and the most significant part in
hi.

drem, dremu, rem, remu: Remainder operations, implemented as a divide
followed by mfhi. The remainder is kept in the hi register.

mfhi, mflo, mthi, mtlo: Move from hi, etc. These are instructions for ac-
cessing the integer rnultiply/divide unit result registers hi and lo. You won’t
write the mflo/mfhi instructiops in regular code if you stick to the synthetic
mul and div instructions, which retrieve result data for themselves.

MIPS integer multiply, mult or multu, always produces a result with twice
the bit length of the general-purpose registers, eliminating the possibility of
overflow. The high-order and low-order register-sized pieces of the result are
returned in hi and 1o, respectively.

Divide operations put the result in to and the integer remainder in hi.
mthi and mtlo are used only when restoring the CPU state after an exception.

8.6.6 Integer Multiply-Accumulate

Some MIPS CPUs have various forms of integer multiply-accumulate instruc-
tions — none of them in a MIPS standard instruction set. All these instruc-
tions take two general-purpose registers and accumulate into lo and hi. As
usual, “u” denotes an unsigned variant, but otherwise the mnemonic (and
instruction code) is specific to a particular CPU implementation.

dmadd16, madd16: Specific to NEC Vr4100, these variants gain speed by only
accepting 16-bit operands, making them of very limited use to a C compiler.
dmaddi6 accumulates a 64-bit result in the 64-bit lo register.
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mad, madu: Found in Toshiba R3900, IDT R4640/4650, and QED CPUs, these
take two 32-bit operands and accumulate a 64-bit result split between the 1o
and hi registers. The Toshiba R3900 allows a three-operand version, mad,
d, s, t, in which the accumulated value is also transferred to the general-
purpose register d.

madd, maddu, msub, msubu: These do the same thing as the corresponding
mad etc. instructions, but have different encodings. Found only in LSI’s
MiniRISC-4010 and derivative core CPUs.

8.6.7 Loads and Stores

This subsection lists all the assembler’s integer load/store instructions and
anything else that addresses memory Note the following points:

• There are separate instructions for the different data widths supported:
8 bit (byte), 16 bit (halfword), 32 bit (word), and 64 bit (doubleword).

• For data types smaller than the machine register, there’s a choice of
zero-extending (“u” suffix for unsigned) or sign-extending the operation.

• All the instructions listed here may be written with any addressing mode
the assembler supports (see Section 9.4).

• A store instruction is written with the source register first and the ad-
dress register second to match the syntax for loads; this breaks the
general rule that in MIPS instructions the destination is first.

• Machine load instructions require that the data be naturally aligned
(halfwords on a 2-byte boundary, words on a 4-byte boundary, double-
words on an 8-byte bounds). But the assembler supports a complete set
of macro-instructions for loading data that may be unaligned, and these
instructions have a “u” prefix (for unaligned).

All data structures that are declared as part of a standard C program will
be aligned correctly. But you may meet unaligned data from addresses
computed at run time, data structures declared using a nonstandard
language extension, data read in kom a foreign file, and so on.

• All load instructions deliver their result at least one clock cycle later
in the pipeline than computational instructions. In MIPS I CPUs use
of loaded data in the immediately following instruction is illegal; how-
ever , for any MIPS CPU efficiency is maximized by filling the load delay
slot with a useful but nondependent instruction. For MIPS I all decent
assemblers should guarantee this by inserting a nop if necessary.

Following is a list of the instructions.
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1b, lbu: Load byte then sign-extend or zero-extend, respectively, to fill the
whole register.

ld: Load doubleword (64 bits). This machine instruction is available only
on 64-bit CPUs, but assemblers for 32-bit targets will often implement it as
a macro-instruction that loads 64 bits firom memory into two consecutive
integer registers. This is probably a really bad idea, but someone wanted
some compatibility.

1d1, ldr, 1w1, 1wr, sdl, sdr, swl, swr: Load/store left/right, in word/ dou-
bleword versions. Used in pairs to implement unaligned load/store opera-
tions like ulw, though you can always do it for yourself (see Section 8.4.1).

1h, lhu: Load halfword (16 bits), then sign-extend or zero-extend to fill the
register.

11, lld, sc, scd: Load-linked and store-conditional (32- and 64-bit versions);
strange instructions for semaphores (see Section 8.4.2).

lh, lhu: Load word (32 bits), then sign-extend or zero-extend to fill the regis-
ter. lwu is found only in 64-bit CPUs.

pref, prefx: Prefetch data into the cache (see Section 8.4.8. This is only
available in MIPS IV and higher ISAs and is a nop on many of those CPUs.
While pref takes the usual addressing modes, prefx adds a register+register
mode implemented in a single instruction.

sb: Store byte (8 bits).

sd: Store doubleword (64 bits). This may be a macro (storing two consecutive
integer registers into a 64-bit memory location) for 32-bit CPUs.

sh: Store halfword (16 bits).

sw: Store word (32 bits).

uld, ulh, ulhu, ulw, usd, ush, usw: Unaligned load/store macros. The dou-
bleword and word versions are implemented as macro-instructions using the
special load left/load right instructions; halfword operations are built as byte
memory accesses, shifts, and ors. Note that normal delay slot rules do not
apply between the constituent load left/load right of an unaligned operation;
the pipeline is designed to let them run head to tail.

Floating-Point Load and Store

1.d, l.s, s.d, s.s: Load/store double (64-bit format) and single (32-bit for-
mat). Alignment is required, and no unaligned versions are given here. On
32-bit CPUs, l.d and s.d are two-instruction macros that load/store two 32-
bit chunks of memory intolfrom consecutive FP registers (see Section 7.5).
These instructions are also called ldcl, lwcl, sdcl, and swcl (load/store
word/double to coprocessor 1), but don’t write them like that.
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ldxc1, lwxc1, sdxc1, swxc1: Base register+offset register addressing mode
loads and stores, introduced with MIPS IV. In the instruction ldxci fd,
ri(rb), the full address must lie in the same program memory region as is
pointed to by the base register r6 or bad things might happen.

If your toolkit will accept syntax like 1.d fd, ri(rb), then use it.

8.6.8 Jumps, Subroutine Calls, and Branches

The MIPS architecture follows Motorola nomenclature for these instructions
as follows:

• PC-relative instructions are called “branch” and absolute-addressed in-
structions “jump”; the operation mnemonics begin with b or j.

• A subroutine call is “jump and link” or “branch and link”, and the
mnemonics end. . . al.

• All the branch instructions, even branch and link, are conditional, test-
ing one or two registers. Unconditional versions can be and are readily
synthesized, for example beq $0, $0, label.

j: This instruction transfers control unconditionally to an absolute address.
Actually, j doesn’t quite manage a 32-bit address: The top 4 address bits of
the target are not defined by the instruction and the top 4 bits of the current
PC value are used instead. Most of the time this doesn’t matter; 28 bits still
gives a maximum code size of 256MB.

To reach a long way away, you must use the jr (jump to register) instruc-
non; which is also used for computed jumps. You can write the j mnemonic
with a register, but it’s quite popular not to do so.

jal, jalr: These implement a direct and indirect subroutine call. As well as
jumping to the specified address, they store the return address (the instruc-
tion’s own address+8) in register ra, which is the alias for $31.1 Why add 8
to the program counter? Remember that jump instructions, like branches,
always execute the immediately following branch delay slot instruction, so
the return address needs to be the instruction after the branch delay slot.
Subroutine return is aone mtn a dump to regfster, most often jr ra.

Position-independent subroutine calls can use the bal, bgezal, and bltzal
instructions.

b: Unconditional PC-relative (though relatively short-range) branch.

bal: PC-relative function call.
1In fact the jalr machine instruction allows you to specify a register other than $31 to

receive the return address, but this is seldom useful, and the assembler will automatically
put in $31 if you do not specify one.
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bc0f, bc0fl, bc0t, bc0tl, bc2f, bc2fl, bc2t, bc2tl: Branches that test the
coprocessor 0 or coprocessor 2 condition bit, neither of which exist on most
modern CPUs. On older CPUs these test an input pin.

bc1f, bc1fl, bc1t, bc1tl: Branch on floating-point condition bit (multiple
in MIPS IV IV and later CPUs).

beq, beql, beqz, beqzl, bge, bgel, bgeu, bgeul, bgez, bgezl, bgt, bgtl,
bgtu, bgtul, bgtz, bgtzl, ble, blel, bleu, bleul, blez, blezl, blt, bltl,
bltu, bltul, bltz, bltzl, bne, bnel, bnez, baezl: A comprehensive set
of two- and one-operand compare-and-branch instructions, most of them
macros.

bgezal, bgezall, bltzal, bltzall: Raw machine instructions for condi-
tional function calls, if you ever need to do such a thing.

8.6.9 Breakpoint and Trap

break: Causes an exception of type “break”. It is used in traps from assembler-
synthesized code and by debuggers.

sdbbp: Additional breakpoint instruction (only in LSI MiniRISC CPUs).

syscall: Causes an exception type conventionally used for system calls.

teq, teqi, tge, tgei, tgeiu, tgeu, tlt, tlti, tltiu, tltu, tne, tnei: Con-
ditional exception, testing various one- and two-operand conditions. These
are for compilers and interpreters that want to implement run-time checks
to array bounds and so on.

8.6.10 CP0 functions

CP0 functions can be classified under the following types:

Move To/From

cfc0, ctc0: Move data in and out of CP0 control registers, of which there are
none in any MIPS CPUs defined to date. But there may be such registers one
day soon.

mfc0, mtc0, dmfc0, dmtc0: Move data between CP0 registers and general-
purpose registers.

cfc2, ctc2, dmfc2, dmtc2, mfc2, mtc2: Instructions for coprocessor 2, if
implemented. It has not often been done.
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Special Instructions for CPU Control

eret: Return from exception, as used by all MIPS III and higher CPUs to date
(see Chapter 5).

dret: Return from exception (R6000 version). This instruction is obsolete
and not described in this book.

rfe: Restore status register at end of exception; to be placed in the branch
delay slot of the jr instruction, which returns control to the exception victim
after an exception in any MIPS I CPU built to date (see Chapter 5).

cache: The polymorphic cache control instruction, introduced with MIPS III
(see Section 4.10).

sync: Memory access synchronizer for CPUs that might perform load/stores
out of order (see Section 8.4.9).

tlbp, tlbr, tlbwi, tlbwr: Instructions to control the TLB, or memory trans-
lation hardware (see Section 6.4).

flusted, wb: Cache control instructions specific to LSI MiniRISC CPUs. Con-
sult your CPU manual for details.

waiti: Enter power-down mode (LSI MiniRISC CPUs).

standby, suspend: Enter power-down mode (NEC Vr4100 CPUs).

8.6.11 Floating Point

Floating-point instructions are listed under the following types:

Move Between FP and Integer

cfcl, ctcl: Access to FP control registers (ID and control/status).

dmfcl, dmtcl, mfcl, mtcl: Move data between FP and general registers.

Move Between FP Registers

mov.s, mov.d: Regular moves.

movt.d, movt.s, movf.s, movf.d: Move only if some FP condition bit is set
or clear.

mvon.s, movz.s, movn.d, movz.d: Move only if some general register is
zero/nonzero.
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Load Constant

1i.d, 1i.s: Macro to load a floating-point constant, which is usually imple-
mented by planting a constant in an initialized data area and then loading
from it.

FP Sign Fiddling

These instructions can’t ever cause an FP exception, because they don’t ex-
amine the data at all — they just flip the sign bit.

abs.s, abs.d: Absolute value.

neg.s, neg.d: Negate.

FP Arithmetic

add.s, add.d, div.s, div.d, mul.s, mul.d, sub.s, sub.d: Three-operand
arithmetic.

madd.s, madd.d, msub.s, msub.d, nmadd.s, nmadd.d, nmmsub.s, nmsub.d:
Four-operand multiply-add, plus subtract and negate-result options.

sqrt.s, sqrt.d: IEEE754-accurate square root.

FP Arithmetic (Approximate)

These instructions produce results fast but not to the accuracy required by
IEEE754.

recip.s, recip.d: Reciprocal.

rsqrt.s, rsqrt.d: Reciprocal square root.

FP Test

c.eq.s etc...: A vast set of compare-and-set-flag instructions (see Section
7.9.7).

FP Conversions

ceil.T.T, floor.T.F, round.T.F, trunc.T.F,: Familiar floating point to in-
teger conversions in a variety of formats. The machine instructions appeared
in MIPS III; in MIPS I they’re implemented as macros that set the rounding
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mode and then use cvt.T.F. Note also that floating point to integer inter-
conversion is performed exclusively between values in FP registers — data is
never converted by the move instruction.

cvt.T.F: Generic floating-point format conversion, with many different T (to)
and F (from) formats allowed.

8.6.12 ATMizer-II Floating Point

A 15-bit floating-point format specific to ATM communications applications
gives to these instructions, which will only be implemented by a few assem-
blers.

r2u, u2r: Convert between integer and fixed point.

radd, rmul, rsub: Arithmetic functions.
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Chapter 9
Assembler Language Programming

This chapter tells you how to read and write MIPS assembler code. This is
different from just looking at the list of machine instructions for several

reasons:

• MIPS assemblers provide a large number of extra macro-instructions,
so the assembler instruction set is much more extensive than the list of
machine instructions.

• There are a lot of strange incantations (called “directives” or “pseudoops”
in assembler circles) used to start and end functions, define data, con-
trol instruction ordering and optimization, and so on.

• It’s common (though not compulsory) to pass assembler code through
the C preprocessor before handing it to the assembler itself. The C
preprocessor includes files of definitions and replaces macro names with
their definitions, allowing the language to be less restricted. Before you
read too much further, it may be a good idea to go back and refresh your
memory of Chapter 2, which describes the low-level machine instruction
set, data types, addressing modes, and conventional register usage.

9.1 A Simple Example

We’ll use the same example as in Chapter 8: an implementation of the C
1ibrary function strcmp(1). But this time we’ll include essential elements of
assembler syntax and also show some hand-optimized and -scheduled code.
The algorithm shown is somewhat cleverer than a naive strcmp() function.
Its starting point is a simple algorithm, but with all operations separated out
to make them easier to play with, as follows:

247
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int
strcmp (char *a0, char *al)
{

char t0, t1;
while (1) {

t0 = a0[0];
a0 += 1;
t1 = a1[0];
al += 1;
if (t0 == 0)

break;
if (t0 != t1)

break;
}
return (t0 - t1);

}

Its speed of running will be reduced by the two conditional branches and
two loads per loop iteration, because there isn’t enough work to fill the branch
and load delay slots. It will also be reduced because as it zooms along a
string it’s taking a loop-closing branch on every byte. By unrolling the loop
to perform two comparisons per iteration and juggling a load down to the tail
of the loop, we can rewrite it so that every load and branch gets something
useful to put in its delay slot:

int
strcmp (char *a0, char *al)
{

char t0, t1, t2;

/* first load moved to loop end,
so load for first iteration here */

t0 = a0[0];

while (1){
/* first byte */
t1 = a1[0];

if (t0 == 0)
break;

a0 += 2;
if (t0 != t1)

break;

/* second byte */
t2 = a0[-1]; /* we already incremented a0 */
t1 = a1[1]; /* didn’t increment a1 yet */

if (t2 == 0)
/* label .t21 in assembler */

return t2 - t1;
a1 += 2;
if (t1 != t2) {
/* label .t21 in assembler */
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return t2 - t1;
t0 = a0[0];

}

/* label .t01 in assembler */
return t0 - t1;
}

}

So now let’s translate this code into assembler:

#include <mips/asm.h>
#include <mips/regdef.>

LEAF(strcmp)
.set nowara
.set noreorder
lbu t0, 0(a0)

1: lbu t1, 0(al)
beq t0, zero, .t01 # load delay slot
addu a0, a0, 2 # branch delay slot
bne t0, t1, .t01
lbu t2, -1(a0) # branch delay slot
lbu t1, 1(a1) # load delay slot
beq t2, zero, .t21
addu a1, a1, 2 # branch delay slot
beq t2, t1, 1b
lbu t0, 0(a0) # branch delay slot

.t21: j ra
subu v0, t2, t1 # branch delay slot

.t01: j ra
subu v0, t0, t1 # branch delay slot
.set reorder

END(strcmp)

Even without all the scheduling, there’s quite a lot of material here. Let’s
examine it in order:

• #include: This file relies on the C preprocessor cpp as a good way of
giving mnemonic names to constants and of defining simple text sub-
stitution macros. Here cpp is being used to put two header files in line
before submitting the text to the assembler; mips/asm.h defines the
macros LEAF and END (discussed further below), and mips/regdef.h
defines the conventional register names like t0 and a0 (Section 2.2.1).

• Macros: We’re using two macros defined in mips/asm.h, LEAF and END.
Here is the basic definition for LEAF:
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#define LEAF(name) \
.test; \
.globl name; \
.ent name; \

name:

LEAF is used to define a simple subroutine (one that calls no other sub-
routine and hence is a “leaf” on the calling tree (see Section 10.9.1).
Nonleaf functions have to do much more work saving variables, return
addresses, and so on, but you might go through your whole MIPS ca-
reer without needing to write a nonleaf function in assembler. Note the
following:

– .text says that what the assembler produces is to be kept in the
object code section called “.text,” which is the section name that C
functions use for their instructions.

– .globl declares “name” as global, to be included in the module’s
symbol table as a name that should be unique throughout the whole
program. This mimics what the C compiler does to function names
(unless they are marked “static”).

– .ent has no effect on the code produced but tells the assembler to
mark this point as the beginning of a function called “name” and to
use that information in debug records.

– name makes “name” a label for this point in the assembler’s output
and marks the place where a subroutine call to function “name” will
start.

END defines two more assembler items, neither strictly necessary:

#define END(name) \
.size name,.-name; \
.end name

– .size means that in the symbol table, “name” will now be listed
with a size that corresponds to the number of bytes of instructions
used.

– .end delimits the function for debug purposes.

• .set directives: These are used to tell the assembler how to do its work.
In this case, noreordar asks it to refrain from attempting to fill branch
and load delay slots and to leave the instruction sequence exactly as
written — something you’re likely to want to do in a carefully tuned
1ibrary function.

nowarn asks the assembler not to try to figure out what’s going on with
all these interleaved loads and branches and to trust that the program-
mer has got it right. This is not a good idea until you’re sure it is right,
but after that it quiets unnecessary diagnostics.
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• .Labels: “1:” is a numeric label, which most assemblers will accept as
a local label. You can have as many labels called “1” as you like in a
program; a reference to “1f” (forward) will get the next one in sequence
and “1b” (back) the previous one. This can be useful.

• Instructions: You’ll notice some unexpected sequences, since the .set
.noreorder has exposed the underlying branch delay slots and requires
us to ensure that load data is never used by the following instruction.

For example, note the use of register t2 in the second half of the unrolled
loop. It’s only necessary to use the second register because the lbu t2,
-1(a0) is in the delay slot of the preceding branch instruction and can’t
overwrite t0, which will be used at the branch target.

Now that we’ve examined an example, let’s get a bit more systematic.

9.2 Syntax Overview

In Appendix B you will find a formal syntax for the original MIPS Corporation
assembler; most assemblers from other vendors follow this pattern, although
they may differ in their support of certain directives. If you’ve used an assem-
bler from a UNIX-like system before, then it should all look fairly familiar.

9.2.1 Layout, Delimiters, and Identifiers

For this, you need to be familiar with C. If you are, note that writing in
assembler is different from C for the following reasons:

• Assembler code is basically line oriented, and an end-of-line delim-
its an instruction or directive. You can have more than one instruc-
tion/directive on each line, however, as long as they are separated by
semicolons.

• All text from a “#” to the end of the line is a comment and is ignored. But
don’t put a “#” in the leftmost column: It activates the C preprocessor
cpp, and you will probably want to use that. If you know your code is
going to be run through cpp, you can use C-style comments: /*...*/.
These can be multiline if you like.

• Identifiers for labels and variables can be anything that’s legal in C and
can also contain “$” and “.”.

• In code you can use a number (decimal between 1 and 99) as a label.
This is treated as temporary, and you can use the same number as
many times as you like. In a branch instruction “1f” (forward) refers to
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the next “1:” label in the code and “1b” (back) refers to the previous “1:”
label. This saves you thinking about names for little branches and loops.
Reserve named labels for subroutine entry points or for exceptionally big
jumps.

• The MIPS/SGI assembler provided the conventional register names (a0,
t5, etc.) as C preprocessor macros, so you must pass your source
through the C preprocessor and include the file mips/regdef.h. Al-
gorithmics assembler knows the names already, but don’t depend on
that.

• You can put in pointer values; in a word context, a label (or any other
relocatable symbol) is replaced with its address. The identifier “.” (dot)
represents the current location counter. You can even do some limited
arithmetic with these things.

• Character constants and strings can be defined as in C.

9.3 General Rules for Instructions

The MIPS assembler allows some convenient shortcuts by behaving nicely
when you provide fewer operands than the machine instruction needs, or put
in a constant where the machine instruction really needs a register. You’ll
see this very frequently in real assembler code, so this section summarizes
the common cases.

9.3.1 Computational Instructions: Three-, Two-, and One-
Register

MIPS computational machine instructions are three-register operations, i.e.,
they are arithmetic or logical functions with two inputs and one output. For
example,

rd = rs + rt

is written as addu rd, rs, rt.

We mentioned as well that any or all of the register operands may be
identical. To produce a CISC-style, two-operand instruction you just have to
use the destination register as a source operand: The assembler will do this
for you automatically if you omit rs: addu rd, rs is the same as addu rd,
rd, rs.

Unary operations like neg, not are always synthesized from one or more
of the three-register instructions. The assembler expects a maximum of two
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operands for these instructions, so neg rd, rs is the same as subu rd,
zero, rs and not rd will be assembled as nor rd, zero, rd.

Probably the most common register-to-register operation is move rd, rs.
This ubiquitous instruction is implemented by an or rd, zero, rs.

Immediates: Computational Instructions with Constants

In assembler or machine language, a constant value encoded within an in-
struction is called an immediate value. Many of the MIPS arithmetical and
logical operations have an alternative form that uses a 16-bit immediate in
place of rt. The immediate value is first sign-extended or zero-extended to 32
bits; the choice of how it’s extended depends on the operation, but in general
arithmetical operations sign-extend and logical operations zero-extend.

Although an immediate operand produces a different machine instruction
firom its three-register version (e.g., addi instead of add), there is no need
for the programmer to write this explicitly. The assembler will spot when the
final operand is an immediate and use the correct machine instruction:

addu $2, $4, 64 → addiu $2, $4, 64

If an immediate value is too large to fit into the 16-bit field in the machine
instruction, then the assembler helps out again. It automatically loads the
constant into the assembler temporary register at/$1 and then performs the
ration using that:

add $4, 0x12345 → li at, 0x12345
add $4, $4, at

Note the 1i (load immediate) instruction, which you won’t find in the ma-
chine’s instruction set; li is a heavily used macro-instruction that loads an
arbitrary 32-bit integer value into a register without the programmer having
to worry about how it gets there.

When the 32-bit value lies between ±32K it can use a single addiu with
$0; when bits 16-31 are all zero it can use ori; when bits 0-15 are all zero it
will be lui; and when none of these are possible it will be a lui/ori pair:

li $3, -5 → addiu $3, $0, -5

li $4, 0x8000 → ori $4, $0, 0x8000

li $5, 0x120000 → lui $5, 0x12

li $6, 0x12345 → lui $6, 0x1
ori $6, $6, 0x2345

9.3.2 Regarding 64-Bit and 32-Bit Instructions

We described how the MIPS architecture extends to 64 bits (Section 2.7.3)
by ensuring that programs running only 32-bit (MIPS II) instructions behave
exactly as they would on old CPUs by maintaining the top half of all registers
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as all ones or all zeros (according to the value of bit 31). Many 32-bit instruc-
tions carry over directly to 64-bit systems — all bitwise logical operations,
for example — but arithmetic functions don’t. Adds, subtracts, shifts, multi-
plies, and divides all need new versions. The new instructions are named by
prefixing the old mnemonic with d (double): For example, the 32-bit addition
instruction addu is augmented by the new instruction daddu, which does
full 64-bit-precision arithmetic. A leading “d” in an instruction mnemonic
generally means “double.”

9.4 Addressing Modes

As noted previously, the hardware supports only the one addressing mode
base reg+offset, where offset is in the range -32768 to 32767. However, the
assembler will synthesize code to access data at addresses specified in vari-
ous other ways:

• Direct: a data label or external variable name supplied by you

• Direct+index: an offset from a labeled location specified with a register

• Constant: just a large number, interpreted as an absolute 32-bit address

• Register indirect: just register+offset with an offset of zero

When these methods are combined with the assembler’s willingness to do
simple constant arithmetic at compile time, and the use of a macro processor,
you are able to do most of what you might want. Here are some examples:

lw $2, ($3) → lw $2, 0($3)

lw $2, 8+4($3) → lw $2, 12($3)

lw $2, addr → lui at, %hi(addr)
lw $2, %lo(addr)(at)

sw $2, addr($3) →
lui at, %hi(addr)
addu at, at, $3
sw $2, %lo(addr)(at)

The symbol addr in the above examples can be any of the following:

• A relocatable symbol — the name of a label or variable (whether in this
module or elsewhere)

• A relocatable symbol ± a constant expression (the assembler/linker can
handle this at system build time)

• A 32-bit constant expression (e.g. the absolute addres of a device regis-
ter)
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The constructs %hi() and %lo() are provided in the M1PS assembler but
not in some others. They represent the high and low 16 bits of the address.
This is not quite the straightforward division into low and high halfwords that
it looks, because the 16-bit offset field of an 1w is interpreted as signed. So if
the addr value is such that bit 15 is a 1, then the %lo(addr) value will act
as negative and we need to increment %hi(addr) to compensate:

addr %hi(addr) %lo(addr)

0x12345678 0x1234 0x5678

0x10008000 0x1001 0x8000

The la (load address) macro-instruction provides a similar service for ad-
dresses as the 1i instruction provides for integer constants:

la $2, 4($3) → addiu $2, $3, 4

la $2, addr → lui at, %hi(addr)
addiu $2, at, %lo(addr)

la $2, addr($3) →
lui at, %hi(addr)
addiu $2, at, %lo(addr)
addu $2, $2, $3

In principle, la could avoid messing around with apparently negative
%lo() values by using an on instruction. But the linker is already equipped
with the ability to fix up addresses in the signed %lo(addr) format found
for load/store instructions, so la uses the add instruction to avoid the linker
having to understand two different fix-up types.

The instruction mnemonic dla is documented by SGI for loading a 64-bit
pointer; it will only be necessary in environments that support both 32- and
64-bit pointer representations — which is probably a lot more useful than it
sounds. So far, no off-workstation toolkit has needed to implement this.

9.4.1 Gp-Relative Addressing

A consequence of the way the MIPS instruction set is crammed into 32-bit
operations is that accesses to compiled-in locations usually require at least
two instructions, for example:

lw $2, addr → lui at, %hi(addr)
lw $2, %lo(addr)(at)

In programs that make a lot of use of global or static data, this can make
the compiled code significantly fatter and slower.

Early MIPS compilers introduced a fix for this, which has been carried
into most MIPS toolchains. It’s usually called gp-relative addressing. This
technique requires the cooperation of the compiler, assembler, linker, and
runtime startup code to pool all of the “small” variables and constants into a
single memory region; then it sets register $28 (known as the global pointer or
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gp register) to point to the middle of this region. (The linker creates a special
symbol gp whose address is the middle of this region. The address of gp
must then be loaded into the gp register by the startup code, before any load
or store instructions are used.) So long as all the variables together take up
no more than 64KB of space, all the data items are now within 32KB of the
midpoint, so a load turns into

lw $2, addr → lw $2, addr - gp(at)

The problem is that the compiler and assembler must decide what vari-
ables can be accessed via gp at the time the individual modules are com-
piled. The usual test is to include all objects of less than a certain size (8
bytes is the usual default). This limit can usually be controlled by the “-G n”
compiler/assembler option; specifying “-G 1” will switch this optimization off
altogether.

While it is a useful trick, there are some pitfalls to watch out for. You must
take special care when writing assembler code to declare global data items
consistently and correctly:

• Writable, initialized small data items must be put explicitly into the
.sdata section.

• Global common data must be consistently declared with the correct size:

.comm smallobj, 4

.comm bigobj, 100

• Small external variables should also be explicitly declared

extern smallext, 4

• Most assemblers will not act on a declaration unless it precedes the use
of the variable.

In C you must declare global variables correctly in all modules that use
them. For external arrays, either omit the size, like this

extern int extarray[];

or give the correct size:

int cmnarray[NARRAY];
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Sometimes the way programs are run means this method can’t be used.
Some real-time operating systems, and many PROM monitors, are built with
a separately linked chunk of code implementing the kernel, and applica-
tions invoke kernel functions with regular subroutine calls. There’s no cost-
effective method by which you could switch back and forth between the two
different values of gp that will be used by the application and OS, respec-
tively. In this case either the applications or the OS (but not necessarily
both) must be built with -G 0.

When the -G 0 option has been used for compilation of any set of modules,
it is usually essential that all libraries linked in with them should be compiled
that way. If the linker is confronted with modules that disagree whether a
named variable should be put in the small or regular data sections, it’s likely
to give you peculiar and unhelpful error messages.

9.5 Assembler Directives

We’ve summarized the directives under functional headings. You can also
find a list (without explanations) in Appendix B.

9.5.1 Selecting Sections

The names of and support for conventional code and data sections may dif-
fer from one toolchain to another. Hopefully most will at least support the
original MIPS conventions, which are illustrated (for ROMmable programs) in
Figure 9.1.

Within an assembler program the sections are selected as described in the
groupings that follow:

.text, .rdata, and .data

Simply put the appropriate section name before the data or instructions, as
shown in this example:

.rdata
msg:.asciiz "Hello world!\n"

.data
table:

.word 1

.word 2

.word 3

.text
func:sub sp, 64

...
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ROM

etext

_ftext

.rdata

Read-only data

RAM

.text

Program code

Stack

Grows down from top of memory

Heap

Grows up toward stack

end

_fbss
edata

_fdata

.bss

Uninitialized writable data

.sbss

Uninitialized writable small data

.lit8

64-bit floating-point constants

.lit4

32-bit floating-point constants

.sdata

Writable small data

.data

Writable data

Exception vectors

Figure 9.1: ROMable program’s object code segments and typical memory
layout
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.lit4 and .lit8 Sections: Floating-Point Implicit Constants

You can’t write these section names as directives. They are read-only data
sections created implicitly by the assembler to hold floating-point constants
that are given as arguments to the 1i.s or 1i.d macro instructions. Some
assemblers and linkers will save space by combining identical constants.

.bss, .comm, and .lcomm Data

This section name is also not used as a directive. It is used to collect all
uninitialized data declared in C modules. It’s a feature of C that multiple
same-named definitions in different modules are acceptable so long as not
more than one of them is initialized. The .bss section is used for data that is
not initialized anywhere. Fortran programmers would recognize this as what
is called common data, motivating the name of the directives.

You always have to specify a size for the data (in bytes): When the pro-
gram is linked, the item will get enough space for the largest size. If any
module declares it in an initialized data section, all the sizes are used and
that definition is used:

comm dbgflag, 4 # globe1 common variable, 4 bytes
.lcomm sum, 4 # local common variable, 8 bytes
.lcomm array, 300 # local common variable, 100 bytes

“Uninitialized” is actually a misnomer: Although these sections occupy no
space in the object file, the C language assumes that the run-time startup
code or operating system will clear the .bss area to zero before entering your
program; many C programs rely on this behavior.

.sdata, Small Data, and .sbss

These sections are used as alternatives to the .data and .bss sections above
by toolchains that want to separate out smaller data objects. MIPS toolchains
do this because the resulting small-object section is compact enough to allow
an efficient access mechanism that relies on maintaining a data pointer in a
reserved register gp as described in Section 9.4.

Note that the .sbss is not a legal directive; data is allocated to the .sbss
section when declared with .comm or .lcomm, and it is smaller than the -G
parameter size fed to the assembler program.
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.section

Start an arbitrarily named section and supply control flags (which are object
code specific and probably toolkit specific). See your toollcit manuals, and al-
ways use the specific section name directives above for the common sections.

9.5.2 Practical Program Layout Including Stack and Heap

The program layout illustrated in Figure 9.1 might be suitable for a ROM pro-
gram running on a bare CPU. The read-only sections are likely to be located
in an area of memory remote from the lower read/write sections.

The stack and heap are not real sections that are recognized by the assem-
bier or linker. Typically they are initialized and maintained by the run-time
system. The stack is defined by setting the sp register to the top of available
memory (aligned to an 8-byte boundary). The heau is defined by a global
pointer variable used by functions like malloc functions; it’s often initialized
to the end symbol, which the linker has calculated as the highest location
used by declared variables.

Special Symbols

Figure 9.1 also shows a number of special symbols that are automatically
defined by the linker to allow programs to discover the start and end of their
various sections. They are descended from conventions that grew up in UNIX-
style OSs, and some are peculiar to the MIPS environment. Your toolkit might
or might not define all of them; those marked with a � in the following list
are pretty certain to be there:

Symbol Standard? Value

ftext Start of text (code) segment

etext � End of text (code) segment

fdata Start of initialized data segment

edata � End of initialized data segment

fbss Start of uninitialized data segment

end � End of uninitialized data segment

9.5.3 Data Definition and Alignment

Having selected the correct section, you will then specify the data objects
themselves using the directives described in this section.
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.byte, .half, .word, and .dword

These directives output integers that are 1, 2, 4, or 8 bytes long, respectively.1

A list of values may be given, separated by commas. Each value may be
repeated a number of times by following it with a colon and a repeat count,
for example:

.byte 3 # 1 byte: 3

.half 1, 2, 3 # 3 halwords: 1 2 3

.word 5 : 3, 6, 7 # 5 words: 5 5 5 6 7

Note that the position of this data (relative to the start of the section)
automatically aligned to the appropriate boundary before the data is output.
If you really want to output unaligned data, then explicit action must be
taken using the .align directive described below.

.float and .double

These output single- or double-precision floating-point values, respectively:

.float 1.4142175 # 1 single-precision value

.double 1e+10, 3.1415 # 2 double-precision values

Multiple values and repeat counts may be used in the same way as the
integer directives.

.ascii and .asciiz

These directives output ASCII strings, without and with a terminating null
character, respectively. The following example outputs two identical strings:

.ascii "Hello\0"

.asciiz "Hello"

.align

This directive allows you to specify an alignment greater than that normally
required for the next data directive. The alignment is specified as a power of
two:

1Some toolchains, even those supporting 64-bit processors, may fail to provide the dword
directive.
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.align 4 # align to 16-byte boundary(2ˆ4)
var:

.word 0

If a label (var in this case) comes immediately before the .align, then
the label will still be aligned correctly. For example, the following is exactly
equivalent to the above case:

var:
.align 4 # align to 16-byte boundary(2ˆ4)
.word 0

For packed data structures this directive allows you to override the auto-
matic alignment feature of .half, .word, etc. by specifying a zero alignment.
This will stay in effect until the next section change, for example:

.half 3 # correctly aligaed halfword

.align 0 # switch off auto-aligament

.word 100 # word aligned oa halfword boundary

.comm and .lcomm

These directives declare a common, or uninitialized, data object by specifying
the object’s name and size.

An object declared with .comm is available to all modules that declare it:
It is allocated space by the linker, which uses the largest declared size. But
if any module declares it in one of the initialized .data, .sdata, or .rdata
sections, then all the sizes are ignored and the initialized definition is used
instead.

.comm is useful in that it avoids the asymmetry of having to declare some-
thing in one place and then refer to it everywhere else, when it’s got no spe-
cial attachment to any one file. But it’s really there because Fortran defines
common variables with these semantics, and we want to be able to compile
Fortran programs via assembly language.

An object declared with .lcomm is local and is allocated space in the unini-
tialized .bss (or .sbss) section by the assembler, but it is otherwise invisible
from outside the module:

.comm dbgflag, 4 # global common variable, 4 bytes

.lcomm array, 100 # local uninitialized object, 100 bytes
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.space

The .space directive increments the current section’s location counter by a
number of bytes, for example:

struc: .word 3
.space 120 # 120-byte gap
.word -1

For normal data and text sections the space will be zero-filled; however, if
your assembler allows you to declare sections whose content is not defined
in the object file (like .bss), the space just affects the offset of subsequent
labels and variables.

9.5.4 Symbol-Binding Attributes

Symbols (labels in one of the code or data segments) can be made visible
and used by the linker that joins separate modules into a single program.
The linker binds a symbol to an address and substitutes the address for
assembler language references to the symbol.

Symbols can have three levels of visibility:

• Local: These are invisible outside the module they are declared in and
unused by the linker. You don’t have to worry about whether the same
local symbol is used in another module.

• Global: These are made public for use by the linker. Using the .extern
directive, you can refer to a global symbol in another module without
defining any local space for it.

• Weak global: This obscure feature is provided by some toolchains using
the directive .weakext. It allows you to define a symbol that will link to
a global symbol of the same name if one is found but that will quietly
default to being a local object otherwise. You shouldn’t use this feature
where .comm would do the job.

.globl

Unlike C, where module-level data and functions are automatically global un-
less declared with the static keyword, ordinary assembler labels have local
binding unless explicitly modified by the .globl directive. You don’t need
.globl for objects declared with the .comm directive; these automatically
have global binding. Use the directive as follows:
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.data

.globl status # global variable
status: .word 0

.text

.globs set_status # global function
set_status:

subu sp, 24
....

.extern

All references to labels that are not defined within the current module are
automatically assumed to be references to globally bound symbols in another
moduse (external symbols). In some cases the assembler can generate better
code if it knows how big the referenced object is (see Section 9.4.1). An
external object’s size is specified using the .extern directive, as follows:

.extern index, 4

.extern array, 100
lw $3, index # load a 4-byte(1-word) external
lw $2, array($3) # load part of a 100-byte external
sw $2, value # store in as unknown-size external

.weakext

Some assemblers and toolchains support the concept of weak global binding.
This allows you to specify a provisional binding for a symbol, which may be
overridden if a normal (strong) global definition is encountered, for example:

.data

.weakext errno
errno: .word 0

.text
lw $2, errno # may use local or external definition

This module, and others that access errno will use this local definition of
errno unless some other module also defines it with a .globl.

It is also possible to declare a local variable with one name but to make it
weakly global with a different name:

.data
myerrno: .word 0

.weakext errno, myerrno

.text
1w $2, myerrno # always use local definition
1w $2, errno # may use local definition or other
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9.5.5 Function Directives

You can generate correct assembler code for a MIPS function by using a global
label for its entry point and returning from it with a jr instruction. However,
MIPS assemblers generally expect you to use special directives to mark the
start and end of each function and to describe the stack frame that it uses.

.ent and .end

These directives mark the start and end of a function. A trivial leaf function
might look like this:

.text

.ent localfunc
localfunc:

addu v0, a1, a2 # return (argl + arg2)
j ra
.end localfunc

The label name may be omitted from the .end directive, which then de-
faults to the name used in the last .ent. Specifying the name explicitly allows
the assembler to check that you haven’t missed any earlier .ent or .end di-
rectives.

.aent

Some functions may provide multiple, alternative entry points. The .aent
directive identifies labels as such, for example:

.text

.globl memcpy

.ent memcpy
memcpy: move t0, a0 # swap first two arguments

move a0, a1
move al, t0

.globl bcopy

.aent bcopy
bcopy: 1b t0, 0(a0) # very slow byte copy

sb t0, 0(a1)
addu a0, 1
addu a1, 1
subu a2, 1
bne a2, aero, bcopy
j ra
.end memcpy
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.frame, .mask, and .fmask

Most functions need to allocate a stack frame in which to

• Save the return address register ra

• Save any of the registers s0-s9 and $f20-$f31 that they modify (known
as the callee-saves registers)

• Store local variables and temporaries

• Pass arguments to other functions

In some CISC architectures, the stack frame allocation and possibly reg-
ister saving are done by special-purpose enter and leave instructions, but in
the MIPS architecture the allocation has to be coded by the compiler or as-
sembly language programmer. However, debuggers need to know the layout
of each stack frame to do stack back-traces and so on, and in the origi-
nal MIPS Corporation toolchain these directives provided this information.
In other toolchains they may be quietly ignored and the stack layout deter-
mined at run time by disassembling the function prologue. Putting these
directives in your code is therefore not always essential but can do no harm.
Many toolchains supply a header file, probably called asm.h, which provides
C-style macros to generate a number of standard directives as required (see
Section 10.1).

The .frame directive takes three operands:

.frame framereg, framesize, returareg

• framereg: This is the register used to access the local stack frame —
usually $sp.

• returnreg: This register holds the return address. Some compilers
indicate $0, when the return address is stored in the stack frame (some
compilers convey this with the .mask directive instead); all use $31 if
this is a leaf function (i.e., it doesn’t call any other functions) and the
return address is not saved.

• framesize: This is the total size of stack frame allocated by this func-
tion: It should always be the case that $sp + framesize = previous
$sp.

The .mask directive indicates where the function saves general registers
in the stack frame; fmask does the same for floating-point registers:

.mask regmask, regoffs

.fmask fregmask, fregoffs
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Their first argument is regmask, a bitmap of which registers are being
saved (i.e., bit 1 set = $1, bit 2 set = $2, etc.); the second argument is regoffs,
the distance from framereg + framesize to the start of the register save area.

How these directives relate to the stack frame layout, and examples of
their use, can be found in Section 10.9. Remember that the directives do not
create the stack Frame, they just describe its layout; that code still has to be
written explicitly by the compiler or assembly language programmer.

9.5.6 Assembler Control (.set)

The original MIPS Corporation assembles is an ambitious program that per-
forms intelligent macro expansion, delay slot filling, peephole optimization,
and sophisticated instruction reordering (scheduling) to minimize pipeline
stalls. Most other assemblers will be less complex: modern optimizing com-
pilers usually prefer to do these sort of optimizations themselves. In the
interest of source code compatibility and to make the programmer’s life eas-
ier, however, all MIPS assemblers should at least perform macro expansion,
insert extra nops as required to hide branch and load delay slots, and prevent
pipeline hazards in normal code.

With a reordering assembler it is sometimes necessary to restrict the re-
ordering to guarantee correct timing or to account for side effects of instruc-
tions that the assembler cannot know about (e.g., enabling and disabling
interrupts). The .set directives provide this control.

.set noreorder/reorder

By default the assembler is in reorder mode, which allows it to reorder your
instructions to avoid pipeline hazards and (perhaps) to achieve better perfor-
mance; in this mode it will not allow you to insert your own nops. Conversely,
code that is in a noreorder region will not be optimized or changed in any way.
This means that you can comvletely control the instruction order, but the dis-
advantage is that you must now schedule the code yourself and fill load and
branch delay slots with useful instructions or nops. For example:

.set noreorder
lw t0, 0(a0)
nop # in the load delay slot
subu t0, 1
bne t0, zero, loop
nop # in the branch delay slot
.set reorder
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.set volatile/novolatile

Any load or store instruction within a volatile region will not be moved (in
particular, with respect to other loads and stores). This can be important for
accesses to memory-mapped device registers, where the order of reads and
writes is important. For example, if the following fragment did not use .set
volatile, then the assembler might decide to move the second 1w before the
sw to fill the first load delay slot:

.set volatile
1w t0, 0(a0)
sw t0, 0(a1)
lw t1, 4(a0)
.set novolatile

Hazard avoidance and other optimizations are not affected by this option.

.set noat/at

The assembler reserves register $1 (known as the assembler temporary, or
at, register) to hold intermediate values when performing macro expansions;
if you attempt to use the register yourself, you will receive a warning or error
message. It is not always obvious when the assembler will use at, and there
are certain circumstances when you may need to ensure that it does not (for
example, in exception handlers before $1 has been saved). Switching on noat
will make the assembler generate an error message if it needs to use $1 in
a macro expansion, and will allow you to use it explicitly without receiving
warnings, for example:

xcptgen:
.set noat
subu k0, sp, XCP_ SIZE
sw at, XCP_AT(k0)
.set at

.set nomacro/macro

Most of the time you will not care whether an assembler statement gener-
ates more than one real machine instruction, but of course there are ex-
ceptions. For instance, when you are manually filling a branch delay slot
in a noreorder region, it would almost certainly be wrong to use a complex
macro-instruction; if the branch were taken, then only the first instruction of
the macro would be executed. Switching on nomacro will cause a warning if
any statement expands to more than one machine instruction. For example,
compare the following two fragments:
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.set noreorder
blt al, a2, loop
li a0, 0x12345 # should be the branch delay slot
.set reorder

.set noreorder
blt a1, a2, loop
.set nomacro
1i a0, 0x12345
.set macro
.set reorder

The first will generate what is probably incorrect code, because the li is
expanded into two machine instructions (lui and ori) and only the lui will
be executed in the branch delay slot. With the second instruction you’ll get
an error message. Some assemblers will flag the scheduling mistake auto-
matically, but you cannot rely on that.

.set nobopt/bopt

Setting the nobopt control prevents the assembler from carrying out certain
types of branch optimization. It is usually used only by compilers.

9.5.7 Compiler/Debugger Support

Found in autogenerated files, such as the output from a compiler or prepro-
cessor, the directive .file is used by the assembler to attribute any errors
back to the generating source file.

9.5.8 Additional Directives in SGI Assembly Language

In this chapter I’ve tried to stick to a subset of assembly language that I
believe most toolkits will support. However, SGI’s assembler (supporting the
SGI n32/n64 standards for register use) defines a whole lot more. Try not to
rely on these, but here’s what they mean.

.2byte, .4byte, and .8byte

These define data, but whereas the similar directives .half, .word, and
.dword pack out the section to align the data appropriately, these don’t.
You can achieve the same effect with .align 0 followed by a regular decla-
ration followed by a redefinition of the section name to get natural alignment
switched back on.
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.cpadd, .cpload, .cplocal, .cprestore, .cpreturn, .cpsetup, .gpvalue, and

.gpword

These directives facilitate generation of the kind of position-independent code
used to build shared libraries on SGI systems and are not expected to be
useful for embedded systems.

.dynsym

This is some kind of ELF-specific name aliasing for a symbol.

.lab

This defines a label that might contain characters that would be illegal in
front of a colon.

.loc

This directive cross-references another file, like the .file directive above —
but this one allows you to select a column number within the source line of
the generating program.

.origin

This changes the current position in the section by a supplied offset.

.set [no]transform

This marks code that must not be modified by SGI’s pixie program. pixie
takes any MIPS application and generates a version of it with profiling coun-
ters built in. It is irrelevant to non-UNIX code.

.size and .type

These directives a11ow you to specify the size and/or type of a symbol. In
most object code formats, each symbol is associated with a size and the linker
may check that the importer and exporter of a symbol agree about its size or
type.



Chapter 10
C Programming on MIPS

This chapter discusses things you are likely to need to know when building
a complete MIPS system using C code. Perversely, that means a lot of this

chapter is not about what you see when you write in the C language (which
I’m assuming you know or can find out about elsewhere), but what shows
up in the assembler language that is produced by the C compiler. To avoid
turning this chapter into a whole new book, I’ve tried to limit the discussion
to issues that are particularly likely to confront you when you first write or
port code for MIPS.

An efficient C run-time environment relies on conventions (enforced by
compilers, and therefore mandatory for assembly language programmers)
about register usage within C-compatible functions. Refer to Section 2.2.1
for the overall conventions as to register use. In this chapter we’ll cover

• The stack, subroutine linkage, and argument passing: how these pro-
cesses are implemented for MIPS and how they support everything while
avoiding unnecessary work

• Shared and nonshared libraries: a note on the complex mechanisms
used by shared-library OSs

• An introduction to compiler optimization: as it might affect you

• Hints about device access from C: since that’s how most device-driving
code is written

Regarding other high-level languages, I realize that some of you may not
be writing in C. However, if you are producing compiled code for MIPS that
is to link with standard libraries, much of this chapter is still relevant to
you. I haven’t dealt specirically with any other language, because I don’t
understand them well and I can’t figure out where I should stop.
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10.1 The Stack, Subroutine Linkage, and Parme-
ter Passing

Many MIPS programs are written in mixed languages — for embedded sys-
tems programmers, this is most likely to be a mix of C (maybe C++) and
assembler.

From the very start MIPS Corporation established a set of conventions
about how to pass arguments to functions (this is C-speak for “pass param-
eters to subroutines”) and about how to return values from functions. These
conventions can look very complex, but partly that’s just appalling documen-
tation. The conventions follow logically from an unappreciated underlying
principle.

The basic principle is that all arguments are allocated space in a data
structure on the stack, but the contents of the first few stack locations are
placed in CPU registers — the corresponding memory locations are left unde-
fined. In practice, this means that for most calls the arguments are all passed
in registers; however, the stack data structure is the best starting point for
understanding the process.

Since about 1995 Silicon Graphics has introduced changes into the calling
conventions, in a search for higher performance. They have named these
calling conventions as follows:

• o32: The traditional MIPS convention (“o” for old); described in de-
tail below. This convention (not including features SGI added to sup-
port shared libraries) is still pretty much universally used by embedded
toolchains; however, it seems likely that the two new models may be
supported as options by other toolchains sometime soon.

• n64: New convention for 64-bit programs. SGI’s 64-bit model implies
that both pointers and C long integer types are compiled as 64-bit data
items. The longer pointers represent nothing but extra overhead for em-
bedded applications, so it’s questionable whether this convention will
be taken up outside the workstation environment. However, n64 also
changes the conventions for using registers and the rules for passing
parameters; and because it puts more arguments in registers, it im-
proves performance.

• n32: This convention has identical rules to n64 for passing parameters,
but leaves pointers and the C long data types implemented as 32 bits.
However, SGI and other compilers support an extended integer data type
long long, which is a hardware-supported 64-bit integer. This compi-
lation model is becoming quite popular in embedded systems.

We’ll describe the o32 standard first and then point out the changes with
n32 and n64. The changes are summarized in Section 10.8.
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There are other standards in discussion as this book goes to press, most of
which seem to be called MIPS EABI. The overall MIPS EABI project is aimed at
producing a range of standards to make embedded toolkits interwork better,
which is a really good idea; however, the new calling conventions seem to
have arisen from a proprietary project to build something like SGI’s n32 (but
simpler and regrettably incompatible). We hope something good comes out
of this — but for the time being you can reasonably use o32 compilers for
embedded applications and you won’t lose a lot.

10.2 Stack Argument Structure

This and subsequent sections describe the original MIPS conventions which
SGI now calls o32. We’ll summarize the changes implicit in the new standards
in Section 10.8.

The MIPS hardware does not directly support a stack, but the calling con-
vention requires one. The stack is grown downward and the current stack
bottom is kept in register sp (alias $29). Any OS that is providing protection
and security will make no assumptions about the user’s stack, and the value
of sp doesn’t really matter except at the point where a function is called.
But it is conventional to keep sp at or below the lowest stack location your
function has used.

At the point where a function is called, sp must be 8 byte aligned (not
required by 32-bit MIPS hardware, but essential for compatibility with 64-
bit CPUs and part of the rules). Subroutines can fit in with this by always
adjusting the stack pointer by a multiple of eight.1

To call a subroutine according to the MIPS standard, the caller creates a
data structure on the stack to hold the arguments and sets sp to point to
it. The first argument (leftmost in the C source) is lowest in memory. Each
argument occupies at least one word (32 bits); 64-bit values like floating-
point double and (for some CPUs) 64-bit integer values must be aligned on
an 8-byte boundary (as are data structures that contain a 64-bit scalar field).

The argument structure really does look like a C struct, but there are
some more rules. Firstly, you should allocate a minimum of 16 bytes of argu-
ment space for any call, even if the arguments would fit in less. Secondly, any
partial-word argument (char or short) is “promoted” to an int and passed
as a 32-bit object. This does not apply to partial-word fields inside a struct
argument.

1SGI’s n32 and n64 standards call for the stack to be maintained with 16-byte alignment.
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10.3 Using Registers to Pass Arguments

Any arguments allocated to the first 16 bytes (four words) of the argument
structure are passed in registers, and the caller can and does leave the first
16 bytes of the structure undefined. The stack-held structure must still be
reserved; the called function is entitled to save the register-held argument
values back into memory if it needs to (perhaps because someone generates
a pointer to the arguments — in C, arguments are variables and you can form
a pointer to any variable).

The four words of register argument values go in a0 through a3($4 through
$7), respectively, except where the caller can be sure that the data would be
better loaded into floating-point (FP) registers.

The criteria for deciding when and how to use FP registers look pecu-
liar. Old-fashioned C had no built-in mechanism for checking that the caller
and callee agreed on the type of each argument to a function. To help pro-
grammers survive this, the caller converted arguments to fixed types, int for
integer values and double for floating point. There was no way of saving a
programmer who confused floating-point and integer arguments, but at least
some possibilities for chaos were averted.

Modern C compilers use function prototypes available to all callers, which
define all the argument types. But even with function prototypes, there are
routines — notably the familiar printf() — where the type of arguments is
unknown at compile time; printf() discovers the number and type of its
arguments at run t1me.

MIPS made the following rules.

Unless the first argument is a floating-point type, no arguments can be
passed in FP registers. This is a kludge that ensures that traditional func-
tions like printf() still work: Its first argument is a pointer, so all arguments
are allocated to integer registers and printf() will be able to find all its ar-
gument data (regardless of the argument type). The rule is also not going to
make common math functions inefficient, because they mostly take only FP
arguments.

Where the first argument is a floating-point type, it will be passed in an
FP register, and in this case so will any other FP types that fit in the first
16 bytes of the argument structure. Two doubles occupy 16 bytes, so only
two FP registers are defined for arguments — fa0 and fa1, or $f12 and
$f14. Evidentiy nobody thought that functions explicitly defined to have lots
of single-precision arguments were frequent enough to make another rule.

Another peculiarity is that if you define a function that returns a structure
type that is too big to be returned in the two registers normally used, then
the return-value convention involves the invention of a pointer as the implicit
first argument before the first (visible argument (see Section 10.7).
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If you’re faced with writing an assembler routine with anything but a sim-
ple and obvious calling convention, it’s probably worth building a dummy
function in C and compiling it with the “-S” option to produce an assembler
file you can use as a template.
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Figure 10.1: Argument structure, three non-FP operands

10.4 Examples from the C Library

Here is a code example:

thesame = strncmp("bear", "bearer", 4);

We’ll draw out the argument structure and the registers separately (see
Figure 10.1), though in this case no argument data goes into memory; but
later we’ll see examples where it does.1

There are fewer than 16 bytes of arguments, so they all fit in registers.

That seems a ridiculously complex way of deciding to put three arguments
into the usual registers! But let’s try something a bit more tricky from the
math library:

double ldexp (double, int);

y = ldexp(x, 23); /* y = x * (2**23) */

Figure 10.2 on page 276 shows the corresponding structure and register
values.

1After much mental struggle, I decided it was best to have the arguments ordered top
to bottom in these pictures. Because the stack grows down that means memory addresses
increase down the page, which is opposite from how I’ve drawn memory elsewhere in the
book.
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Figure 10.2: Argument structure, A floating-point arguments

10.5 An Exotic Example: Passing Structures

C allows you to use structure types as arguments (it is much more common
practice to pass pointers to structures instead, but the language supports
both). To fit in with the MIPS rules, the structure being passed just becomes
part of the argument structure. Inside a C structure, byte and halfword fields
are packed together into single words of memory, so when we use a register
to pass the data that conceptually belongs to the stack-resident structure,
we have to pack the register with data to mimic the arrangement of data in
memory.

So if we have

struct thing {
char letter;
short count;
int value;

} = {"z", 46, 100000};

(void) processthing (thing);

then the arguments show in Figure 10.3 will be generated.
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undefined 100000sp+4

sp+0

Stack Position Contents Contents
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a1

a0

Register

x"z"

Figure 10.3: Arguments when passing a structure type

Note that because MIPS C structures are always laid out with fields so
their memory order matches the order of definition (though padded where
necessary to conform to the alignment rules), the placement of fields inside
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the register follows the byte order exposed by load/store instructions, which
differs according to the CPU’s endianness. The layout in Figure 10.3 is in-
spired by a big-endian CPU, when the char value in the structure should
end up in the most-significant 8 bits of the argument register but is packed
together with the short.

If you really want to pass structure types as arguments, and they must
contain partial-word data types, you should try this out and set whether your
compiler gets it right.

10.6 Passing a Variable Number of arguments

Functions for which the number and type of arguments are determined only
at run time stress conventions to their limits. Consider this example:

printf ("length = %f, width = %f, num = %d\n", 1.414, 1.0, 12);

The rules above allow us to see that the argument structure and register
contents will be as shown in Figure 10.4.
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Figure 10.4: Argument passing for printf()

There are two things to note. Firstly, the padding at sp+4 is required
to get correct alignment of the double values (the C rule is that floating-
point arguments are always passed as double unless you explicitly decide
otherwise with a typecast or function prototype). Note that padding to an
8-byte boundary can cause one of the standard argument registers to be
skipped.

Secondly, because the first argument is not a floating-point value, the
rules tell us not to use any FP registers for arguments. So the data for the
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second argument (coded as it would be in memory) is loaded into the two
registers a2 and a3.

This is much more useful than it looks!

The printf() subroutine is defined with the stdarg.h macro package,
which provides a portable cover for the register and stack manipulation in-
volved in accessing an unpredictable number of operands of unpredictable
types. The printf() routine picks off the arguments by taking the address
of the first or second and advancing through memory up the argument struc-
ture to find further arguments.

To make this work we need to persuade the C compiler working on the
printf() routine to store the registers a0 through a3 into their “shadow”
locations in the argument structure. Some compilers will see you taking the
address of an argument and take the hint; ANSI C compilers should react
to “...” in the function definition; others may need some horrible “pragma”
which will be decently concealed by the macro package.

Now you can see why it was necessary to put the double value into the
integer registers; that way stdarg and the compiler can just store the regis-
ters a0-a3 into the first 16 bytes of the argument structure, regardless of the
type or number of the arguments.

10.7 Returning a Value from a Function

An integer or pointer return value will be in register v0 ($2). By MIPS/SGI-
defined convention, register v1 ($3)is reserved, even though many compilers
don’t use it. However, expect it to be used in 32-bit code for returning 64-
bit, non-floating-point, values. Some compilers may define a 64-bit data type
(often called long long) and some may use v1. when returning a structure
value that fits in 64 bits but not in 32.

Any floating-point result comes back in register $f0 (implicitly using $f1
in a 32-bit CPU, if the value is double precision).

If a function is declared in C as returning a structure value that is too
big to fit into the return registers v0 and v1, something else has to be done.
In this case the caller makes room on its stack for an anonymous structure
variable, and a pointer to that structure is prepended to the explicit argu-
ments; the called function copies its return value to the template. Following
the normal rules for arguments, the implicit first argument will be in register
a0 when the function is called. On return, v0 points to the returned structure
too.
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10.8 Evolving Register-Use Standards: SGI’s n32
and n64

For the purposes of this section (calling conventions and integer register us-
age) the n32 and n64 ABIs are identical.1 The n32/n64 ABIs are applicable
only to MIPS III CPUs which have 64-bit registers.

Despite the significant attempts to keep the register conventions similar,
o32 and n32/n64 are deeply incompatible and functions compiled in different
ways will not link together successfully. The following points summarize the
n32/n64 rules:

• They provide for up to eight arguments to be passed in registers.

• Argument slots and therefore argument registers are 64 hits in size.
Shorter integer arguments are promoted to a 64-bit register.

• They do not require the caller to allocate stack space for arguments
passed in registers.

• They pass structures and arrays in registers where possible (like the old
standard does).

• They pass any floating-point variable that fits into the first eight argu-
ment slots in an FP register. In fact, these rules will also use an FP
register for aligned double fields in arrays and structures, so long as
the field isn’t in a union and isn’t a variable argument to printf() or a
similar variable-argument function.

When life gets complicated (as when passing structures or arrays), the use
of the registers is still figured out from a ghostly argument structure, even
though it doesn’t now have any stack space reserved.

The n32/n64 conventions abandon o32’s first-argument-not-FP kludge
which o32 uses to identify floating-point arguments as special cases for printf()
and so on. The new conventions require that both caller and callee code be
compiled with full knowledge of the number and type of arguments and there-
fore that they need function prototypes.

For a function like printf() where the type of arguments is unknown
at compile time, all the variable arguments are actually passed in integer
registers.

The n32/n64 organization has a different set of register-use conventions;
Table 10.1 compares the use of integer registers with the o32 system. There
is only one material difference: four registers that used to be regarded purely

1Under the n64 convention long and pointer types are compiled as 64-bit objects; with
n32 only long long types are 64 bits.
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as temporaries should now be used to pass the fifth through the eighth argu-
ments. I’m puzzled by the arbitrary and apparently unnecessary reallocation
of names among the temporary registers, but this is how they did it.

You might think that compiled code would suffer from losing four reg-
isters that were previously available for temporary storage, but this is only
appearance. All argument registers and the v0 and v1 registers are available
for the compiler to use as temporaries most of the time. Also, the change
to n32/n64 has not affected which of the registers are designated as “saved”
(i.e., the registers whose value may be assumed to survive a subroutine call).1

The floating-point register conventions (shown in Table 10.2) change more
dramatically; this is not surprising, since the n32/n64 conventions are for
MIPS III CPUs which have 16 extra FP registers to play with — recall that
use of an even-numbered register in the old architecture usually implied use
of the next-up odd-numbered one.2 While SGI could have interleaved the
new registers and maintained some vestiges of compatibility, the company
decided instead to tear up most of the existing rules and start again.

Table 10.1: Integer register usage evolution in newer SGI tools

Register number Name Use

$0 zero Always zero

$1 at Assembler temporary

$2, $3 v1, v1 Return value from function

$4-$7 a0-a3 Arguments

o32 n32/n64

Name Use Name Use
$8-$11 t0-t3 Temporaries a4-a7 Arguments

$12-$15 t4-t7 t0-t3 Temporaries

$24, $25 t8, t9 t8, t9

$16-$23 s0-s7 Saved registers

$26, $27 k0, k1 Reserved for interrupt/trap handler

$28 gp Global pointer

$29 sp Stack pointer

$30 s8/fp Frame pointer if needed (additional
saved register if not)

$31 ra Return address for subroutine

In addition to the larger number of arguments that can be passed in reg-
isters, the n32/n64 standard doesn’t make any rules dependent on whether

1This is not quite true. In SGI computers functions manipulate the gp register to help
implement position-independent code (see Section 10.11.2 for details). In o32 each function
could do what it liked with gp which meant that you might have to restore the register after
each function call. In n32/n64 the gp register is now defined as “saved.” Most embedded
systems leave gp constant, so the differences are academic.

2MIPS III CPUs have a mode switch that makes their FP behavior totally compatible with
earlier 32-bit CPUs; n32/n64 assume that the CPU is running with that switch off.
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the first argument is a floating-point type. Instead, arguments are allocated
to registers according to their position in the argument list. Here again is one
of the examples used above:

doubie ldexp (double, int);

y = ldexp(x, 23); /* y = x * (2**23) */

Table 10.2: FP register usage with o32 and n32/n64 conventions

Register number o32 use

$f0, $f2 Return values; fv1 is used only for complex data type
and is not available in C

$f4, $f6, $f8, $f10 Temporaries — function can use without ant need to
save

$f12, $f14 Arguments

$f16, $f18 Temporaries

$f20, $f22, $f24,
$f26, $f28, $f30

Saved registers — functions must save and restore any
of these registers they want to write, making them suit-
able for long-lived values that persist across function
calls

Register number n32 use n64 use

$f0, $f2

Return values — $f2 is used only when returning a
structure of exactly two floating-point values; this is
a special case that deals with Fortran complex num-
bers

$f1, $f3, $f4-$f10 Temporaries

$f12-$f19 Arguments

$f20-$f23 Evens (from $f20-$f30) are tempo-
rary; odds (from $f21-$f31) are saved

Temporaries

$f24-$f31 Saved Registers

Figure 10.5 shows the corresponding n32/n64 structure and register val-
ues.
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Figure 10.5: n32/n64 argument passing: a floating-point argument

Although n32/n64 can handle an arbitrary mix of floating-point and other
values and still put any double types that are in the first eight arguments
in FP registers, there are some careful rules. Any argument that is touched
by a union (and that therefore might not really be a double) is excluded
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and so are any of the variable arguments of a variable-number-of-arguments
function. Note that this decision is made on the basis of having a function
prototype; with no prototype, you can break things. SGI’s linker will usually
detect this and warn you.
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Figure 10.6: Stack frame for a nonleaf function

10.9 Stack Layouts, Stack Frames, and Helping
Debuggers

Figure 10.6 gives a diagrammatic view of the stack frame of a MIPS func-
tion. (We’re back to having the stack growing down, with higher memory at
the top. ) You should recognize the slots reserved for the first four words of
the function’s arguments as required by the traditional MIPS function call-
ing convention — newer calling conventions will only provide any space they
actually need.

The gray areas of the diagram show stack space used by the function
itself; the white area, above the bold line, belongs to the caller. All the gray
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components of the stack frame are optional, and some functions need none
of them; such a simple function does not need to do anything to the stack.
We’ll see some of those in the examples through the rest of the chapter.

Apart from the arguments (whose layout must be agreed with the caller),
the stack structure is private to the function. The only reason we need a
standard arrangement is for debugging and diagnostic tools, which want to be
able to navigate the stack. If we interrupt a running program for debugging,
we’d very much like to be able to run backward up the stack, displaying a
list of the functions that have been called en route to our breakpoint and the
arguments passed to those functions. Moreover, we’d like to be able to step
the debugger context back up the stack a few positions and in that context to
discover the value of variables — even if that piece of code was maintaining
the variable’s data in a register, as optimizing compilers should.

To perform this analysis, the debugger must know a standard stack layout
and must be fed information that allows it to see the size of each stack frame
component and the internal layout of each of those components. If a function
somewhere up the stack saved the value of s0 in order to use it, the debugger
needs to know where to find the saved value.

In CISC architectures, there is often a complex function call instruction
that maintains a stack frame similar to that in Figure 10.6 but with an addi-
tional frame pointer register that corresponds to the position marked “sp on
entry” on our diagram. In such a CPU, the caller’s frame pointer will be stored
at some known stack position, allowing a debugger to skip up the stack by
analyzing a simple linked list. But in a MIPS CPU, all this extra run-time
work is eliminated; most of the time a compiler knows how much to decre-
ment the stack pointer at the head of a function and how much to increment
it before return.

So in the minimal MIPS stack frame, where is a debugger to find out where
data is stored? Some debuggers are quite heroic and will even interpret the
first few instructions of a function to find how large the stack frame is and to
locate the stored return adress. But most toolchains pass at least some stack
frame information in the object code, written there by suitable assembler
directives.

Since the mixture of directives is quite dependent on the toolkit, it’s worth
defining prologue and epilogue macros that both save you from having to
remember the details and make it easier to change to another toolkit if you
need to. Most toolkits will come with some macros ready to use; you’ll see
simple ones called LEAF and NESTED used in the examples below.

We haven’t fully documented the SGI conventions, but the examples that
follow (using the recommended function prologue and epilogue macros) are
compatible with old versions of the SGI tools and therefore are probably com-
patible with most embedded toolkits.

The key directives are .frame and .mask, and you can read more about
them in Section 9.5.
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We can divide up functions into three classes and prescribe three different
approaches, which will probably cover everything you need.

10.9.1 Leaf Functions

Functions that contain no calls to other functions are called leaf functions.
They don’t have to worry about setting up argument structures and can safely
maintain data in the nonpreserved registers t0-t7, a0-a3, and v0 and v1.
They can use the stack for storage if they feel like it but can and should leave
the return address in register ra and return directly to it.1

Most functions that you may write in assembler for tuning reasons or
as convenience functions for accessing features not visible in C will be leaf
functions; many of them will use no stack space at all. The declaration of
such a function is very simple, for example:

#include <mips/asm.h>
#include <mips/regdef.h>

LEAF(myleaf)
...
<your code goes here>
...
j ra

END(myleaf)

Most toolchains can pass your assembler source code through the C macro
preprocessor before assembling it — UNIX-style tools decide based on the file
name extension. The files mips/asm.h and mips/regdef.h include useful
macros (like LEAF and ENd, shown above) for declaring global functions and
data; they also allow you to use the software register names, e.g., a0 instead
of $4. if you are using the old MIPS or SGI toolchain, the above fragment
would be expanded to

.globl myleaf

.ent myleaf, 0

...
<your code goes here>
...
j $31
.end myleaf

Other toolchains may have different definitions for these macros, as ap-
propriate to their needs.

1Storing the return address somewhere else may work perfectly well, but the debugger
won’t be able to find it.
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10.9.2 Nonleaf Functions

Nonleaf functions are those that contain calls to other functions. Normally the
function starts with code (the function prologue) to reset sp to the low-water
mark of argument structures for any functions that may be called and to
save the incoming values of any of the registers s0-s8 that the function uses.
Stack locations must also be reserved for ra, automatic (i.e., stack-based
local) variable, and any further registers whose value this funtion needs to
preserve over its own calls. (If the values of the argument registers a0-a3
need to be preserved, they can be saved into their standard positions on the
argument structure.)

Note that since sp is set only once (in the function prologue) all stack-held
locations can be referenced by fixed offsets from sp.

To illustrate this, we will walk through the following nonleaf function (in
conjunction with the picture of the stack frame in Figure 10.6):

#include <mips/asm.h>
#include <mips/regdef.h>

#
# myfunc (argl, arg2, arg3, arg4, arg5)
#

# framesize = locals + regsave (ra, s0) + pad + fregsave (f20/21) + args + pad
myfunc_frmsz = 4 + 8 + 4 + 8 + (5 * 4) + 4

NESTED(myfunc, myfunc_frmsz, ra)
subu sp, myfunc_frmsz
.mask 0x80010000, -4
sw ra, myfunc_frmsz-8(sp)
sw s0, myfunc_frmsz-12(sp)
.fmask 0x00300000, -16
s.d $f20, myfunc_frmsz-24(sp)
...
<your code goes here, e.g.>
# local = otherfunc (arg5, arg2, arg3, arg4, arg1)
sw a0, 16(sp) # arg5 (out) = arg1 (in)
1w a0, myfunc_frmsz+l6(sp) # arg1 (out) = arg5 (in)
jal otherfunc
sw v0, myfunc_frmsz-4(sp) # local = result
...
l.d $f20, myfunc_frmsz-24(sp)
1w s0, myfunc_frmsz-12(sp)
1w ra, myfunc_frmsz-8(sp)
addu sp, myfunc_frmsz
jr ra

END(myfunc)

To begin with, the function myfunc expects five arguments: On entry the
first four of these will be in registers a0-a3 and the fifth will be at sp+16. The
next code is
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# framesize = locals + regsave (ra, s0) + pad + fregsave (f20/21) + args + pad
myfunc_frmsz = 4 + 8 + 4 + 8 + (5 * 4) + 4

The total frame is calculated as follows:

• locals (4 bytes): We are going to keep one local variable on the stack,
rather than in a register; perhaps we need to pass the address of the
variable to another function.

• regsave (8 bytes): We need to save the return address register ra, be-
cause we are calling another function; we also plan to use the callee-
saved register s0.

• pad (4 bytes): The rules say that double-precision floating point must be
8 byte aligned, so we add one word of padding to align the stack.

• fregsave (8 bytes): We plan to use $f20, which is one of the callee-
saved floating-point registers.

• args (20 bytes): We are going to call another function that needs five
argument words; this size must never be less than 16 bytes it a nested
function is called, even if it takes no arguments.

• pad (4 bytes): The rules say that the stack pointer must always be 8
byte aligned, so we add another word of padding to align it.

The next piece of code is

NESTED(myfunc, myfunc_frmsz, ra)
subu sp, myfunc_frmsz

In the MIPS Corporation toolchain this would be expanded to

.globl myfunc

.ent myfunc, 0

.frame $29, myfunc_frmsz, $0
subu $29. myfunc_frmsz

This declares the start of the function and makes it globally accessible.
The .frame function tells the debugger the size of stack frame we are about
to create and the subu instruction creates the stack frame itself.

This is followed by

.mask 0x80010000, -4
sw ra, myfunc_frmsz-8(sp)
sw s0, myfunc_frmsz-12(sp)
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We must save the return address and any callee-saved integer registers
that we use in the stack frame. The .mask directive tells the debugger which
registers we are going to save ($31 and $16) and the offset from the top of
the stack frame to the top of the save area: This corresponds to regoffs
in Figure 10.6. The sw instructions then save the registers; the higher the
register number, the higher up the stack it is placed (i.e., the registers are
saved in order). The next code is

.fmask 0x00300000, -16
s.d $f20, myfunc_frmsz-24(sp)

We do the same thing for the callee-saved floating-point registers $f20 and
(implicitly) $f21. The .fmask offset corresponds to fregoffs in Figure 10.6
(i.e., local variable area+integer register save area+padding word).

Next comes

# local = otherfunc (arg5, arg2, arg3, arg4, arg1)
sw a0, 16(sp) # arg5 (out) = arg1 (in)
1w a0, myfunc_frmsz+l6(sp) # arg1 (out) = arg5 (in)
jal otherfunc

We call function otherfunc. lts arguments 2 to 4 are the same as our
arguments 2 to 4, so these can pass straight through without being moved.
We have to swap our argument 5 and its argument 1, however, so we copy
our argl (in register a0) to the arg5 position in the outgoing argument build
area (new sp+16) and our arg5 (at old sp+16) to outgoing argument 1 (register
a0).

Then in the code

sw v0, myfunc_frmsz-4(sp) # local = result

the return value from otherfunc is stored in the local (automatic) vari-
able, allocated in the top 4 bytes of the stack frame.

Finally, we have

l.d $f20, myfunc_frmsz-24(sp)
1w s0, myfunc_frmsz-12(sp)
1w ra, myfunc_frmsz-8(sp)
addu sp, myfunc_frmsz
jr ra

END(myfunc)

Here the function epilogue reverses the prologue operations: It restores the
floating-point, integer, and return address registers; pops the stack frame;
and returns.
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10.9.3 Frame Pointers for More Complex Stack Require-
ments

In the stack frames described above, the compiler has been able to manage
the stack with just one reserved register, sp. Those of you who are familiar
with other architectures will know that they often use two stack maintenance
registers, an sp to mark the stack low-water point and a frame pointer to
point to the data structures created by the function prologue. However, so
long as the compiler can allocate all the stack space needed by the function in
the function prologue code, it should be able to decrement sp in the prologue
and leave it pointing to a constant stack offset for the life of the function. If
so, everything on the local stack frame is at a compile-time-known offset from
sp and no frame pointer is needed. But sometimes you want to mess with
the stack pointer at run time: Figure fig1007 shows how MIPS allocates a
frame pointer to cope with this need.

What leads to an unpredictable stack pointer? In some languages, and
even i some extensions to C, dynamic variables can be created whose size
varies at run time. And many C compilers can allocate stack space on de-
mand through the useful built-in function alloca().1 In this case the func-
tion prologue grabs another register, s8 (which has a regular alias of fp), and
sets it to the incoming value of sp.

Since fp (in its other guise as s8) is one of the saved registers, the prologue
must also save its old value, which is done just as if we were using s8 as a
subroutine variable. In a function compiled with a frame pointer, all local
stack frame references are made via fp, so if the compiler needs to lower sp
to make space for variables of run-time-computed size, it can go right ahead.

Note that if the function has a nested call that uses so many arguments
that it needs to pass data on the stack, that will be done with relation to sp.

One ingenious feature of this trick is that neither the caller of a frame
pointer function, nor anything called by it, see it as anything special. Func-
tions it calls are obliged to preserve the value of fp because it’s a callee-saved
register; and the callee-visible part of the stack frame looks like it should.

Assembler buffs may enjoy the observation that, when you create space
with alloca() the address returned is actually a bit higher than sp, since the
compiler has still reserved space for the largest argument structure required
by any function call.

Some tools also employ an fp-based stack frame when the size of the local
variables grows so large that some stack frame objects are too far from sp
to be accessed in a single MIPS load/store instruction (with its ±32KB offset
limit).

1Actually, some implementations of alloca() don’t just make space on the ldcal stack,
and some are pure library functions (which means that you never need go without alloca()
for portability reasons). But compilers that implement alloca() using stack space go faster.
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Figure 10.7: Stack frame using seperate frame pointer register

So let’s look at a slightly modified version of the example function used in
the last section, with the addition of a call to alloca():

#include <mips/asm.h>
#include <mips/regdef.h>

#
# myfunc (argl, arg2, arg3, arg4, arg5)
#

# framesize = locals + regsave(ra, s8, s0) + fregsave(f20/21) + args + pad
myfunc_frmsz = 4 + 12 + 8 + (5 * 4) + 4

.globl myfunc

.ent myfuac, 0

.frame fp, myfunc_frmsz, $0

subu sp, myfunc_frmsz



290 10.9. Stack Layouts, Stack Frames, and Helping Debuggers

.mask Oxc0010000, -4
sw ra, myfunc_frmsz-8(sp)
sw fp, myfunc_frmsz-12(sp)
sw s0, myfunc_frmsz-16(sp)
.fmask 0x00300000, -16
s.d $f20, myfunc_frmsz-24(sp)
move fp, sp # save bottom of fixed frame
...
# t6 = alloca (t5)
addu t5, 7 # make sure that size
and t5, ˜7 # is a multiple of 8
subu sp, t5 # allocate stack
addu t6, sp, 20 # leave room for ergs
...
<your code goes here, e.g.)
# local = otherfunc (arg5, arg2, arg3, arg4, argl)
sw a0, 16(sp) # arg5 (out) = argl (in)
1w a0, myfunc_frmsz+l6(fp) # argl (out) = arg5 (in)
jal otherfunc
sw v0, myfunc_frmsz-4(fp) # local = result
...
move sp, fp # restore stack pointer
1.d $f20, my_func_frmsz-24(sp)
1w s0, myfunc_frmsz-16(sp)
lw fp, myfunc_frmsz-12(sp)
lw ra, myfunc_frmsz-8(sp)
addu sp, myfunc_frmsz
jr ra
END (myfunc)

Let’s look at what is different from the previous example:

.globl myfunc

.ent myfuac, 0

.frame fp, myfunc_frmsz, $0

We can’t use the NESTED macro any more, since we are using a separate
frame pointer which must be explicitly declared using the .frame directive.
We are going to modify fp (which is, of course the same as s8 or $30), so we
must save it in the stack frame too:

.mask Oxc0010000, -4
sw ra, myfunc_frmsz-8(sp)
sw fp, myfunc_frmsz-12(sp)
sw s0, myfunc_frmsz-16(sp)

The sequence

# t6 = alloca (t5)
addu t5, 7 # make sure that size
and t5, ˜7 # is a multiple of 8
subu sp, t5 # allocate stack
addu t6, sp, 20 # leave room for ergs
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allocates a variable number of bytes on the stack and sets a register(t6)
to point to it. Notice how we must make sure that the size is rounded up to
a multiple of 8, so that the stack stays correctly aligned. Notice also how we
add 20 to the stack pointer to leave room for the five argument words that
will be used in future calls.

When building another function’s arguments we use the sp register, but
when accessing our own arguments or local variables we must use the fp
register:

sw a0, 16(sp) # arg5 (out) = argl (in)
1w a0, myfunc_frmsz+l6(fp) # argl (out) = arg5 (in)
jal otherfunc
sw v0, myfunc_frmsz-4(fp) # local = result

Finally, at the start of the function epilogue, we restore the stack pointer
to its post-prologue position and then restore the registers (not forgetting to
restore the old value of fp, of course):

move sp, fp # restore stack pointer
1.d $f20, my_func_frmsz-24(sp)
1w s0, myfunc_frmsz-16(sp)
lw fp, myfunc_frmsz-12(sp)

10.10 Variable Number of Arguments and stdargs

If you need to build a new function that takes a variable number of argu-
ments, use your toolkit’s stdarg.h macro package (compulsory for ANSI
compatibility). The macro package delivers the macros — or possibly func-
tions — va start(), va end(), and va arg(). To see how they’re used, look
at how the Algorithmics SDE-MIPS package implements printf():

int printf(const char *format, ...)
{

va_list arg;
int n;

va_start(arg, format);
n = vfprintf(stdout, format, arg);
va_end(arg);

return n

Once we’ve called va start() we can extract any argument we like. So
somewhere in the middle of the code that implements the format conversions
for printf() you’ll see the following code used to pick up the next argument,
supposing it to be a double-precision floating-point type:
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...
d = va_arg(ap, double);
...

Never try to build an assembler function that takes a variable number of
argumenu — it isn’t worth the portability hassle.

10.11 Sharing Functions between Different Threads
and Shared Library Problems

A C object library is a collection of precompiled modules, which are automati-
tally linked into your program’s binary when you refer to a function or vari-
able whose name is defined in the module. Standard C functions like printf
are just functions provided in libraries.

Although libraries provide a simple and powerful way of extending the
language, they can cause trouble when used within a multitasking OS. Most
often, you want library functions to behave like the code you write — just
as if each task had its own ccopy. But we’d like to be able to share at least
the library function’s code, to avoid consuming memory space with multiple
copies of the same thing. Library functions may be huge: The graphics in-
terface libraries to the widely used X window system add about 300KB to the
size of a MIPS object.

Most MIPS operating systems provide some way in which library code may
be shared between different tasks. To understand the problems of sharing
functions, we’ll distinguish a number of different classes of data used by
functions:

• Read-only code and data: This can be freely shared so long as each
thread can find it.

• Dynamic data: Arguments, function variables, saved registers, and other
information that a function keeps on the stack will remain safely thread
specific. Every task has its own stack space: Even a thread sharing
address space with other threads must have its own stack. Such data
vanishes when the function returns.

• Static transient data: These are static data items whose value is not
expected to persist between invocations of the functions. In principle
these could be eliminated in favor of dynamic data — though not triv-
tally, if the data is shared by several subfunctions — but that would
mean rewriting the code and we’d rather be able to simply recompile it.

• Per-thread persistent data: These are static data items that persist be-
tween invocations of library functions, but where a separate copy must
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be kept for each client thread. The global errno variable (which holds an
error code after a UNIX-style file I/O function is called) is one of these.

• Global persistent data: These are static persistent data items that track
state changes in the system being organized by the library function.
Once a library routine starts deliberately keeping multitask state infor-
mation, it’s well on its way to being part of the operating system; that’s
beyond the scope of this book.

The strategies for these classes of data are quite different according to
whether the client threads are running in a common address space or each
has its own independent address space.

10.11.1 Sharing Code in Single-Address-Space Systems

In a single-address-space OS like most real-time OSs, a shared library func-
tion’s code and static data are shared at fixed addresses; there’s no new
problem for the client to find the function nor for the function itself to find its
own data. However, the libraries must be written to be re-entrant: They may
be used by different tasks, and one task may be suspended in the middle of
a library function and that function reused by another. Dynamic data is safe
enough, so simpler routines that don’t keep state will often work correctly
unmodified.

Static transient data accesses should be protected by semaphores to se-
rialize the code from before the first access to the data until after the last
access (see Section 5.8.4). The semaphore operations can be dummied out
when we know there’s only one thread active. Most often library functions for
shared address multitasking systems will be built with some reprogramming
to eliminate static transient data; when that’s too difficult, the code section
relying on the static data should be protected from being re-entered with a
semaphore. Quite often, the library will also have been reprogrammed in
some OS-dependent way to maintain some global persistent data.

10.11.2 Sharing Library Code in the MIPS ABI

In a protected OS where separate applications run in separate virtual address
spaces, the problems are quite different. We’ll outline the way in which UNIX-
style systems conforming to the MIPS ABI standard provide libraries that
can be shared between different applications, with no restriction on how the
1ibraries and applications can be programmed.

Every MIPS ABI application runs in its own virtual address space, and the
shared library facility makes no provision for multiple threads in one address
space. The application’s own compiled code is fixed to particular locations
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in this address space when it is linked. Library code is not built in: The
application carries a table of the names of library functions and variables it
wants to use, but those names are not yet resolved to addresses. In addition,
the application binary file includes a table that defines public symbols in the
application for use by library functions; under the MIPS ABI, library routines
may freely refer to public data, or call public functions, in application code.1

In the MIPS ABI model the section of memory that holds binary instruc-
tions may not be modified; there’s another level of code sharing, implemented
by the virtual memory system, that allows multiple copies of the same appli-
cation to use the same physical memory for their code.

The MIPS ABI doesn’t try to predefine the virtual addresses at which a li-
brary’s code or data will be located — libraries are built into the application’s
virtual address space starting at a fixed-by-convention location well away
from where the function’s data might grow up to or the stack grow down to.2

That means that the library must be compiled to position-independent code
(PIC) — it must run correctly regardless of its location in program memory.
To make the program independent of its code location, all branches, jumps,
and other instructions that reference code labels must operate correctly any-
where. All MIPS branch instructions are PC relative, but the regular jump
and subroutine call instructions j and jal are useless. Within a library
module, branch-like instructions such as bal provide a PC-relative function
call — so long as the module isn’t too big. But it’s also possible to load a
label’s address in a PC-relative way, by using a branch-and-link instruction
as a dummy call for the side effect that loads its return address into the ra
register:

la rd, labe1 →
bgezal zero, if
nop

1: addu rd, $31, label - 1b

PIC is suitable for references to code within a single module of a library,
because the module’s code is loaded as a single entity into consecutive virtual
addresses. Data, or external functions, will be at locations that cannot be de-
termined until the application and library are loaded, and so their addresses
cannot be embedded in the program text.

Such addresses are held in a table built in the application’s address space
as the application and libraries are loaded — the global offset table (GOT).
There’s one GOT for each chunk of modules that were linked at compile time
— typically, one for the application and one for each module of related library

1Though this probably isn’t ideal programming practice, it allows for the recompilation of
unmodified library functions that attached themselves to such globals; consider the way a
library function like mal1oc() uses the end symbol.

2Since most applications have quite a lot of virtual address to spare, it’s tempting to try to
fix a library’s code and data to well known addresses — and this was quite common in early
shared library systems. But with different applications building in different combinations
of library functions, this requires a commitment to find a unique memory space for each
shared library module we ever use. For a 32-bit system, virtual memory isn’t big enough to
use like this.
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functions. At the start of any function, the address of its own GOT is loaded
into the gp register.

A MIPS ABI function refers to a dynamically linked variable or external
function through the GOT at a table index fixed when the group of modules
sharing the GOT was compiled and linked. A lead of the external integer
variable errno will come out as

lw rd, errno →
lw rd, errno offset(gp)
nop
lw rd, 0(rd)

Note the two loads: The double indirection is necessary because the GOT
holds pointers, not the data items themselves.

Similarly, invocation of the shared library function exit() would look like
this (assuming we’ve already set up the arguments):

jal exit →
1w t9, exit offset(gp)
nop
jalr t9

The register gp is a good choice for the table base. Because of its role
in providing fast access to short variables, it is not modified by standard
functions. As an optimization, it is calculated only once per function (in the
function prologue). That in turn depends upon making a fixed convention
that at the point a function is entered the function’s own address will be in
t9. We don’t care that t9 itself may be reused by any subroutine, because
once we’ve used it to compute the GOT address we won’t use it again.

The function group’s GOT is lacated in the first page of memory after the
code of the function group; wherever a library gets loaded, the distance be-
tween the function entry point and the GOT is constant, and we can get
the linker to figure that out at compile/link time. So a position-independent
function prologue might start like this:

func:
la gp, _gp_disp
addu gp, gp, t9
addu sp, sp, framesize
sw gp, 32(sp)

In the above example, gp disp is a magic symbol that is recognized by
the linker when building a shared library: Its value will be the offset between
the instruction and the GOT. The gp value is saved on the stack and must
be restored from there after a call to an external function, since that function
may itself have modified gp.

There is much more that could be said about the way in which the MIPS
ABI implementation is optimized. For example, no attempt is made to link
in libraries when an application is first loaded into memory; dummy GOT
entries that point to illegal memory addresses are used instead. When and
if the application uses a library module, the illegal reference is caught by
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the OS, recognized as a GOT dummy entry, and faced up. If necessary, the
appropriate library function is paged in first.

10.12 An Introduction to Compiler Optimization

In saying anything at all about compiler optimization we’re straying from the
main path of this book, so we’ll keep it brief. This section focuses on opti-
mization as a process that does things that a programmer may need to knov
about. Interested readers will find a large literature on compiler techniques.

Compilers are not nearly as clever as you might think. The compiler
writer’s first responsibility is to ensure that the generated code does precisely
what t1 language semantics say it should; and that is hard enough. It has for
a long time been accepted good practice that cunning improvements to code
should be made as a sequence of transformations to an internal representa-
tion of the program, with each individual optimization leaving a transformed
but equivalent program. This approach has the merit of allowing programs
to be built either including or leaving out a particular optimization step, thus
containing the complexity of the compiler debugging job.

Once you can do that, of course, it makes sense for the basic compiler to
ignore performance, generating dumb-but-correct code. The first optimiza-
tion stage will factor out the stupid code; however, by doing it in two stages
we expose even that first optimization stage to our debugging strategy.

It’s nice to imagine a compiler making a smooth transition from the front
end (concerned with syntax and program semantics) through to the back end
(concerned with representing the program using the machine code of the tar-
get). Unfortunately, it’s not like that; even during early compilation some
over-all features or the machine are likely to change the direction of compila-
tion: Is it stack oriented? Does it have special-purpose registers? Conversely,
the use of a machine-specific transformation down at the back end can often
open up a good opportunity for rerunning a machine-independent optimiza-
tion stage. The optimizers run with one eye on the logic of the program and
another on the limitations and opportunities of the target architecture.

The data structure representing the unit of compilation (a function, if
you’re compiling C) is typically a tree whose branch structure shows the con-
trol flow in the function and whose nodes are individual operations. GNU C’s
RTL nodes specify the operation concerned in a machine-independent lan-
guage, but usually also have a fragment of assembler attached to them that
will do the job. The assembler language is explicitly associated with the target
machine; more subtly, the operation itself has been chosen by the compiler
as one available, in a general sense, on this target.



Chapter 10. C Programming on MIPS 297

10.12.1 Common optimizations

Most compilers will do all of the following. Occasionally, the assembler may
perform some of these, too.

• Common subexpression elimination (CSE): This detects when the code is
doing the same work twice. At first sight this looks like it is just making
up for dumb programming, 1 but in fact CSE is critically important and
tends to be run many times to tidy up after other stages:

– It is CSE that gives the compiler the ability to optimize globally
across the function. The basic code generator works through your
code expression by expression; even if you write very neat code the
expansion of simple C statements into multiple MIPS instructions
will lead to a lot of duplicated effort. The very first CSE pass fac-
tors out the stupid duplication and clears the way for register al-
location. Older compilers often allocated registers before CSE, and
when some temporary results were no longer required they ended
up with spare registers they were unable to benefit from.

– Most memory-reference optimization is actually done by CSE. The
code that fetches a variable from memory is itself a subexpression.

The enemy of CSE is unpredictable flow of control: the conditional
branch. Once code turns into spaghetti, the compiler finds it difficult to
know which computation has run before which other one; with some
straightforward exceptions, CSE can really only operate inside basic
blocks (a piece of code delimited by, but not containing, either an en-
try point or a branch). CSE markedly improves both code density and
run-time performance.

Similar to CSE are the optimizations of constant folding, constant prop-
agation, and arithmetic simplification. These precompute arithmetic
performed on constants and modify other expressions using standard
algebraic rules so as to permit further constant folding and better CSE.

• Jump optimization: This removes redundant tests and jumps. Code pro-
duced by the earlier compiler. stages often contains jumps to jumps,
jumps around unreachable code, redundant conaiuonai dumps, ana so
on. These optimizations will remove this redundancy.

• Strength reduction: This means the replacement of computationally ex-
pensive operations by cheaper ones. For example, multiplication by a
constant value can be replaced by a series of shifts and adds. This
actually tends to increase the code size while reducing run time.

1Here and elsewhere no disrespect is attached to dumb programming. Dumb program-
ming is often the best programming, and it’s really stupid to be unnecessarily clever.
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• Loop optimization: This studies loops in your code, starting with the
inher ones (which, the compiler guesses, will be where most time is
spent). There are a number of useful things that can be done:

– Subexpressions that depend on variables that don’t change inside
the loop can be precornputed before the loop starts.

– Expressions that depend in some simple way on a loop variable can
be simplified. For example, in

int i, x[NX];

for (i = 0; i < NX ; i++)
x[i]++;

the array access (which as written would involve a multiplication
and addition) can be implemented by an incrementing pointer. This
kind of optimization will usually recognize only a particular set of
stylized opportunities (a skeptic would point out that it is much
better at improving performance on benchmarks than it is on your
real code).

– Loops can be unrolled, allowing the work of two to a few iterations
of the loop to be performed in line. On some processors where
branches are inherently slow, this is valuable in itself, but branches
are cheap on most MIPS CPUs. However, the unrolled loop offers
much better pickings for other optimizations (CSE and register al-
location being the main beneficiaries).
Loop unrolling may significantly increase the size of your compiled
program, and you will usually have to request it with a specific
compiler option.

• Function inlining: The compiler may guess that some small functions
can be usefully expanded in line, like a macro, rather than calling them.
This is another optimization that increases the size of your program to
give better performance and that usually requires an explicit compiler
option. Some compilers may recognize the inline keyword (formalized in
C++; an implementation-defined extension in C) to allow the program-
mer to specify which functions’ invocations can be replaced by inlined
code.

• Register allocation: lt’s absolutely critical to good performance to make
the best possible use of the 32 general-purpose registers, to make your
code faster and smaller. The compiler identifies global variables (static
and external data stored in memory); automatic variables (defined within
a function, and notionally stored on the stack); and intermediate prod-
ucts of expression evaluation.

Any variable must be assigned to a machine register, and input data
must be copied to that register, before you can do anything useful with
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it. The register allocator’s job is to minimize the amount of work done in
shuffling data in and out of registers; it does this by maintaining some
variables in registers for all or part of a function’s run time.

There are several points about register allocation that you should note:

– This process usually entirely ignores the old-fashioned C register
attribute. It might be used as a hint, but most compilers figure out
for themselves which variables are best kept in registers and when.

– The MIPS compiler has nine registers, s0-s8, which can be freely
used as automatic variables. Any function using one of these must
save its value on entry and restore it on exit. These registers tend
to be suitable for long-term storage of user variables.
It also has a set of 10 temporary registers, t0-t9, which are typi-
cally used for intermediate values in expression evaluation. The ar-
gument registers a0-a3 and result registers v0 and v1 can be freely
used too. However, these values don’t survive a function call; if data
is to be kept past a function call it is more efficient to use one of the
callee-saved registers s0-s8, because then the work of saving and
restoring the value will be done only if a called function really wants
to use that register.

– C’s loose semantics mean that any assignment through a pointer
could potentially dump on essentially any memory location and
hence change pretty much any declared variable. Since the pro-
grammer might have meant this to happen, the compiler’s ability
to maintain a variable in a register is strictly limited. It is safe to
do so for any function variable (automatic variable) that is nowhere
subject to the “address of” operator “&.” And a variable value can
be left in a register during any piece of code where there is neither
a store-through-pointer operation nor a function call.

• Pipeline reorganization: The compiler or assembler can sometimes move
the logical instruction flow around so as to make good use of the branch
and load delay slots referred to so often in this book. In practice, the
delay slots are fine grained and tied to specific machine instructions;
this can only be done late in the compilation process.

The most obvious techniques are as follows:

– If the instruction succeeding a load doesn’t depend on the loaded
value, just, leave out the nop.

– Move the logically preceding instruction around. You may be able
to find an instruction a few positions preceding the branch or load,
provided that there are no intervening entry points. The register-
register architecture makes it fairly simple to pick out instructions
that depend on each other and cannot be resequenced.



300 10.12. An Introduction to Compiler Optimization

– For a load, you may be able to find an instruction in the code after
the load that is independent of the load value and is able to be
moved.

– Move the instruction just before a branch into the branch delay slot.

– Duplicate the instruction at a branch target into the branch delay
slot, and fix up the branch to go one more instruction forward. This
is particularly effective with loop-closing instructions. If the branch
is conditional, though, you can only do it if the inserted instruction
can be seen to be harmless when the branch is not taken.

10.12.2 Optimizer Unfriendly Code and How to Avoid It

Certain kinds of C programs will cause problems to a MIPS CPU and its
optimizing compiler and will cause unnecessary loss of performance. Some
things to avoid include the following:

• Sccbword arithmetic: Use of short or char variables in arithmetic oper-
ations is not helpful. The MIPS CPU lacks subword arithmetic functions
and will have to do extra work to make sure that your expressions over-
flow and wrap around when they should. The int data type represents
the optimum arithmetic type for your machine; most of the time short
and char values can be correctly manipulated by int automatic vari-
ables.

• Taking the address of a local variable: The compiler will now have to
consider the possibility that any function call or write through a pointer
might have changed the variable’s value, so it won’t live long in a ma-
chine register. Perhaps the best way of seeing this is observing that a
variable defined locally to a function (and whose address is not taken) is
essentially free. It will be assigned to a register, which would have been
needed in any case for the intermediate result.

• Function calls: In the MIPS architecture the direct overhead of a function
call is very small (2-3 clock cycles). But the function call makes it diffi-
cult for the compiler to make good use of registers, so it may be much
more costly in the long run. So a nested call inside a function with a
fairly complex set of local variables is probably as slow as a typical CISC
function call, and it adds a lot of code.

10.12.3 The Limits of Optimization

Compilers have been much studied for a long time. Modern compilers tend to
use only a fraction of the ideas and techniques that academics have come up



Chapter 10. C Programming on MIPS 301

with; partly this is appropriate conservatism, in that a compiler that gener-
ates incorrect code at just one point in your 100,000-line program isn’t much
good to you, even if the code it got right is 10% smaller and 10% faster. But
another reason for avoiding fancy techniques is that most of them deliver very
little improvement. There are some really bad compilers in use, so if you are
using one of those you may see a big improvement by changing; reasonable
compilers, however, perform about equally.

Big-time improvements are traditionally possible in certain specific types
of programming. Notably, many big floating-point programs are somewhat
“vectorizable” and can be sped up a lot by the use of supercomputer CPUs
that perform the same operation to a whole array of variables at one time.
It turns out that the vector optimizer can also make improvements in code
for CPUs that can’t actually perform the operations in parallel but whose
pipelines permit one operation to start before the last one finishes. MIPS
floating-point operations are like that.

For example, SGI has been tuning its own compilers to the MIPS archi-
tecture for years, whereas the GNU C compiler is a peculiar public-domain
collaboration and MIPS is just one of many architectures. On plain integer
code there is some evidence Lhat the GNU compiler slightly outpaces SGI’s;
where this is true it’s probably evidence of better register allocation. But on
floating-point code the SGI compilers, with their supercomputer heritage, are
often 20% or more faster.

10.13 Hints about Device Access from C

Most of you will be writing code that accesses I/O registry in C — you cer-
tainly shouldn’t be using assembler code. As C evolves, it becomes more high
level and increases the risk that the compiler won’t do what you think you’re
telling it to do. Here are some well-trodden hints.

10.13.1 Using “volatile” to Inhibit Destructive Optimiza-
tion

I might write a piece of code that is intended to poll the status register of a
serial port and to send a character when it’s ready:

unsigned char *usart_sr = (unsigned char *)0xBFF00000;
unsigned char *usart_data = (unsigned char *)0xBFF20000;
#define TX_RDY 0x40

void putc (ch)
char ch;
{

while ((*usart_sr& TX_RDY) == 0)
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;

*usart_data = ch;
}

I’d be upset if this sent two characters and then looped forever, but that
would be quite likely to happen. The compiler sees the memory-mapped
I/O reference implied by *usart sr as a loop-invariant fetch; there are no
stores in the while loop so this seems a safe optimization. Your compiler has
recognized that your C program is equivalent to

void putc (ch)
char ch;
{

tmp = (*usart_sr & TX_RDY);

while (tmp)
;

*usart_data = ch;
}

With ANSI-compliant compilers,1 you could prevent this particular prob-
lem by defining your registers as follows:

volatile unsigned char *usart_sr = (unsigned char *) 0xBFF00000;
volatile unsigned char *usart_data = (unsigned char *)0xBFF20000;

A similar situation can exist if you examine a variable that is modified
by an interrupt or other exception handler. Again, declaring the variable as
volatile should fix the problem.

I don’t know whether to tell you that this will always work: The C bible
describes the operation of volatile as implementation dependent. I suspect,
though, that compilers that ignore the volatile keyword are implicitly not
allowed to optimize away loads.

Programmers have some trouble using volatile. The thing to remember
is that it behaves just like any other C type modifier — just like unsigned in
the example above. You need to avoid syndromes like this:

typedef char * devptr;
volatile devptr mypointer;

You’ve now told the compiler that it must keep loading the pointer value
from the variable devptr, but you have said nothing about the behavior of
the register you’re using it to point at. More useful would be the following:

1And most others, too; this particular ANSI feature is a must.
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typedef volatile char * devptr;
devptr mypointer;

Once you’ve dealt with this, the most common reason why optimized code
breaks will be that you have tried to drive the hardware too fast. There
are often timing constraints associated with reads and writes of hardware
registers, and you’ll often have to deliberately slow your code to fit in.

What is the moral of this section? While it’s easier to write and main-
tain hardware driver code in C than in assembler, it’s your responsibility to
understand enough about the translation of that code to be sure it hasn’t
introduced something you didn’t want.

10.13.2 Unaligned Data from C

Some C compilers give you the chance to mark structure data as being
“packed” — that is, with no padding to enforce alignment — and will gen-
erate code to cope.1

What’s more unusual is a compiler that understands that the main source
of potentially unaligned data is not the data that you’ve declared, but data
that has arrived from somewhere else. But you can probably code a routine
that will read an unaligned datum, something like this:

int unalignedload (ptr)
void *ptr;

{
#pragma pack (1)

/* define what you like here, with no assumptions about alignment */
struct unaligned {

int conts;
} *ip;

#pragma pack ()
/* back to default behavior */

ip = (struct unaligned *)ptr;

/* can now generate an unaligned load of int size */
return ip->conts;

}

The pragma syntax shown is an ANSI-approved escape mechanism, which
means that while the syntax is standard, the meaning probably isn’t. The
parameter to pack determines the level of alignment to enforce: #pragma

1All reasonable versions of GNU C will do this, but only compilers based on code currently
on prerelease for gcc version 2.8 or some earlier versions from Algorithmics will generate
reasonably efficient code for unaligned accesses.
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pack(1) proposes alignment on 1-byte boundaries (i.e., no padding at all);
you could also use #pragma pack(2) to have 2-byte and larger entities aligned
on 2-byte boundaries, though I can’t see where this would be useful. The
closing #pragma pack() is used to restore the default alignment rules.



Chapter 11
Portability Considerations and C
Code

There are not many completely new programs in the world, and most ap-
plications for MIPS will have formerly run on some other microprocessor.

Portability refers to the ease with which a piece of software can be transferred
successfully and correctly to a new environment, particularly a new instruc-
tion set. We all know that so-called portable computers can make your arms
ache; portability is relative, and porting a substantial application is rarely
easy.

All applications that have grown up in one particular environment are
likely to present some portability problems, both deliberate and inadvertent.
The object of this chapter is to draw your attention to areas that are particu-
larly likely to give problems.

Much of this chapter is necessarily somewhat vague and polemical; expe-
rienced programmers may feel that they are just being fed motherhood and
apple pie. Feel free to skip most of it; but take a look at the sections on data
alignment (different for every architecture) and endianness (which somehow
is so slippery that everyone, myself included, always makes mistakes).

Those parts of a system that drive relatively low-level hardware are nec-
essarily unportable: it isn’t cost effective or sensible to insist that the hard-
ware/software interface be preserved as you make faster and faster laser
printers, for example.

But outside those areas, C code is frequently inadvertently unportable.
C is often lax about semantics in search of performance, implementability,
and functionality.1 If a language abstraction stands between the programmer

1This is not a reason for using other languages. Pascal, for example is a much more
prescriptive language, but the consequent inability to do some vital things has encouraged a
welter of incompatible dialects. C’s semantic looseness (and some other cultural factors) has
allowed enough room to breathe that a single language standard has survived.
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and a potentially useful machine feature, the abstraction had better be eff-
cient and universal. C’s strength is that when such abstractions commanded
a wide consensus (like block structure, loop controls, and subroutine calls)
it used them; and when they did not (the semantics of pointers and pointer-
deference operations, for example) it just provided the machine feature, per-
haps slightly cleaned up.

However, while C encourages portability by allowing a huge range of soft-
ware to be implemented with the same syntax, portability issues can creep
back in through the many machine-dependent gaps in C’s coverage.

11.1 Porting to MIPS: A Checklist of Frequently
Encountered Problems

The following are problems that have come up fairly frequently in our practice
at Algorithmics:

• Need for explicit cache management: In many cases, the customer’s pre-
vious system either didn’t have caches or used a CPU and peripherals
that snoop direct memory accesses (DMA)to hide them from software.
We’ll describe what to do about this in Section 11.7.

• Timing consequences of a faster CPU : Some problems happen just be-
cause the software is now going so much faster. There’s no general
solution for this, so you’ll need to be vigilant.

• Data alignmentand memory layout: Your program may make unportable
assumptions about the memory layout of data declared in C. It’s almost
always unportable to use C struct declarations to map input files or
data received through a communication link, for example. Danger can
lurk in a program that employs multiple views of private data with dif-
ferently typed pointers or unions.

You should review and check your declarations. MIPS CPUs have more
rigid alignment requirements than some other CPUs, so you may find
that data structures change significantly.

We’ll describe how to understand what MIPS compilers usually do in
Section 11.5.

• Endianness: The computer world is divided into little- and big-endian
camps, and a gulf of incomprehension falls between them. The MIPS
CPU can be set up to do either, but you probably ought to understand
this problem; read much more about it in Section 11.6.

• Negative pointers: When running unmapped code on a MIPS CPU, all
potnters: are in the kseg0 or ksegl areas, and both use pointers whose
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32-bit value has the top bit set. Unmapped programs on most other
architectures are dealing with physical addresses, which are invariably
a lot smaller than 2GB!

Such pointer values could cause trouble when pointer values are being
compared, if the pointer were implicitly converted to a signed integer
type. Any implicit conversions between integer and pointer types (quite
common in C) should be made explicit and should specify an unsigned
integer type (you should use unsigned long for this).

Most compilers will warn about pointer-to-integer conversions, though
you may have to specify an option.

• Signed vs. unsigned characters: In early C compilers, the char type used
for strings was usually equivalent to signed char; this is consistent
with the convention for larger integer values. However, as soon as you
have to deal with character encodings using more than 7-bit values, this
is dangerous when converting or comparing. Modern compilers usually
make char equivalent to unsigned char instead.

If you discover that your old program depends on the default sign-
extension of char types, good compilers offer an option that will restore
the traditional convention.

• Moving from 16-bit int: A significant number of programs are being
moved up from 16-bit x86 or other CPUs where the standard int is
a 16-bit value. Such programs may rely, much more subtly than you
think, on the limited size and overflow characteristics of 16-bit values.
Although you can get correct operation by translating such types into
short, that will be inefficient. In most cases you can let variables qui-
etly pick up the MIPS int size of 32 bits, but you should be particularly
aware of places where signed comparisons are used to catch 16-bit over-
flow.

• Programming that depends on the stack: Some kind of function invoca-
tion stack and data stack are implicit in C’s block structure. Despite the
MIPS hardware’s complete lack of stack support, MIPS C compilers im-
plement a fairly conventional stack structure. Even so, if your program
thinks it knows what the stack looks like, it won’t be portable. Don’t try
to fix it by replacing the old assumptions with new ones.

Two respectable and standards-conforming macro/library operations
are available that may tackle what your software was trying to do be-
fore:

– stdargs: Use this include-file-based macro package to implement
routines with a variable number of parameters. Your C code should
make no other assumptions about the calling stack.

– alloca(): To allocate memory at run time, use this library func-
tion, which is “on the stack” in the sense that it will be automatically
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freed when the function allocating the memory returns. Some com-
pilers implement alloca() as a built-in function that actually ex-
tends the stack; otherwise there are pure-library implemgntations
available. But don’t assume that such memory is actually at an
address with some connection with the stack.

• Argument passing, autoconversions: Arguments passed to a function,
and not explicitly defined by a function prototype, are often “promoted”;
typically, for subword integers, to an int type. This can cause surprises,
particularly when you are promoting data unexpectedly interpreted as
signed.

It’s time your software used function prototypes everywhere!

• Ambiguous behavior of library functions: Library functions may behave
unexpectedly at the margins. A classic example is using the memcpy()
routine (defined in many C environments) to copy bytes and accident-
tally feeding it a source and destination area that overlap — this is for-
bidden by definition. A simple sequential loop that copies bytes from
source to destination one at a time behaves fairly gracefully with over-
lapping pointers, but a tuned routine is likely to pick up multiple bytes
at once.

Your problem is that if you are using a lightly tuned library, as you port
your code bizarre things may start happening as incorrect library usage
exposed. Some test suites may have debug versions of library routines
that check for possible problems.

• Include file usage: This is closer to a system dependency, but you can
spend hours trying to untangle an incompatible forest of “.h” files. This
is probably an unavoidable chore when porting a program of any size.
We’ll give some general words of wisdom.

Before we get onto the more thorny problems in detail, let’s describe how
Mr. Perfect might go about porting a program. You will rarely have the chance
to do it this way, of course, but at least you can point at this book to explain
where it went wrong!

11.2 An Idealized Porting Process

It is unlikely that the source code you have to port is literally the complete
system. Most programs depend on an environment implemented by under-
lying third-party software; this may be bound in at run time (an operating
system or system monitor) or at link time (library functions, include files).
Quite often you won’t have sources; sometimes you will have source code,
but this part of the system will just be more trouble to port than to repro-
duce.
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This is the point at which you can appreciate the purpose of attempts to
standardize a C run-time library. If only your old and new environments pro-
vided something like the same application program interface; the job would
be trivial. It isn’t, usually.

Two Golden Rules
While you’re porting a program, don’t make
any functional change. None at all. Not even
a little bit.
You’ll have quite enough trouble getting the
new program to behave just like the old one
without trying to make it behave better; one
of the few advantages porters have over
green-field software engineers is that the old

system provides a rigid and unarguable spec-
ification.
Here’s another golden rule: Use every tool you
have to make better maps of the system. If
you’ve got tools that will figure out call trees
or variable cross-references, use them. If you
haven’t got them, now would be a good time
to get them; many are availab1e free.

11.2.1 Three Porting Choices

You’re going to consider every source module in the old system and decide its
fate :port, reimplement, or discard:

• Port. This is a part of your application or its essential superstructure,
and its basic job is machine independent. You will make no CPU- or
hardware-dependent changes to such a module; any changes you make
will be to correct portability errors and will not prevent your new module
from being used to rebuild your old system. You won’t change the logic
of such a module in any way, so with care you shouldn’t introduce many
bugs.

• Reimplement. This is a “glue” function that provides a service (as a set
of functions or data items) to portable code but whose implementation
depends on the way the old system works. You’ll produce a new version
of this module that exports the same service (possibly taking advantage
of cut-and-pasted code from the old one).

• Discard. This is a module whose service interface is no longer relevant
to the new system. Perhaps it was supplied as part of an OS you won’t
be using, as a library function that is not available (with exactly the
same semantics) in the new compilation system, or perhaps it is even
not licensed for use on your target system.

This is art as well as science; there is no single right way to do it. Your
objective will be to minimize the scope for introducing new errors, while min-
imizing the amount of work you have to do. To do this job right requires
skill, insight, and experience; programming is a hard craft and not quickly
learned.
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Usually, you should make your decision on whole existing modules. Where
it seems that a single module really contains a mixture of “port” and “reim-
plement” functions, try splitting it in two as cleanly as possible and then
reclassify each half.

The modules identified for reimplementation are likely to represent a small
fraction of the code but will absorb a lot of your effort. It will be easier if your
new larger and its toolkit provide a high-quality run-time system and libraries
that can provide an easy base for those reimplementations.

The other large source of effort in reimplementation is most characteristic
of device drivers: It’s often very difficult to figure out how the hardware works.
It probably isn’t specified properly, and in any case it doesn’t adhere to its
specifications. If your software system is large and your hardware is new and
minimal, it’s often a good idea to write a test program to allow you to weigh
empirical evidence against the lies and blandishments of documentation. The
test program will also let you become familiar with the new toolkit and CPU.

11.2.2 Fixing Up Dependencies

Once you’ve made your divisions among the three porting choices, you begin
by recompiling the “port” modules on the new system, fixing minor porta-
bility problems as you go. When you link them together you’ll get a list of
unresolved definitions that need to be patched up. Some of these, when in-
vestigated, will turn out to be used only in code that really fell into the “reim-
plement” category; move the boundary and iterate until the list of unresolved
names makes sense.

Then tackle the reimplement modules. You have two choices far each
function. The first is to recompile the function, adding some “underglue”
definitions or functions to mimic the behavior of the old environment using
the new one. (In a sense, you’re pragmatically deciding that what was seen
as glue is better pushed back into the port category.) Alternatively, you can
discard the old function and write a new one (using the old one for inspiration
and as a source for cut and paste), aiming to mimic the function as a black
box.

For each function or module, choose one of these strategies. It is nearly
always a bad idea to mix strategies in the same module.

11.2.3 Isolating Nonportable Code

No complete and useful program can be written portably. Two systems may
both implement the same OS and may allow you to carry programs between
them; but this is only because the OS writer has taken on the burden of
nonportable bits.
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The best you can do is to herd the nonportable parts of your code together
into modules, whose interfaces consist of stable data declarations and func-
tions whose operation can be expressed succinctly and clearly. You’ve got it
right when no potential user of a nonportable function ever feels the need to
look inside to see what it does!

11.2.4 When to Use Assembler

There are three reasons for using assembler:

• Efficient implementation of critical functions: Removing the last unneces-
sary clock cycle from any much-used piece of code, even if it’s as simple
as a strcpy(), may well be worthwhile. But you should always keep
a portable C version alongside. In fact, since you’re going to keep the
portable version, don’t write the assembler yet: Wait until you’ve built a
complete system and measured it to see whether this function is really
heavily used enough to justify the effort. Never change the assembler
version without changing the portable version too.

• Access to features not available to compiled code: Routines may need
to access CPU control registers, for example. Sometimes these may be
appropriately implemented as C functions built on tiny subroutines and
sometimes by C asm statements. Tiny subroutines are particularly apt
when — although the implementation wilt be completely machine de-
pendent — the desired effect is machine independent, such as a prefer-
ence for a disable interrupts function to a set status register bits func-
tion.

• Some critical environmental deficiency: Most commonly, this is the in-
ability to provide the free use of CPU registers and the stack that the
compiler relies on. Classic examples are startup code (where you may
not want to rely on memory for the stack) or the early part of an inter-
rupt handler (before you’ve saved the interrupted program’s registers).
Make it a priority, in these situations, to build an environment from
which you can call C functions.

11.3 Portable C and Language Standards

C does not meet the academic ideal of a high-level programming language.
It is one of a class of languages that were evolved by working programmers
who were trying to obtain (on simple minicomputers that were unsuited to
the large run-time system or the inefficiency of early high-level languages)
the kind of programming ease available from block-structured, purists’ high-
level languages.
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Algol or its successors (Pascal, Modula-2, and even Ada) set out to make
portability compulsory; these languages attempted to ensure that program
behavior was exactly specified by the source code, so they certainly couldn’t
be dependent on what kind of CPU was being used. C lets the underlying
implementation show through and in doing so makes itself usable for a larger
range of programming tasks. But that very power means that while it is
possible to write portable C by programming discipline, it doesn’t happen by
accident.

An example of this is how basic data types change in their size ( and
therefore the number of bits of precision) between different implrementations.
Another is that C’s pointers (inevitably implemented as real machine pointers)
expose the memory layout of data, which is implementation dependent.

Some things have gotten easier with time: Early C implementations had
to target machines with 7-, 8-, and 9-bit char types and with 36-bit machine
words. Most of you can safely assume that all the targets you ever want to
compile for have an 8-bit char as the smallest addressable unit of memory;
other basic types will be 16, 32, or 64 bits in size.

C has evolved continuously since its early days. It has definitely evolved to
a higher level: Most changes have tended to increase the amount of abstrac-
tion and checking. Like species, languages probably evolve more by “punc-
tuated equilibrium” than at a constant rate, so you can get quite a good fix
on any C dialect by fixing its position relative to three relatively stable and
famous variants.

First is traditional C, often called “K&R” from the authors (Kernighan
and Ritchie) of the C Programming Manual, first version.1 This reflects the
stanadard used for the first few years’ of UNIX’s life and the influence of a
single implementation: the AT&T Bell Labs Portable C compiler. It has little
type checking, many defaults, and the compilers do little to check your code.
However, it provides a useful lingua franca: Most compilers will (sometimes
unwillingly and with warnings) correctly translate programs written to K&R.

Second is the ANSI standard, which collects together improvements made
over the years and regulates them. ANSI adopted syntax that allows you to
make far more well-defined declarations of functions and then checks your
usage against them. ANSI compilers are much noisier, with a tendency to
produce warning messages.

ANSI C is very much a commercial standard, and in many cases it stan-
dardized ahead of current practice. Moreover, it contains features that many
users dislike: Users respond by using a not-quite-ANSI dialect, and compiler
suppliers respond by permitting the use of such a dialect with command line

1One of the best pieces of writing in computer science, this book gives a comprehensive
and comprehensible description of the world’s most useful language in a remarkably small
space. It’s been updated for new language standards, which has made it fatter but hasn’t
spoiled it. If you haven’t got one, go out and buy it now!
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options. Surprisingly, the outcome of this process seems to have left the C
language in better shape than it used to be.

Third is the Free Software Foundation’s GNU compiler, which is available
for a huge range of hosts and is encouraging the emergence of a new dialect.1

(Of course, Microsoft’s PC-oriented C and C++ compilers are more widely
used, but are much more rarely used off-desktop.) The GNU compiler, though
fully ANSI compliant, is often deployed to implement a language, liked by its
protagonists, that keeps some important ANSI features but ignores others.
The virtue of this is that the protagonists of GNU C are themselves serious
programmers.

GNU also adds a number of very valuable extensions that extend the scope
of the language — examples include function inlining, a robust asm state-
ment, and the alloca() routine which allocates memory dynamically from
the program stack. If you can standardize on GNU, you minimize language
portability problems, with (probably) minimal loss of ability to move to novel
and exotic hardware. It’s tempting. However, most programmers needing
portability are writing ANSI-compliant C that has function prototypes but
would otherwise be acceptable to a K&R compiler.

11.4 C Library Functions and POSIX

C supports separate compilation of modules, and you can link together the
resulting object code without recourse to the source. C libraries are bunches
of precompiled object code defining common functions. The “standard” C
library of everyday functions is to all intents and purposes part of the lan-
guage.

The ANSI standard addresses a subset of common library functions and
defines their functions. But this deliberately steers clear of OS-dependent
functions and that means avoiding even the simplest input/output routines.

The POSIX standard (IEEE1003.4) is probably the best candidate for defin-
ing a standard C language interface to a workable I/O system. POSIX has its
problems: It only includes a subset of OS features (probably a good thing),
and because its definers occasionally felt obliged to standardize an improve-
ment of current practice, full POSIX compliance is still hard to find even in
big OSs.2 Moreover, Microsoft has steadfastly discouraged the use of POSIX
standards; its Win32 application programming interface was invented after

1GNU C is also an extraordinary experiment; it is a major piece of ingenuity and in-
tellectual work that is being maintained and continually developed by a large, loose knit,
worldwide community of workers, many of them volunteers. No other piece of free software
has filtered quite so far into the body of the computer industry.

2A standards committee often finds it impossible to select one out of a number of com-
peting solutions, each one of which is already provided by one vendar, because any selection
will benefit one party at the expense of all the others.
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the POSIX system call interface had stabilized but is pointlessly incompati-
ble. But you can get software that implements a POSIX interface on top of
Win32, and POSIX is a useful reference point for desktop tools.

POSIX is as yet much further from reality in embedded systems. The
POSIX “threads” proposal is a reasonable and sensible attempt to standardize
multitasking in one address space, but few embedded systems follow it.

11.5 Data Representations and Alignment

The MIPS architecture can only load multibyte data that is “naturally” aligned
— a 4-byte quantity only from a 4-byte boundary, etc. Many CISC architec-
tures don’t have this restriction. The MIPS compiler attempts to ensure that
data lands in the right place; this requires far-reaching (and not always ob-
vious) behaviors, such as leaving padding between fields of data structures
and ensuring that complex data structures are aligned to the largest unit to
which the architecture is sensitive (4 or 8 bytes in the MIPS architecture).

small x medium again x big

0 21 3 4 5 7 8 11Offset(bytes)

Figure 11.1: Structure layout and padding in memory

Your previous compiler may do this differently. Consider the following
example:

struct foo {
char small;
short medium;
char again;
int big;

}

This will be laid out in memory as shown in Figure 11.1. A word of warning
is in order here, however: Figure 11.1 is not necessarily correct for all MIPS
compilers, and all these notes should be taken as typical of what a good
compiler will do. A standard for interlinkable modules or binary-compatible
programs would have to nail these down — as does, for example, the MIPS
ABl standard. But beware — a compiler could still be fully compliant with
C standards and use bizarre and wholly counterintuitive data representa-
tions, so long as these were internally consistent. Following are some typical
behaviors:

• Alignment of structure base address: The data structure shown in Figure
11.1 will always be placed on a 4-byte boundary; a structure’s alignment
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is that of its most demanding record. struct foo contains an int re-
quiring 4-byte alignment, so the structure itself will be 4 byte aligned.

Where memory is allocated dynamically, either implicitly on the stack or
explicitly by software routines such as malloc(), the resulting pointers
could give rise to alignment problems; hence they are specified to return
pointers aligned to the largest size the architecture cares about. In the
case of 32-bit MIPS CPUs, this need only be 4 bytes, but the common
convention is to align to 8 bytes for compatibility with 64-bit implemen-
tations. Stack alignment is maintained by only altering the sp value by
a multiple of 8 bytes if needed.

• Memory order: Fields within structures are stored in memory in the
order declared.

• Padding: This is generated whenever the next field would otherwise have
the wrong alignment with respect to the structure’s base address.

• Endianness: This has no effect on the picture shown in Figure 11.1.
Endianness determines how an integer value is related to the values of
its constituent bytes (when they are considered separately); it does not
affect the relative byte locations used for storing those values.1 Endian-
ness does have same effect on the layout of C bitfields; this is discussed
in Section 11.6.2.

There’s an irrefutable, pure, and correct position on data structures and
portability: The memory representation of data is compiler dependent, and
you have no right to expect it to be in any way portable, even between two
different compilers for the same architecture. But in the real world it would
be hopelessly inefficient to make sure that all data ever exchanged or pub-
lished by programs was universally represented, and nonportable C is often
a better way of defining data than anything else at your disposal.

However, there are some tools that may help. ANSI compilers may support
an option using the pack pragma:2

#pragma pack(1)
struct foo {

char small;
short medium;
char again;
int big;

}
#pragma pack()

1If you find this difficult to believe, it’s probably because big-endians and little-endians
draw pictures differently.

2GNU C users have a nicer, more specific syntax for this inside individual field decla-
rations; for example int n attribute((packed)) would declare a field as an integer but
avoid any padding before it.
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This has the effect of causing the compiler to omit all padding, producing
the layout shown in Figure 11.2. A structure packed like this has no inher-
ent alignment, so in addition to the lack of any padding, the structure base
address may also be unaligned. The compiler is therefore obliged to generate
load and store sequences to its fields that are alignment independent (and
therefore to some extent inefficient) — even though, in this particular case,
the big field happens to have the correct 4-byte alignment from the structure
base.

The #pragma pack() at the end restores the default alignment rules.

small medium again big

0 21 3 4 7Offset(bytes)

Figure 11.2: Data representation with #pragma pack(1)

small x medium again x big

0 21 3 4 5 6 9Offset(bytes)

Figure 11.3: Data representation with #pragma pack(2)

The 1 in pack(1) refers to the maximum alignment that must be re-
spected, so pack(2) means align only to 2-byte boundaries. Hence the code
string

#pragma pack(2)
struct foo {

char small;
short medium;
char again;
int big;

}
#pragma pack()

has the effect of causing the compiler to pad items of 2 bytes or larger to
2-byte boundaries, producing the layout shown in Figure 11.3.

The #pragma pack() feature would be more appealing if most compilers
supported it, and if when they did, they generated tolerably efficient code
using the MIPS instructions that are designed for unaligned accesses (see
Section 8.4.1). It would also help if there weren’t another quite different
source of incompatibility of data representation: endianness (Section 11.6).
Nonetheless, used with care the “pragma pack” feature can make it easier to
configure a source module between two or more different architectures. It’s
less likely to be a good choice for a one-off conversion.
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11.6 Endianness: Words, Bytes, and Bit Order

The word endianness was introduced to computer science by Danny Cohen
(Cohen 1980). In a paper of rare humor and readability, Cohen observed that
computer architectures had divided up into two camps, based on an arbitrary
choice of the way in which byte addressing and integer definitions are related.
The name comes from Gilliver’s Travels, where the little-endians and big-
endians fought a war over the correct end at which to start eating a boiled
egg. The satire highlights the inability of the protagonists to comprehend the
arbitrary nature of their difference. The joke was appreciated, and the name
has stuck.

Computer programs are always dealing with sequence and order of differ-
ent types of data: iterating in order over the characters in a string, the words
in an array, or the bits in a binary representation. C programmers tend to
make the pervasive assumption that all these variables are stored in a mem-
ory that is itself visible as a sequence of bytes — memcpy() will copy any data
type. And C’s I/O system models all I/O operations as bytes; you can also
read() and write() any chunk of memory containing any data type.

So one computer can write out some data, and another computer can
read it: Suddenly we’re interested in whether the second computer can un-
derstand what the first one wrote.

We understand (from Section 11.5)that we need to be careful with padding
and alignment. And it’s probably too much to expect that complex data types
like floating-point numbers will always transfer intact. But we’d hope at
least to see simple twos complement integers coming across OK; the curse of
endianness is that they don’t. The 32-bit integer whose hexadecimal value
was written as 0x12345678 quite often reads in as 0x78563412.

A 32-bit binary integer is represented by a sequence of bits, with each
bit having a different significance. The least significant bit is “ones,” then
“twos,” then “fours” — just as a decimal representation is “ones,” “tens,” and
“hundreds.” To represent a number you have to agree on which bits are
significant — and some computers put the least-significant bit “first” (that is,
in lower memory locations) and some put the most-significant bit first, i.e.,
they’re either little-endian or big-endian. When I first came into computers
in 1976 DEC’s minicomputers were little-endian and IBM mainframes were
big-endian; neither camp was about to give way.

But wait a moment. Surely, since 0x12345678 is also 00010010 00110100
01010ll0 0111l000 in binary, when seen with the opposite ordering con-
vention it should be the number you get by reversing all the bits, which is
00011110 01101010 00101100 01001000 (and, in hex, 0xle6a2c48)? That
would be logical and could arise in some circumstances; IBM always called
the most-significant bit “bit 0” — i.e., a totally consistent big-endian ap-
proach. But sometime in the 70s, when 8-bit bytes were winning out as
a universal base unit for both computers and computerized communications
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systems, the war ended at the byte level. Since then bytes have bits num-
bered 0 through 7, and the most-significant bit is 7. IBM’s documentation
stood out against this, but it so happens that IBM didn’t really sell anything
with a byte-wide interface — neither hardware, software, or cross-platform
communication protocols. IBM could not have been converted but was just
bypassed.

When Motorola introduced the 68000 microprocessor around 1978, it
made the fateful decision to reflect IBM’s mainframe architecture. Motorola
couldn’t go against the prevailing bits-within-bytes convention (every 8-bit
peripheral would have had to be connected with its data bus backward) but
when storing 16- and 32-bit integers Motorola put the byte containing the
most-significant bits at the lowest memory address. The bits and bytes were
numbered in opposite directions.

Danny Cohen’s paper is careful to be neutral, but I don’t have to be; if any
single decision can be held responsible for the trouble detailed in this section
it was Motorola’s.

There is software trouble when porting software or moving data between
incompatible machines; there is hardware trouble when connecting incom-
patible components or buses. We’ll take the software and hardware problems
separately.

Here’s a software-oriented definition: A CPU/compiler system where the
lowest addressed byte of a multibyte integer holds the least-significant bits is
called little-endian; a system where the lowest addressed byte of a multibyte
integer holds the most significant bits is called big-endian. The CPU/compiler
is strictly correct — a compiler can always produce the effect of reversed
endianness and on some architectures the decision is fairly arbitrary.1 But
on a 32-bit byte-addressable CPU like MIPS, the compiler can’t reasonably
cover over the hardware; thus we talk of the endianness of the CPU.

11.6.1 Endianness and the Programmer

You can very easily find out if you have a big-endian, or little-endian, CPU,
by running a piece of deliberately nonportable code:

union {
int as_int;
short as_short[2];
char as_char[4];

} either;

either.as_int = 0x12345678;

1A pure 8-bit micro has no built-in endianness; in fact, any computer whose memory
addressing, registers, and operations all operate with the same width words has no built-in
endianness.
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if (sizeof(int) == 4 && either.as_char[0] == 0x78) {
printf ("Little endian\n");

}
else if (sizeof(int) == 4 && either.as_char[0] == 0x12) {

printf ("Big endian\n");
}
else {

printf("Confused\n");
}

as_char[0] as_char[1] as_char[2] as_char[3]

as_short[0] as_short[1]

as_int

31 07815162324Bit

Byte offset 0 1 2 3

Figure 11.4: Typical big-endian’s picture

So long as binary data items are never imported into an application from
elsewhere, and so long as you avoid the syndrome above where you access
the same piece of data under two different integer types, your CPU’s endi-
anness is invisible (and your code is portable). You should be able to check
an application in this respect with the type-checking facilities available with
modern C compilers.

But that still leaves foreign data reads into your system and the memory
view of memory-mapped hardware registers: For these, you need to know
exactly how your compiler accesses memory.

11.6.2 Endianness: The Pictures and the Intellectual Prob-
lem

This all seems fairly harmless, but experience shows that of all data-mapping
problems, endianness is uniquely confusing. I think this is because it is
difficult even to describe the problem without taking a side. The origin of
the two alternatives lies in two different ways of drawing the pictures and
describing the data; both are natural in different contexts.

Big-endians typically draw their pictures organized around words (32 bits
in a MIPS system), as shown in Figure 11.4 for the code following:

union either {
int as_int;
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short as_short[2];
char as_char[4];

};

What’s more, big-endians see words as a sort of number, so they put the
highest bit number (most significant) on the left, like our familiar Arabic num-
bers. And a big-endian sees memory as an array of words; to emphasize the
separation of bit and word order, the words are likely to be drawn extending
up and down the page (Figure 11.4).

as_char[0] as_char[1] as_char[2] as_char[3]

as_short[0] as_short[1]

as_int

310 7 8 15 16 23 24Bit

Byte offset 0 1 2 3

Figure 11.5: Little endian’s picture

But little-endians generally want to abstract a computer memory as an
array of bytes. So the same data structure looks like Figure 11.5. Little-
endians don’t think of computer data as primarily numeric, so they tend to
put all the low numbers (bits, bytes, or whatever) on the left. A little-endian
sees memory as extending off to the left and right of the picture.

You can’t describe endianness without drawing pictures; however, the pic-
ture you draw immediately commits you to one camp or the other. This is the
essence of the subject’s capacity to confuse: You can’t talk about it without
getting caught in it first.

Bitfields, Floating Point, and Endianness

Before discussing solutions, let’s look at one particularly messy issue. C
permits you to define bitfields in structures; you may recall that in Section
7.9.3 we used a bitfield structure to map the fields of a single-precision IEEE
floating-point value (a C float) stored in memory. An FP single value is
multibyte, so you should probably expect this definition to be endianness
dependent. The big-endian version looked like this:

struct ieee754sp_konst {
unsigned sign:1;
unsigned bexp:8;
unsigned mant:23;

};



Chapter 11. Portability Considerations and C Code 321

C bitfields are always packed — that is, the fields are not padded out to
yield any particular alignment. But compilers reject bitfields that span the
bound — aries of the C type used to hold them (in the example, that’s an
unsigned, which is short for unsigned int). Such fields are usually 32 bits
for MIPS microprocessors, even 64-bit ones. Some compilers will let you get
a field of up to 64 bits by using a long long as the basic type.

The structure and mapping for a big-endian CPU is shown in Figure 11.6
(using a typical big-endian’s picture); a little-endian version is shown in Fig-
ure 11.7.

sign bexp mant

31 30 23 22 0

0 1 2 3Byte offset

Bit

Figure 11.6: Bitfield from the big-endian viewpoint

70220

0 1 2 3Byte offset

Bit

mant bexp sign

Figure 11.7: Bitfield from the little-endian viewpoint

The little-endian version of the structure has to define the fields in the
other direction to be compatible with the way the hardware registers work;
the C compiler insists that, even for bitfields, items declared first in the struc-
ture occupy lower addresses:

struct ieee754sp_konst {
unsigned mant:23;
unsigned bexp:8;
unsigned sign:1;

};

To see why that works, you can see from Figure 11.7 that in little-endian
mode the compiler packs bits into structures starting from low-numbered
bits.

It’s probably not surprising that the CPU’s endianness shows up when
looking inside a floating-point number; we said earlier that accessing the
same data with different C types often showed up the CPU’s nature. But it
does demonstrate that there is still a real and pervasive issue before we deal
with foreign data or hardware.
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11.6.3 Endianness: The Hardware Problem

We saw above that a CPU’s native endianness only shows up when it offers di-
rect support both far word-length numbers and a finer-resolution, byte-sized
memory system. Similarly, your hardware system acquires a recognizable
endianness when a byte-addressed system is wired up with buses that are
multiple bytes wide. When you transfer multibyte data across the bus, each
byte of that data has its own individual address.

If the lowest-address byte in the data travels on the eight bus lines (“byte
lane”) with the lowest bit numbers, the bus is little-endian. But if the lowest-
address byte in the data travels on the byte lane with the highest bit numbers
the bus is big-endian.

In some IBM manuals you’ll still see bit 0 used for the most-significant bit
of a byte. But that’s really obsolete, and for practical purposes everyone has
decided to agree that high bit numbers are interpreted as the most significant.
In hardware as in software, that means there’s general agreement on the
interpretation of 8-bit bytes.

Byte-addressable CPUs announce themselves as either big- or little-endian
every time they transter data. Intel and DEC CPUs are little-endian; Motorola
680x0 and IBM CPUs are big-endian. MIPS CPUs can be either, as configured
from power-up; most other RISCs have followed the MIPS lead and chosen to
make endianness configurable, so that designers can choose what matches
the CPU they’re used to.

With all the CPUs I know, this matches up with the software-visible endi-
anness.1 Since this hardware endianness shows up when data is transferred
on a bus, you can identify the endianness of any device that connects to more
than 1 byte of a data bus.

So long as all the buses and devices in a system have the same endian-
ness, there’s no real problem for hardware engineers; you just connect up the
data buses by matching up the numbers. Trouble strikes when your system
includes buses, CPUs, or peripherals whose endianness doesn’t match. In
this case the choice is not a happy one; the system designer must choose the
lesser of two evils:

• Bit number consistent/byte address scrambled: Most obviously, the de-
signer can wire the two buses up according to their bit numbers, which
will have the effect of preserving bit numbering within aligned “words:”
But since the relationship between bit numbers and bytes-within-words

1It doesn’t have to match up, though. You could build a CPU interface where instead
of having data bits numbered 0-31, you instead collected the data bits into byte lanes and
perhaps called the signals 0D0-7, 1D0-7, 2D0-7, 3D0-7, according to whether they were
the bits of bytes at low→high addresses. There would be no endianness visible in such an
interface.
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is different on the two buses, the two sides will see the sequence of bytes
in memory differently.

Byte-oriented data being transferred across the join will not make sense
until the software byte-swaps each word unit of the data as required.
This looks and feels different from the software endianness problem:
In the software problem you have no problem finding data type bound-
aries; it’s just that the data doesn’t make sense. With this hardware
problem the boundaries are scrambled too (unless the data happened to
be aligned on bus-width “word” boundaries).

If the data being passed across the interface is always aligned word-
length integers, then this may even be useful; the word data can be
converted from its opposite-endian fomrat to a this-endian format.

• Byte address consistent/word scrambled: The designer can decide to
preserve byte addressing: That will mean connecting byte lanes that cor-
respond to the same byte-within-word address, even though the num-
bering of the data lines in the byte lane doesn’t match at all. Of course,
that means that a bus-width-aligned integer (the “natural” unit of trans-
fer) will get scrambled when travelling between the two buses; any multi-
byte data will require reinterpretation by software from the other side.

For most purposes, byte address scrambling is much more pernicious:
When dealing with data representation and transfer problems, programmers
will usually fall back on C’s basic model of memory as an array of bytes, with
other data types built up from that. When your assumptions about memory
order don’t work out, it’s very hard to see what’s going on.

Unfortunately, a bit number consistent/byte address scrambled connec-
tion looks much more natural on a schematic; it can be very hard to persuade
hardware engineers to do anything else.

Not every connection in a system matters. Suppose we have a 32-bit-wide
memory system bolted directly to a CPU. The CPU’s system interface may not
indude a byte-within-word address — the address bus does not specify ad-
dress bits 1 and 0. Instead, many CPUs have four “byte enables” that show
that data is being transferred on particular byte lanes. The memory array
is wired to the whole bus, and on a write the byte enables tell the memory
array which of four possible byte locations within the word will actually get
written. Internally, the CPU associates each of the byte lanes with a byte-
within-word address, but that has no effect on the operation of the memory
system. Effectively, the memory/CPU combination acts together and inherits
the endianness of the CPU; where byte-within-word 0 actually goes in mem-
ory doesn’t matter, so long as the CPU can read it back again.1

1Hardware-familiarized engineers will recognize that this is a consequence of a more
general rule: It’s a property of a writable memory array that it continues to work despite
arbitrary permutations of the address and data lines to it. It doesn’t matter where any
particular data goes, so long as when you feed the matching read address into the array you
get bark the same data you originally wrote.
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It’s very important not to be seduced by this helpful characteristic of a
RAM memory into believing that there’s no intrinsic endianness in a simple
CPU/RAM system. You can spot the endianness of any transfer on a wide
bus. Here’s a sample list of conditions in which you can’t just ignore the
CPU’s endianness when building a memory system:

• When a ROM memory is preprogrammed, the hardware address and
byte lane connections need to match those used for programming the
ROM, and the ROM data needs to match the CPU’s software endianness.

• When a DMA device gets to transfer data directly into memory, then its
notions of ordering will matter.

• When a CPU interface does not in fact use byte enables, but instead
issues byte-within-word addresses with a byte-width code, then the en-
dianness will matter. Many MIPS CPUs are like this.

Section 11.6.5 is a discussion for hardware engineers about how to set up
a byte address consistent system and survive.

11.6.4 Wiring a Connection between Opposite-Endian Camps

Suppose we’ve got a big-endian 64-bit CPU, perhaps a MIPS R4x00 configured
big-endian. And we’ve got a little-endian 32-bit bus, probably PCI.

Figure 11.8 shows how we’d wire up the data buses to achieve the recom-
mended outcome of consistent byte addresses as seen by the big-endian CPU
and the little-endian bus.

The numbers called “byte lane” show the byte-within-bus-width part of the
address of the byte data travelling there. Writing in the byte lane numbers is
the key to getting one of these connections right.

Since the CPU bus is 64 bits wide and the PCI bus 32 bits, you need to
be able to connect each half of the wide bus to the narrow bus according to
the “word” address — that’s address bit 2, since address bits 1 and 0 are the
byte-within-32-bit-word address. The 64-bit bus is big-endian, so its high-
numbered bits carry the lower addresses, as you can see from the byte lane
numbers.

If you look just at the bit numbering around the bus switch, you’d think
it just couldn’t be right. Such are the joys of endianness.

11.6.5 Wiring an Endianness-Configurable Connection

Suppose you want to build a board or bus switch device that is designed to
handle MIPS CPUs of either endianness. How can we generalize the advice of
Section 11.6.4?
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We’d suggest that, if you can persuade your hardware designer, you should
put a programmable byte lane swapper between the CPU and the I/O system.
The way this works is shown diagrammatically in Figure 11.9; note that this
is only a 32-bit configurable interface and it’s an exercise for you to generalize
it to a 64-bit CPU connection.

We call this a byte lane swapper, not a byte swapper, to emphasize that
it does not discriminate on a per-transfer basis, and in particular to indicate
that it is not switched on and off for transfers of different sizes. There are
circumstances where it can be switched on and off for transfers to different
address regions — mapping some part of the system as bit number consis-
tent/byte address scrambled — but that’s for you to make work.
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Figure 11.8: Writing a big-endian CPU to a little-endian bus

What a byte lane swapper does achieve is to ensure that, when your CPU
configuration is changed, the relationship between the CPU and the now-
non-matching external bus or device can still be one where byte sequence is
preserved.

You normally won’t put the byte-lane swapper between the CPU and its
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local memory — this is just as well, because the CPU/local memory con-
nection is fast and wide, which would make the byte swapper expensive.
As mentioned above, so long as you can decode the CPU’s system interface
successfully you can treat the CPU/local memory as a unit and install the
byte swapper between the CPU/memory unit and the rest of the system. In
this case the relationship between bit number and byte order inside the local
memory changes with the CPU, but this fact is not visible from the rest of the
world.
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Figure 11.9: Byte lane swapper

11.6.6 Software to Cope with Both-Endianness of a MrPS
CPU

You may want to write software that will run correctly on MIPS CPUs with
eithen endianness — either for a particular board that may be run either
way or to create a portable device driver that may run on boards of either
configuration. It’s a bit tricky, but you can do a much better job by thinking
in advance.

The MIPS CPU doesn’t have to do too much to change enuianness. The
only parts of the instruction set that recognize objects smaller than 32 bits
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are partial-word loads and stores. On a MIPS CPU with a 32-bit bus, the
instruction

lbu t0, 1(zero)

takes the byte at byte program address 1, loads it into the least-significant
bits (0 through 7) of register t0, and fills the rest of the register with zero bits.

This description is endianness independent; indeed, the signals produced
by the CPU are identical in two cases: The address will be the appropriate
translation of the program address “1” and the transfer-width code will indi-
cate 1 byte. In big-errdian mode, however, the data loaded into the register will
be taken from bits 16-23 of the CPU data bus; in little-erulian mode, the byte is
loaded from bits 8-15 of the CPU data bus.

Inside the MIPS CPU, there are alternate data paths leading from each
individual byte lane to bits 0-7 of the register so that the CPU can implement
the normal four different load-byte cases; the MIPS CPU can change endian-
ness by altering the choice of data path for each byte-within-word address.

It is the change in the relationship between the active byte lane and the
address on partial-word loads and stores that characterizes the MIPS CPU’s
endianness. And complementing the chip’s ability to reconfigure itself, most
MIPS cross-compilers can produce code either way around based on a com-
mand line option.

If you just reconfigure a MIPS CPU to the wrong endianness for a particu-
lar system, then a couple of things will happen. Firstly, if you change nothing
else the system will most likely stop working, since on any partial-word write
the memory system will pick up the CPU’s data from the wrong part of the
bus and will store garbage; thus, at the same time as reconfiguring the CPU,
we’d better reconfigure the logic that decodes CPU cycles.1

Once we’ve got around that, we’ll find that the CPU’s view of byte address-
ing becomes scrambled with respect to the rest of the system; in terms of
the description above, we’ve implicitly opted for a bit number consistent/byte
address scrambled connection.

Of course, data written by the CPU after its sex change will seem fine to
the CPU; if we only select endianness at power-up then volatile memory that
is private to the CPU won’t give us any trouble.

Note also that the CPU’s view of bit numbering within aligned bus-width
words continues to match the rest of the system. This is the choice we de-
scribed as bit number consistent/byte address scrambled and discouraged
above deprecated for general use. But in this particular case it has a use-
ful side effect because MIPS instructions are encoded as bitfields in 32-bit
words. An instruction ROM that makes sense to a big-endian CPU will make

1This first problem won’t happen on some CPUs, like IDT’s R3051 family, which signal
partial-word transfers with independent byte lane enable signals.
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sense to a little-endian CPU too, allowing us to share a bootstrap. Nothing
works perfectly — in this case, any data in the ROM that doesn’t consist of
aligned 32-bit words will be scrambled. Algorithmics has never made a bi-
endian bootstrap, but we do have just enough bi-endian code to detect that
the main ROM program does not match the CPU’s endianness and to print
the helpful message:

Emergency - wrong endianness configured.

Emer

gn ec

y\000x x

0Byte address from BE CPU

Byte address from LE CPU

Byte address from BE CPU

Byte address from LE CPU

Byte address from BE CPU

Byte address from LE CPU

31 24 23 16 15 8 7 0

1 2 3

3 2 1 0

4 5 6 7

7 6 5 4

8 9 10 11

11 10 9 8

Figure 11.10: Garbled string storage when mixing modes; see text

The word Emergency is held as a C string, null-terminated. You should
now know enough to understand why the RQM startup code contains the
enigmatic lines

.align 4

.ascii "remEcneg\000\000\000y"

That’s what the string Emergency (with its standard C terminating null
and two bytes of essential padding) looks like when viewed with the wrong
endianness. It would be even worse if it didn’t start on a 4-byte-aligned
location. Figure 11.10 (drawn from the point of view of a confirmed big-
endian) shows what is going on.

Note that just because you can write some bi-endian code doesn’t mean
it’s going to be easy to load it into ROM. Typically, big-endian tools pack
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instruction words into the bytes of a load file with the most-significant bits
first, and little-endian tools work the other way around. You need to figure
out what you need and make sure you get it.

11.6.7 Portability and Endianness-Independent Code

By a fairly well-respected convention most MIPS toolchains define the symbol
BYTE ORDER as follows:

#if BYTE_ORDER == BIG_ENDIAN
/* big-endian version... */
#else
/* little-endian version... */
#endif

However, wherever you can you should use endianness-independent code.
Particularly in a well-controlled situation (such as when writing code for a
MIPS system that may be initialized with the CPU in either mode) you can get
rid of a lot of dependencies by good thinking.

All data references that pick up data from an external source or device are
potentially endianness dependent. But according to how your system is wired
you may be able to produce code that works both ways. There are only two
ways of wiring the wrong endianness together: one preserves byte addresses
and the other bit numbers. For some particular peripheral register access
in a particular range of systems, there’s a good chance that the endianness
change consistently sticks to one of these.

11.6.8 Endianness and Foreign Data

This is only a chapter on program porting, not a treatise on I/O and commu-
nications, so we’ll keep this section brief. Any data that is not initialized in
your code, chosen libraries, and OS is foreign. It may be data you read from
some memory-mapped piece of hardware, data put into memory by DMA,
data in a preprogrammed ROM that isn’t part of your program, or you may
be trying to interpret a byte stream obtained from an “abstract” I/O device
under your OS.

The first stage is to figure out what this data looks like in memory; with
C that can usually be accomplished by mapping out what its contents are as
an array of unsigned char. Even if you know your data and compiler well
enough to guess what C structure will successfully map to the data, fall back
to the array of bytes when something is not as you expect; it’s far too easy to
miss what is really going on if your data structure is incorrect.
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Apart from endianness, the data may consist of data types that are not
supported by your compiler/CPU; it may have similar types but with com-
pletely different encodings; it may have familiar data but be incorrectly aligned;
or, falling under this section’s domain, it may have the wrong endianness.

If the chain along which the data has reached you has preserved byte
order at each stage, the worst that wilt happen is that integer data will be
represented with an opposite order, and it’s easy enough to build a “swap”
macro to restore the 2, 4, or 8 bytes of an integer value.

But if the data has passed over a bit number consistent/byte address
scrambled interface, it can be more difficult. In these circumstances you
need to locate the boundaries corresponding to the width of the bus where
the data got swapped, then taking groups of bytes within those boundaries
swap them without regard to the underlying data type. if you do it right,
the result should now make sense, with the correct byte sequence, although
you may still need to cope with the usual problems in the data — including,
possibly, the need to reswap multibyte integer data.

11.6.9 False Cures and False Prophets for Endianness Prob-
lems

Every design team facing up to endianness goes through the stage of thinking
it’s a hardware deficiency to be solved. It’s not. Here are a few examples.

Cofigurable I/O Controllers

Some newer I/O controllers can themselves be configured into big-endian and
little-endian modes. You’re going to have to read the manual very carefully
before using such a feature, particularly when you are using it not as a static
(design time) option but rather as a jumper (reset time) option.

It is quite common for such a feature to affect only bulk data transfers,
leaving the programmer to handle other endianness issues, such as access
to bit-coded device registers or shared memory control fields. Also, the con-
troller designer probably didn’t have the benefit of this book — and confusion
about endianness is widespread.

Hardware That Byte-Swaps According to Transfer Type

If you’re designing in some byte-swap hardware, it seems appealing to try
to solve the whole problem. If we just swapped byte data to preserve its
addresses, but left words alone, couldn’t we prevent the whole software prob-
lem? The answer is no, there aren’t any hardware fixes for the software prob-
lem. For example, many of the transfers in a real system are of cache lines.
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They may contain a mixture of data types; how do we locate and fix them?
Also, CPUs may sometimes deal with numeric data that spans memory-word
boundaries; how would we swap that?

I-cache

D-cache

MemoryCPU

DMA reads

DMA writes

I-cache refillsI-fetches

Loads & stores

D-cache refills

Writeback

Uncached instruction/data

Uncached writes/write-through

Figure 11.11: Data flow between CPU, memory, and caches

Conditional byte-swapping just adds confusion. Nothing except uncondi-
tional byte lane swapping is any good.

11.7 What Can Go Wrong with Caches and How
to Stop It

We’ve looked at how to manage caches in Section 4.6. This section will focus
on how you make sure that you always do the right thing to the cache when
necessary.

Most of the time the caches are completely invisible to software, doing
nothing except accelerating the system as they should. But when it comes
to DMA devices and some other issues, it can be helpful to see the caches as
independent extra buffer memories, as shown in Figure 11.11. When you’re
taking this view, it’s important to remember that transfers between cache and
memory fetch blocks of memory that fit the cache line structure — typically
16- or 32-byte-aligned blocks — so the cache may read and write data the
CPU has not explicitly referenced.

Note that MIPS CPUs with simple write-through data caches don’t need
the line called “write back” in Figure 11.11.

For a simple life, we’d want to be sure that the state of the memory exactly
reflects the operations the CPU has commanded and that all valid cache lines
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contain an exact copy of memory data. Unfortunately, such a simple life is not
compatible with the positive effects of caches on performance. We’ll assume
that the caches are correctly initialized and that you avoid the dreaded cache
aliases described in Section 4.14.2. So what can go wrong with the ideal
picture?

• Stale data in the cache: Either cache can be holding data that has been
updated in memory, by a DMA write, or by a CPU uncached write — or
in the case of the I-cache, by a D-cache write back.

• Stale data in memory: The CPU may have written some locations with
new data, but the data hasn’t yet been written back from the D-cache,
hence the memory data is stale.

The software weapons you have to fight these problems are a couple of
standard subroutines that allow you to invalidate, or write back, any cache
locations corresponding to a specified area of memory.

Before we go on to that, I want to comment on accesses to I/O registers
and other external memories where you need total control over what gets
read and written. Reads that hit in the cache or writes that hit in a write-
back cache are nonevents outside the CPU/cache subsystem. Obviously, you
will have planned that hardware register accesses are uncached, which can
conveniently be done by accessing those registers through pointers in kseg1
or some other uncached space; if you use cached space for I/O, bad things
will happen!

If (unusually) you need to use the TLB to map hardware register accesses,
you can mark the page translation as uncached. That’s useful if someone has
built hardware whose I/O registers are not in the low 512MB of the physical
memory space.

I suppose it’s possible that one day you might want to map a device
through cached space so as to benefit from the speed of the block reads and
writes that the CPU only uses to implement cache refills and write backs.
You’d have to explicitly manage the cache by invalidation and write back on
every such access.

11.7.1 Cache Management and DMA Data

This is a common source of errors, and we’ve heard tales of lurking cache
problems besetting MIPS OS ports done by experienced, hardened low-level
programmers. But it’s really not so bad.

When a DMA device puts data into memory (you’re reading from a disk
or receiving network data), the CPU/cache subsystem doesn’t know about it.
Your last system may not have been like this: Your last CPU may not have
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had a cache, or it may have snooped DMA transfers from its local bus and
adjusted its caches accordingly. But the MIPS CPUs don’t do that for you.

If any locations that have just been written by the DMA device are cur-
rently in either cache, then when the CPU goes to read the data it will get the
old, stale data from the cache instead. This will be a disaster.

You need to invalidate any location in the cache where any of your DMA
data may land. The invalidation must be inclusive, incorporating any odd
remains of cache lines that are partially in the buffer. And that needs to be
done between the last reference your program made to any of those locations
and the point (after the DMA has finished) where you first try to read any of
the DMA data.

Note that if the DMA locations don’t completely fill the first or last cache
line, you can inadvertently reload the cache line before the DMA is complete
by referencing some other data in the line. It’s best to segregate DMA data
buffers on cache line boundaries. And remember that on many MIPS CPUs a
write will bring something into the cache as surely as a read will.

In the other direction, before allowing a DMA device to take data out of
memory (writing to a disk or sending to a network) you must make quite
sure that none of the data that the CPU has prepared for this purpose is
still lurking in your cache. After your program has finished writing the DMA
buffer contents, but before setting off the DMA, you must write back all the
DMA data in the buffer. This can’t happen for an older CPU with a write-
through cache.

It would save trouble to map the buffer memory uncached. But it will
also cost performance. Even if your program access to the buffers is purely
sequential, caching the buffers will mean that data gets read and written
in efficient cache-line-sized bursts rather than single transfers. My general
advice, also given in this book, is to cache everything. I’d make an exception
for a small shared memory control structure like a status word maintained
by a DMA master controller.

11.7.2 Cache Management and Writing Instructions

The writing of instructions is the other place where explicit cache manage-
ment can bite you; this problem can’t happen on a system with a unified
(instruction and data) cache or one where the I-cache snoops all reads and
writes.

On a MIPS CPU, after your program has written instructions to memory
and before you try to execute them, you need to do a write back of the chunk
of memory with instructions in it, followed by an I-cache invalidation to dis-
card any stale copies of whatever used to be in memory at those locations.
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11.7.3 Cache Management and Uncache/Write-Through Data

If you mix cached and uncached references to memory the hardware gives
you no help. Uncached writes will leave stale data in the I-cache and D-
cache, and uncached loads will bypass data that may have been updated in
the D-cache, returning possibly stale data from memory.

If you feel that your system (beyond the bootstrap) needs to make un-
cached references to cacheable memory, then I strongly recommend that you
divid ememory into regions that are always accessed uncached and regions
that are always accessed through the cache — and don’t let them overlap.
The region boundaries should not split a cache line block.

11.8 Different Implementations of MIPS

Although MIPS has grown up a long way, the path has been one of guaranteed
compatibility for regular user-level programs and careful evolution of lower-
level features. MIPS IV CPUs quite happily run MIPS I binaries; the biggest
change (the change to 64 bits) is not normally important except for small
chunks of embedded software, and occasional use of 64-bit data requires
recompilation rather than program changes.

So we don’t expect you to have large porting problems as you go up the
MIPS CPU family The software-visible differences you will find in these CPUs
are listed following:

• Type of cache: Essentially all 32-bit MIPS CPUs used a write-through
data cache, but 64-bit CPUs have used write-back caches. (The different
types of cache are described in Chapter 4.) Write-back caches introduce
a new caching hazard, where data that the CPU has written is held only
in the cache but not in main memory and so is not available to a device
that reads memory for itself.

On the bright side, there have really only been two programming models
for MIPS cache families, and once again the split coincides with the
change from 32 to 64 bit; a 32-bit MIPS CPU probably has caches like
an R3000 and a 64-bit CPU has caches like an R4000. See Section
12.2 for examples of a set of reasonable cache management functions
implemented for both R3000- and R4000-type CPUs.

• Raw speed: This is most easily characterized as clock rate. MIPS pipeline
clock rates have increased from 8MHz to 200MHz over the 10 years since
the first commercial R2000 appeared. As CPUs speed up, you meet more
occasions where you have to deliberately slow down accesses to devices.

• 64-bit support: This is rarely a portability problem. Just because the
CPU is 64 bit capable, there’s no call to go changing all the data types
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used by your program. The 64-bit support does create new hardware
alignment requirements for long data types, but your old compiler for
MIPS probably anticipated that.

• Cache size: All CPUs have separate I- and D-caches, but they vary in
size and some have separate primary and secondary caches. R4x00
CPUs have an authoritative cache size field in the config register; for
other types you should sense the cache size at system initialization.
Do not infer cache size from the CPU type and revision fields in the ID
register; nobody changes those fields when they spin a CPU variant with
bigger caches.

• Cache line size: This is the number of bytes loaded into or written back
from the cache in a unit; it varies from one word (4 bytes) for early data
caches up to 32 bytes for many R4x00 I-caches. Management routines
need to know the line size, of course; less obviously, the cache line size
defines important boundaries for DMA data. Bear in mind that even the
one-word “line” of the data cache in early R3000-style CPUs is a cache
line; it can cause implicit loading of the other bytes in the same word.

• Write buffer differences and wbflush():To make the write-through cache
efficient, all CPUs have some kind of write buffer, which holds the ad-
dress/data of a write while the CPU runs on. The operation of the write
buffer should be invisible when writing and reading regular memory that
is free of side-effects; but it can have effects when accessing I/O buffers.

The programmer only needs an implementation of wbflush(), which
is a routine defined not to return until all pending writes have been
completed. There is no universal implementation of this; see Section
4.13.1 for a discussion.

• FP hardware: Some CPUs have this hardware; most 32-bit integrated
CPUs don’t. For occasional FP instruction use, trap-based software em-
ulators exist: Because you really need an FP trap handler to make any
use of the FPA, the use of the emulator can be completely software trans-
parent. However, for any serious use, the emulator will be far too slow.

Most compilation systems give you the option of compiling programs to
use built-in subroutines to perform FP calculations.

• MMU hardware: If present, such hardware is always the same software-
refilled TLB and control set (see Chapter 6). Some TLB-free CPUs recycle
what would otherwise be the mapped program address spaces for other
purposes, but portable software will use only the kseg0, kseg1 regions
which are supported by all processors.

• Integrated I/O devices: Some CPUs integrate timers, watchpoint regis-
ters, DRAM controllers, DMA, and lots more. You’re on your own with
these; however, do isolate such code into “driver” modules, just as if you
were dealing with external device controllers.
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Chapter 12
Software Example

This chapter is based on real workable chunks of software, which often
means we sacrifice clarity and are less than concise; but then, real soft-

ware is like that. We’re going to cover the following:

• Starting up MIPS: getting the CPU and system going, to the point where
you can run a C program

• MIPS cache management: an example of the system you might need to
be able to invalidate and/or write back cache locations to make your
I/O system work

• MIPS exception handling: grisly details from low-level interrupt to con-
fortable C handler

• MIPS interrupts: not particularly efficient, but showing the essential fea-
tures; builds on the structures of the previous section

• Tuning for MIPS: a simple function rewritten in assembler with many
tricks to improve bandwidth

12.1 Starting Up MIPS

Starting up a CPU from reset with code in ROM always involves a number of
complicating factors:

• Configuration: We probably want to use the same ROM for many dif-
ferent board configurations, so we have to proceed warily until we’ve
figured out what it is we’re running on.

• CPU initialization: The CPU itself may not be prepared to do much until
its own registers have been attended to. The ROM may have to cope with
more than one type of CPU, too.

337
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• Memory initialization: Most modern memory systems require some pro-
gramming before they work, which means that we’ll have to run from
on-chip resources (registers, basically) until we’ve done that.

• Traceability: When something goes wrong, mere silence from a ROM
bootstrap is undesirable. So the code should attempt to communicate
with the user before relying on some part of the hardware that might not
work.

• Compatibility: Running somewhere over the ROM there may be all sorts
of old crusty software, which has its own idea of what the ROM should
be doing.

It might be nice to show you an example without these complications, but
then it wouldn’t ever have been tested...

We’ll look at software from Algorithmics SDE-MIPS, which comes in two
modules. There’s a generic from-reset ROM module (entered at reset and
a hardware-specific module for the Algorithmics P-4032 prototyping board
(which is only ever fitted with R4x00 and R5x00 CPUs) starting with sbd reset.

The MIPS reset-time entry point is at physical address 0x1fc0 0000, which
puts it at the start of a 4MB chunk of memory; no Algorithmics board has
more than 4MB of ROM, so the reset-time entry point is the very first location
in the ROM, which happens automatically because it’s the first line of code
in the first module linked into the ROM:

.text

.set noreorder
b _reset; move k0, zero /* RESET */
/* ... */

Starting with a branch is regarded as good form. If absolutely nothing
works, we can watch the CPU address bus with a logic analyzer: If it goes to
the reset location and then branches to the right place, a fair amount of the
ROM and data bus system must be working.

This system uses k0 (if it’s nonzero) to hold the address of an alternate
exception handler. From reset, if we get an unexpected exception, we want to
handle it ourselves. So now let’s go on:

/*
* We jump here on a Reset Exception

*/

SLEAF(_reset)
/*
* Determine relocation factor and set $gp

*/
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bal _rom_reloc
la gp, _gp

/*
* Call board-specific initialization code

*/
bal _sbd_reset

We’ll ignore the rom reloc routine for now — it’s used when the ROM
code is running at an address different from where it was linked, which this
ROM might want to do for reasons we won’t go into. If necessary, this ROM
uses the s8 register to remember the difference between where we were linked
and where we really are.

So it’s off to sbd reset, in the board-specific module. We’ll go through
that in detail.

/*
* P4032/sbdreset.S: low-level code for Algorithmics P4032 board

* Copyright (c) 1996 Algorithmics Ltd.

*/

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/cpu.h>
#include <mips/endian.h>

#include "sbd.h"
#include "rtc.h"
#include "v96xpbc.h"
#include "w83777f.h"
#include "z80pio.h"

#if !#cpu(r4000) && !#cpu(r5000)
# error Wrong CPU type selected
#endif

The #include files contain the following material:

• mips/asm.h: some things for assembly language, like the LEAF macro
used to introduce externally callable functions.

• mips/regdef.h: conventional register names for MIPS registers

• mips/cpu.h: coprocessor 0 register and bitfield constants for your CPU
(with conditional compilation used to specialize this for a particular CPU
type or family)

This usual collection of include files for low-level code is accompanied by
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• mips/endian.h: some standard ways of deducing current endianness
configuration

• sbd.h: characteristics of the board, its address map, and definitions of
board-specific registers

• v96xpbc.h, etc.: registers and bitfields specific to the device

Here is a macro to write four characters to the onboard LED display:

#defiae DISPLAY(d0, dl, d2, d3) \
li t8, PA_TO_KVA1(LED_BASE); \
li t9, d0; \
sw t9, LED(0)(t8); \
li t9, d1; \
sw t9, LED(1)(t8); \
li t9, d2; \
sw t9, LED(2)(t8); \
li t9, d3; \
sw t9, LED(3)(t8)

If the software dies, the last value so written will be left there, which will
give us a clue about what happened.

These macros are used to access the battery-backed-up memory locations
(about 100 bytes) that are implemented by this board’s real-time clock chip,
which is used as a scratch nonvolatile store:

#define WBFLUSH

#defiae MEG 0x100000

/*
* Include standard memory test/clear code

*/
#define BUSWIDTH 4 /* 32-bit, noninterleaved */
#define MEMSTART (32 * MEG) /* simml start */
#define MEMINCR (8 * MEG) /* simml quanta */
#include "../share/memprobe.s"

/*
* Basic board initialization, called straight from RESET.

* It is only called if this program is built for ROM.

* It can use any registers except s8, k0, and k1.

*
* Note that s8 holds a "relocation factor" (see ../share/romlow.sx)

* that must be added to any address before it is used. This

* is to support relocatable roms.

*/

#define rtcptr s2
#define crptr s3
#define crval s4
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#define msize s5
#define rasave s6
#define RELOC s8

#define RTC_STORE(rtcoffs, reg) \
li t8, rtcoffs; \
sw t8, RTC_ADDR(rtcptr); \
sw reg, RTC_DATA(rtcptr)

#define RTC_LOAD(rtcoffs,reg) \
li t8, rtcoffs; \
sw t8, RTC_ADDR(rtcptr); \
lw reg, RTC_DATA(rtcptr); \
and reg, 0xff

But here’s the actual entry point; we’re going to start with CPU registers
that may cause trouble if left:

LEAF(_sbd_reset)
move rasave, ra

#if #cpu(r4300)
/* set config register for kseg0 cacheable */
mfc0 t1, C0_CONFIG
or t1, CFG_C_NONCOHERENT
/* we can also control the endianness */

#if #endian(big)
or t1, CFG_BE

#else
and t1, ˜CFG_BE

#endif
mtc0 t1, C0_CONFIG

#endif /* r4300 */

#ifdef C0_WATCHLO
mtc0 zero, C0_WATCHLO
mtc0 zero, C0_WATCHHI

#endif

#1f #cpu(r4640)
/* reset default cache algorithm and watchpoints */
li t1, 0x22233333
mtc0 t1, C0_CALG
mtc0 zero, C0_IWATCH
mtc0 zero, C0_DWATCH

#endif

This is all very CPU specific, but most MIPS CPUs from R4000 onward
have a Config register that wants to be set early. The watchpoint registers
are initialized because the manual suggests that hardly anything prevents a
watchpoint exception, and we don’t want unsolicited exceptions.
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We need to set most fields in the status register SR to make sure the CPU
runs OK; the SR(SR) (soft reset) bit distinguishes a nonmaskable interrupt
from a hardware reset and may be important:

mfc0 t1, C0_STATUS

and t1, SR_SR # leave the SoftReset bit
or t1, C0_BEV # force boot exceptions

1: mtc0 t1, C0_STATUS
mtc0 zero, C0_CAUSE

Cause is zeroed to make sure the software interrupt bits Cause(IP0-1)
are inactive.

That’s done enough to the CPU to prevent disasters (so long as we don’t
touch the caches, interrupts, or the TLB just yet), so we get on with the board:

la crptr, PA_TO_KVA1(BCR_BASE)
la rtcptr, PA_TO_KVA1(RTC_BASE)

/* initialise board coatrol register, toggling the V3 reset
and making sure everything else is disabled */

1i crval, BCR_V96X_ENABLE
bal crwrite
move crval, zero
bal crwrite

#if #endian(big)
li crval, BCR_LED_ON | BCR_V96X_ENABLE

#else
li crval, BCR_LED_ON | BCR_V96X_ENABLE | BCR_IO_LE

#endif
bal crarrite
RTC_STORE(RTC_BCR, crval)

The assembler function crwrite sets the board control register (BCR), a
collection of output-only bits, many of which are used to keep chunks of the
logic in reset until needed. We keep a soft copy of the BCR in the real-time
clock chip’s (RTC’s) little memory, because the value doesn’t read back.1

1There’s a cautionary tale about hardware and software evolution here. It takes extra
hardware resources to add a read-back port to a simple output register. That leads to the
following:

• The software problem: To change only one bit of the port and leave the rest alone
requires a global soft copy of the register — which is always hard to organize when
several only loosely related pieces of software are used to initialize the board.

• The software solution: Keep a soft copy in a magic location — in this case, the NVRAM
of the real-time clock chip. But the hardware engineers didn’t know this so they came
up with...

• The hardware solution: The board’s BCR register is implemented as 8 separately
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reginittab (defined at the end of the section) is a list of address/data
pairs; just take each data item and write it to the corresponding address:

/* initialise I/O devices */
1: la a0, reginittab

addu a0, RELOC
1: lw v0, 0(a0) # reg addr

lw v1, 4(a0) # reg data
beqz v0, 2f
sw v1, 0(v0)
addu a0, 8
b 1b

2:

You can initialize a lot of hardware like that (at least to a first-pass, just-
shut-up level).

We may even have to initialize some programmable logic devices here:

/* load ICU firmware via JTAG interface */
bal icuload

Now that so much logic is designed into in-system programmable devices,
Iogic that is not required for simple dumb ROM and I/O cycles can be loaded
by the CPU.

MIPS CPUs (post-R4000) can have several different flavors of reset, from
ground-up to nonmaskable interrupt:

/* skip memory size/clear if a soft reset */
mfc0 t1, C0_STATUS
and t1, SR_SR
beqz t1, 1f

/* get previous memory size from rtc sram */
RTC_LOAD(RTC_MEMSZ, msize)
sll msize, 20
b .noinit

1:

I don’t think you can actually make a soft reset happen on the P-4032
board; however, if you could, it would skip the DRAM system reset, leaving
the memory contents intact for postmortem debugging.

For the DRAM configuration we’ll reassign the registers yet again:

writable bits, so there’s no need to know the value of other bits when changing one.
But, of course, the software was already written, so the bit-writable hardware pro-
duces...

• The software response: A subroutine crwrite() that loops around and writes all 8
bits.



344 12.1. Starting Up MIPS

/*
* Determine DRAM bank arrangement and size

*/
#define aces t0
#define fives t1
#define base t2
#define tval t3
#define simmmap t4
#define SIMM0_0 0x01
#define SIMM0_1 0x02
#define SIMM1_0 0x04
#define SIMM1_1 0x08
#define msize0 v0
#define msizel v1

/* initialise DCR memory speed and type from option links */
lw crval, PA_TO_KVA1(OPTION_BASE)
and crval, DCR_SIMM1_DRAM | SCR_TYPE | DCR_DRAMFAST

What’s this PA TO KVA1() macro? It takes a physical address (the header
files define register locations as physical addresses) and adds some high-
order bits to deliver the corresponding program address in ksegl, which will
give us an uncached access.

Here, the program is reading a software image of a jumper block and will
shortly write that value (stored in crval) to the DRAM configuration register,
telling tha hardware what sort of memories are fitted :

/* initialise registers */
move msize0, zero
move msizel, zero
li aces, 0xaaaaaaaa
not fives, aces
li base, PA_TO_KVA1(0)

/* make sure memory has started up properly */
/* configure for 4MB double sided and read at 4MB intervals */
or crval, DCR_4MB
DISPLAY (’D’, ’C’, ’R’, ’I’)
li crptr, PA_TO_KVA1(DCR_BASE)
bal crwrite # write the BCR

At this stage any modules plugged in will store a minimum of 4MB per side
(the SIMM modules have one or two banks of memory chips, and the second
bank is usually soldered to the back of the board). Detect what’s there first
and figure out what it actually is:

DISPLAX (’M’, ’E’, ’M’, ’I’)
1i tval, 8

.initmem:
sw zero, +0 * MEG(base)
sw zero, +4 * MEG(base)
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sw zero, +8 * MEG(base)
sw zero, 12 * MEG(base)
subu tval, 1
bnez tval, .initmem

This eight-times-around loop seems to be paranoia about DRAM working
right from the first cycle; this paranoia may or may not be justified in this
particular system.

Then we’ll write to each possible module and see which ones retain the
data (and can therefore be assumed to be present):

/* now detect the presence of SIMMS and their sides */
DISPLAY (’S’, ’L’, ’O’, ’T’)

sw aces, +0 * MEG(base)
sw aces, +4 * MEG(base)
sw aces, +8 * MEG(base)
sw aces, 12 * MEG(base)

sw fives, +0 * MEG(base)
sw fives, +4 * MEG(base)
sw fives, +8 * MEG(base)
sw fives, 12 * MEG(base)

sw zero, +0 * MEG(base)
sw zero, +4 * MEG(base)
sw zero, +8 * MEG(base)
sw zero, 12 * MEG(base)

We’ve written three different values to the first three words of each of four
possible banks. The last write (zero to the third word) is really intended to
prevent a false-positive that you sometimes get in sizing memory, in which
you appear to read data back successfully from memory that isn’t there at
all. The effect is caused by the stray capacitance of the memory bus, and is
common with modern CMOS circuits: You’re actually reading back from the
bus wires the “ghost” of the last data you wrote.

So now we find where there are modules plugged in:

/* generate map of SIMM slots/sides */
move simmmap, zero

lw tval, +0 * MSG(base)
bne tval, aces, 1f
or simmmap, SIMM0_0

1:
lw tval, +4 * MEG(base)
bne tval, aces, 1f
or simmmap, SIMM0_1

1:
lw tval, +8 * MEG(base)
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bne tval, aces, 1f
or simmmap, SIMM1_0

1:
lw tval, +12 * MEG(base)
bne tval, aces, 1f
or simmmap, SIMM1_1

1:
...

You’re probably getting the idea by now, so we’re now going to skip the
rest of the code that figures out how big each module is and that configures
the addresses to make a nice sequential map.

The code string ends thus:

.noinit:
DISPLAY (’R’, ’U’, ’N’, ’ ’)

/* return to generic code, with available memory size */
move ra, rasave
move v0, msize
j ra

END(_sbd_reset)

That’s it, apart from a couple of things jumped to From above that you
might like to look at, starting with the Fatal-error routine sbd memfail()
which never exits:

LEAF(_sbd_memfail)
DISPLAY (’!’, ’M’, ’E’, ’M’)

1: b 1b
j ra

END(_sbd_memfail)

Also, here is crwrite(), the subroutine designed to hide the hardware
features we thought software engineers were calling for:

/* crwrite (base, val)

* Write 8-bit <val> to a consecutive 1-bit registers,

* starting at <base>

* Uses: t8, t9

*/
SLEAF (crwrite)

move t9, crval
li t8, 8

1: .set noat
and AT, t9, 1
sw AT, 0(crptr)
.set at
srl t9, 1
subu t8, 1
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addu crptr, 4
bnez t8, 1b

subu crptr, 8 * 4 # reset pointer
j ra

SEND (crwrite)

Finally, here is reginittab:

#dafine INIT(addr, val)\
.word PA_TO_KVA1(addr), val

.rdata
reginittab:

/* initial magic cycle for PCI bridge */
INIT(V96XPBC_BASE+V96X_LB_IO_BASE, V96XPBC_BASE+V96X_LB_IO_BASE)
/* led message */
INIT(LED_BASE+LED(0), ’P’)
INIT(LED_BASE+LED(1), ’4’)
INIT(LED_BASE+LED(2), ’3’)
INIT(LED_BASE+LED(3), ’2’)
/* program a 32KHz square wave from the RTC */
INIT(RTC-BASE+RTC_ADDR, RTC_STATUSA)
INIT(RTC_BASE+RTC_DATA, RTC_OSC_32KHz|RTC_RATE_NONE)
INIT(RTC_BASE+RTC_ADDR, RTC_STATUSB)
INIT(RTC_BA3E+RTC_DATA, RTCSB_BINARY|RTCSB_24HR|RTCSB_SQWE)
INIT(RTC_BASE+RTC_ADDR, RTC_INTR)
INIT(RTC_BASE+RTC_DATA, RTCIR_32KE)
/* disable the combi chip configuration registers */
INIT(EFER, EFER_DISABLE)
/* initialize the z80pio chip, B channel */
INIT(ZPIO_BASE+ZPIO_B_CTL, ZPIO_MODE_CTRL) # control mode
INIT(ZPIO_BASE+ZPIO_B_CTL, ZPIOB_E2_DO) # input mask
INIT(ZPIO_BASE+ZPIO_B_DAT, 0) # initial value
.word 0, 0 # terminate table

reginittab is the table we mentioned earlier on page 339; it contains
pairs of entries consisting of a register address and a data value to be written
to that register. Lots of obscure hardware can be adequately initialized by
appropriate table entries.

12.2 MIPS Cache Management

We’re going to look at two large, indigestible chunks of assembler code that
are provided as part of the Algorithmics SDE-MIPS. 1They implement the
following functions:

1Like the rest of this book, this software is copyrighted. You can obtain the right to use
this software for commercial purposes from Algorithmics, Ltd.
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• void mips size cache(): When first called, initialize cache and leave
cache sizes in global variables. If called again, do nothing.

• void mips init cache(): Work out and record the size of I- and D-
caches and initialize them.

• void mips flush cache (): Write back (if required) and invalidate all
caches. I dislike the term “flush” because of its ambiguity, but in this
case it’s historical and derives from a time when caches were always
write through and so never needed a write back.

• void mips clean cache (unsigned kva, size t n): Write back and
invalidate the address range in all caches.

• void mips flush dcache (void): Write back and invalidate the entire
contents of data cache.

• void mips clean dcache (unsigned kva, size t n): Write back and
invalidate the address range in data caches.

• void r4k hit writeback inv dcache(unsigned kva, size t n): W-
rite back and invalidate the address range in the primary data cache.

• void mips clean icache (unsigned kva, size t n): Invalidate the
address range in instruction caches.

The files retain their original (light) comments and are going to be inter-
spersed with further commentary. But they’re still assembler code and likely
to be fairly hard going.

12.2.1 Cache Operations: 32-Bit MIPS before Cache Instruc-
tions

Before the cache instruction was invented, cache management was done by
doing stores with the CPU in strange modes (“isolated” to access caches,
“swapped” to write the I-cache rather than the D-cache). Here’s how Algo-
rithmics does it:

/*
* r3kcache.S: generic R3000 cache support functions for SDE-MIPS

*/

#if !#cpu(r3000)
#error use -mcpu=r3000 option with this file
#endif

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/r3kc0.h>
#include <mips/prid.h>
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The #include files contain the following:

• asm.h: some things for assembly language, like the LEA macro used to
introduce externally callable functions

• regdef.h: conventional register names for MIPS registers

• r3kc0.h: register and bitfield constants for R3x00 coprocessor 0 regis-
ters

• prid.h: processor ID and revision values for MIPS CPUs

Declare some variables, make them global, and give them initial values:

#define DECL(x, val) \
EXPORTS(x, 4) \
.word val

.sdata
DECL(mips_icache_size, -1)
DECL(mips_dcache_size, -1)
DECL(mips_scache_size, -1)
DECL(mips_tcache_size, -1)
DECL(mips_icache_linesize, -1)
DECL(mips_dcache_linesize, -1)
DECL(mips_tcache_linesize, -1)
DECL(mips_pcache_ways, 1)
DECL(mips_scache_ways, l)
DECL(mips_tcache_ways, l)

/*
* void mips_size cache()

* Initialise I- and D- caches and flush them, but only if size is unknown

*/

LEAF(mips_size_cache)
lw t0, mips_icache_size
blez t0, mips_init_cache
j ra

END(mips_size_cache)

/*
* void mips_init_cache()

*
* work out size of I- and D-caches and flush them

*
* uses: v0, v1, t0, t1, t2, t3, t4, t7, t8, ra

* save regs: t3, t7, t8, v1

* calls: _init_cache

*/

LEAF(mips_init_cache)
move t8, ra
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mfc0 t7, $sr
and t3, t7, SR_BEV # disable interrupts
mtc0 t3, $sr

/* run uncached (but do it in pic from) */
.set noreorder
bal 1f
nop

1: or t1, ra, KSEG1_BASE
addu t1, 16
jr t1
nop
.set reorder

Note the following points:

• Save ra: By keeping the return address somewhere else, we can at least
use one level of subroutine call instructions inside this module.

• Disable interrupts: We’ve zeroed everything in SR except for SR(BEV),
which is left in its previous state. Disabling interrupts is one of the side
effects of this draconian action.

• nops: Most of this code is not surrounded by .set noreorder direc-
tives, so we’re going to let the assembler figure out when accesses to
coprocessor 0 registers needs nops added. Not all MIPS assemblers do
this.

Sometimes we’ll need to put in explicit nops, for example where what
we’re doing affects the operation of the caches. No assembler is clever
enough to figure that out.

• Run uncached...: We obviously don’t want to be running code from cache
while initializing it; however, the CPU doesn’t have a mode, so we just
force the address we’re executing in to be in the ksegl region.

• ...but do it in pic form: This code needs to be position independent, so
assembly language constructs can’t give us our own location directly.
The only way to get the rear code adaress is to do a subroutine ca11
instruction and retrieve the value from ra.

Almost all MtIPS write buffers (see Section 4.13) flush all writes before
attempting an uncached read: Here we’re reading the instruction memory
(we don’t have any other known-valid pointer around at the moment).

/* Generic 83000 caches */

/* make sure write buffer is empty */
lw zero, 0(t1)
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Next comes the following:

/*
* Size and initialise instruction cache

*/
or t4, t3, SR_ISC|SR_SWC # isolate and swap cache(see Section 4.9)
mtc0 t4, $sr
bal _init_cache # ... which you’ll find on page 349
move v1, v0

/*
* size and initialise data cache

*/
or t4, t3, SR_ISC # isolate cache
mtc0 t4, $sr
bal _init_cache

.set noreorder
mtc0 t7, $sr # restore IE and ISC to normal
nop; nop; nop; nop; nop # ... can take a long time to settle
.set reorder

The nop instructions delay the CPU for long enough that the cache be-
havior changes implicit in those SR changes will be fixed before the next
instruction does anything at all to the caches.

Relying on the contents of the PRID register is not usually a good idea, but
the I-cache line size for R3000s is otherwise opaque:

/* save results */
sw v0, mips_dcache_size
sw v1, mips_icache_size

/* most r3000 family CPUs have 1 word (4 bytes) per cache line*/
mfc0 t2, $prid
li t0, 4
li t1, 4
and t2, 0xff00
srl t2, 8
bne t2, PRID_R3IDT, 1f # IDT core has 4 word/line I-cache
li t0, 16

/* can’t identify other r30x1 variant, since PrID == R3000A */
1: sw t0, mips_icache_linesize

sw tl, mips_dcache_linesize
move ra, t8
j ra

END(mips_init_cache)

Next is an internal function to size and initialize an R3000 cache; the size
is returned in v0. It works by writing address to address at all possible cache
boundaries (256K down to 512). Due to address wraparound, whatever is
found at cache location zero is the cache size.

Here is the code:
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#define MIN_CACHE_SIZE (512)
#define MAX_CACHE_SIZE (256*1024)

/*
* int _init_cache()

*
* returns size of one cache and flushes it

*
* uses: v0, t1, t2, a0, a1, ra

* save args: none

* calls: nothing

*/
SLEAF(_init_cache)

.set noreorder
li t1, MIN_CACHE_SIEE
li t2, MAX_CACHE_SIZE
nop

1: sw t2, KSEG0_BASE(t2)
bne t2, t1, 1b
srl t2, 1 # BDSLOT (braach delay slot)

lw v0, KSEG0_BASE # get cache size

/*
* now flush the cache

*/
li a0, KSEG0_BASE
addu a1, a0, v0

1: sw zero, 0(a0) # clear parity
sw zero, 4(a0)
sw zero, 8(a0)
sw zero, l2(a0)
sb zero, 0(a0) # invalidate
sb zero, 4(a0)
sb zero, 8(a0)
addu a0, 16
bne a0, a1, 1b
sb zero, -4(a0) # BDSLOT

nop; nop; nop # pipe clear of stores
.set reorder
j ra

SAND(_init_cache)

#define SIZE_CACHE(which)
lw v0, which; \
move t5, ra; \
bgez v0, 9f; \
bal mips_init_cache; \
lw v0, which; \
move ra, t5; \

9: blez v0, 9f

The SIZE CACHE() macro is going to get used quite heavily. It tests to
see whether the particular cache (referred to by its size variable) has been
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initialized, and if not it attempts initialization (saving ra around the call). It
also jumps out to the label “9f,” which by local convention is used to mark
the end of each subroutine, so it will exit quietly (but leaving the size marker
set to -1) if something goes wrong.

Next comes the following:

/*
* void mips_clean_dcache (unsigned kva, size_t n)

*
* invalidate address range in data cache

*/
LEAF(mips_clean_dcache)

SIZE_CACHE(mips, dcache_size)

/* n = MIN(dcachesize, n) */
bltu a1, v0, 1f
move al, v0

1:
/* disable interrupts */
mfc0 v0, $sr
and v1, v0, SR_BEV
mtc0 v1, $sr

/* make sure write buffer empty */
la v1, 1b
or vl, KSEGl_BASE
lw zero, 0(v1)

.set noreorder

/* r3000: isolate caches, no swap */
or v1, SR_ISC
mtc0 vl, $sr

/* make sure the address is inside kseg0 */
and a0, ˜KSEG1_BASE
or a0, KSEG0_BASE

That was just paranoia; with the caches isolated, all R3000 loads and
stores hit the cache and only the cache.

More significant is what we haven’t done, which is to make sure we’re ex-
ecuting code from the uncached region — so we may well be running cached.
The isolation of the cache affects only the data cache for loads and stores.
This mips c1ean dcache() routine is regularly called by I/O functions that
are cleaning up before or after DMA, and it needs to be efficient. Now we have
the following:

addu al, a0 /* length -> ending address */

/* unrolled loop: flush 32 bytes at a time */
/* r3000: 4-byte cache lines */
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/* store byte when isolated invalidate the cache entry */
1: sb zero, 0(a0)

sb zero, 4(a0)
sb zero, 8(a0)
sb zero, 12(a0)
sb zero, 16(a0)
sb zero, 20(a0)
sb zero, 24(a0)
addu a0, 32
bltu a0, a1, 1b
sb zero, -4(a0)

/* isolated stores out of pipe */
nop; nop; nop

The three nop instructions make quite sure that all stores have finished
and that the last cache line is invalidated before we reset SR and restore
normal cache operation:

/* restore status register (pipe clean) */
mtc0 v0, $sr
nop
.set reorder

9: j ra
END(mips_clean_dcache)

/*
* void maps_clean_icache (unsigned kva, size_t n)

*
* Invalidate address range in instruction cache

*/
LEAF(mips_clean_icache)
XLEAF(mips_clean_icache_indexed)

SIZE_CACHE(mips_icache_ size)

/* n = MIN(icachesize, n) */
bltu a1, v0, 1f
move a1, v0

1:
/* disable intrs */
mfc0 v0, $sr
and v1, v0, SR_BEV
mtc0 vl, $sr

/* run uncached */
la v1, 1f
or v1, KSEG1_BASE
jr v1

1:

Note that we’re not worrying here about position-independent code: Only
the initialization functions may be called at the wrong address. We can there-
fore leave the assembler and linker to figure out the address for us.
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We probably could run cached (but swapped) here in most cases. But this
code is supposed to be safe and universal, so we take the coward’s way out.

The rest of this code is just like the mips clean dcache() function de-
scribed above.

/* make sure write buffer is empty */
lw zero, 0(v1)

.set noreorder
/* r3000: isolate caches and swap */
or vl, SR_ISC | SR_SWC
mtc0 vl, $sr

/* ensure address is inside kseg0 */
and a0, ˜KSEGl_BASE
or a0, KSEG0_BASE
addu a1, a0 /* length -> ending address */

/* unrolled loop: flush 32 bytes at a time */
/* r3000: 4-byte cache lines */
/* store byte when isolated invalidates the cache entry */

1: sb zero, 0(a0)
sb zero, 4(a0)
sb zero, 8(a0)
sb zero, l2(a0)
sb zero, l6(a0)
sb zero, 20(a0)
sb zero, 24(a0)
addu a0, 32
bltu a0, al, 1b
sb zero, -4(a0)
nop; nop; nop # pipe clear of stores

/* restore status register (pipe clear) */
mtc0 v0, $sr
nop
.set reorder

/* restore cached mode */
9: j ra
END(mips_clean_icache)

/*
* void mips_clean_cache (unsigned kva, size_t a)

*
* Invalidate address range in all caches

*/
LEAF(mips clean_cache)

move t9, ra
move a2, a0
move a3, al

bal mips_clean_dcache

move a0, a2
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move al, a3
bal mips_clean_icache

move ra, t9
j ra

END(mips_clean_cache)

/*
* void mips_flush_cache()

*
* Invalidate all caches

*/
LEAF(mips_flush_cache)

move t9, ra

SIZE_CACHE(mips_dcache_size)
li a0, KSEG0_BASE
move al, v0
bal mips_clean_dcache

9: lw a1, mips_icache_size
li a0, KSEG0_BASE
blez a1, 9f
bal mips_clean_icache

9: move ra, t9
j ra

END(mips_flush_cache)

12.2.2 Cache Operations: After MIPS III and Cache Instruc-
tions

Things are much tidier from the R4x00 omvard, and we don’t expect them
to ever revert to the R3000 cache access mechanisms. Here are tie same
functions implemented for the new version:

/*
* r4kcache.s: R4000 cache support functions for SDE-MIPS

*/
#if !#cpu(r4000)
#error use -mcpu=r4k option with this file
#endif

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/r4kc0.h>
#iaclude <mips/prid.h>

#define NO 0
#defins YES 1
#defins MAYBE 2

#ifndef R4KSCACHE
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#if #cpu(r4000sc) || #cpu(r4400sc) || #cpu(r4000mc) || #cpu(r4400mc)
#define R4KSCACHE YES
#else
#defins R4KSCACHE NO
#endif
#endif

#ifndef R4KPC2WAY
#if #cpu(r4600) || #cpu(r4640) || #cpu(r4650) || #cpu(r4700)
#define R4KPC2WAY YES
#elif R4KSCACHE || #cpu(r4100) || #cpu(r4200) || #cpu(r4400) \

|| #cpu(wm4010) || #cpu(cw4001)
#define R4KPC2WAY NO
#else
#define R4KPC2WAY MAYBE
#endif
#eadif

Those horrible macros are being used to try to figure out whether there’s
a secondary cache and whether the primary/secondary caches are direct
mapped or two-way set associative.

Whether a secondary cache exists is of vital importance.

For most purposes, the set associativity of the cache does not matter.
Neither the initialization nar the clean cache functions need rely on it.

/*
* R4000 cache operations

*
* The _flush and _clean functions are complex composites that do whatever

* is necessary to flush/clean ALL caches, in the quickest possible way.

* The other functions are targeted explicitly at a particular caches,

* I-, D-, or SD; it is up to the user to call the correct set of functions

* for a given system.

*/

#define DECL(x, val) \
EXPORT3(x, 4) \
.word val

.sdata
DECL(mips_icache_size, -1)
DECL(mips_dcache_size, -1)
DECL(mips_scache_size, -1)
DECL(mips_tcache_size, -1)
DECL(mips_icache_liaesize, -1)
DECL(mips_dcache_linesize, -1)
DECL(mips_scache_linesize, -1)
DECL(mips_tcache_linesize, -1)
DECL(mips_pcache_ways, 1)
DECL(mips_scache_ways, 1)
DECL(mips_tcache_ways, 0)
DECL(mips_scache_spiit, 0)
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/*
* macros to automate cache operations

*/

#define addr t0
#define maxaddr t1
#define mask t2

#define cacheop(kva, n, linesize, op) \
.set noreorder; \
/* check for bad size */ \
blez n, 11f \
addu maxaddr, kva, n; \
/* align to line boundaries */ \
subu mask, linesize, 1; \
not mask; \
and addr, kva, mask; \
addu maxaddr, -1 \
and maxaddr, mask \
/* the cacheop loop */ \

10: cache op, 0(addr); \
bne addr, maxaddr,l0b; \
addu addr, linesize; \

11: .set reorder

The cacheop() macro applies the appropriate flavor of cache instruction
on a bunch of cache lines. This makes most sense when kva is being used
as the address of a memory region of which any cached copies should be
treated.

/*
* static void_size_cache()

* Internal routine to determine cache sizes by looking at R4000 config

* register. Sizes are returned in registers, as follows:

*/

#define icachesize t2
#define dcachesize t3
#define scachesize t4
#define ilinesize t5
#define dlinesize t6
#define slinesize t7
#define cacheflags t8
#define CF_SCSPLIT 0x2
#define CF_PC2WAY 0x1
#define SCACHE MIN SIZE 0x010000 /* minimum S-cache: 64KB */
#define SCACHE MAX SIZE 0x400000 /* maximum S-cache: 4MB */

SLEAF(_size_cache)
mfc0 t0, $config # config register fields in Figure 3.4 above

/* work out primary I-cache size */
and t1, t0, CFG_ICMASK
srl t1, CFG_ICSHIFT
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li icachesize, 0x1000
sll icachesize, tl

/* work out primary I-cache line size */
li ilinesize, 32
and t1, t0, CFG_IB
bnez t1, 1f
li ilinesize, 16

1:

/* work out primary D-cache size */
and t1, t0, CFG_DCMASK
srl t1, CFG_DCSHIFT
li dcachesize, 0x1000
sll dcachesize, tl

/* work out primary D-cache line size */
li dlinesize, 32
and t1, t0, CFG_DB
bnez t1, 1f
li dlinesize, l6

1:

move scachesize, zero
move slinesize, zero
move cacheflags, zero

#if R4KSCACHE
/* no secondary cache if Config.SC = 1 */
and t1, t0, CFG_SC
bnez t1, 9f

/* note split cache */
and t1, t0, CFG_SS
beqz t1, 1f
or cacheflags, CF_SCSPLIT

/* work out secondary cache line size */
1: and t1, t0, CFG_SBMASK

srl t1, GFG_SBSHIFT
li slinesize, l6
sll slinesize, t1

/* disable all interrupts and cache exceptions */
mfc0 t9, $sr
li t8, SR_BEV
and t8, t9
or t8, SR_DE
.set noreorder

mtc0 t8, $sr
nop; nop; nop
mtc0 zero, $taglo # initial cache tag

/* set initial zero marker */
li t8, KSEGO_BASE
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cache Index_Store_Tag_SD, 0(t8) # sdcache[0].tag = 0

/* check all secondary cache boundaries, until we wrap around */
li scachesize, SCACHE_MIN_SIZE
li t0, SCACHE_MAX_SIZE

2: mtc0 scachesize, $taglo
addu t1, t8, scachesize # calc &sdcache[size]
cache Index_Store_Tag_SD, 0(t1) # sdcache[size].tag == size
nop; nop
cache Index_Load_Tag_SD, 0(t8) # check sdcache[0].tag == 0
nop
.set reorder

mfc0 t1, $taglo
and t1, TAG_STAG_MASK
bnez t1, 8f # warp around, got it
sll scachesize, 1 # try next boundary
bne scachesize, t0, 2b # up to maximum size

8: mtc0 t9, $sr
#endif /* R4KSCACHE */

9:
#if R4KPC2WAY == MAYBE

/* have we got two-way set-associative primary caches? */
mfc0 t0, $prid # get processor ID
and t0, 0xff00 # get implementation
srl t0, 8
seq t1, t0, PRID_R4600 # r4600
or cacheflags, tl
seq t1, t0, PRID_R4700 # r4700
or cacheflags, tl
seq t1, t0, PRID_R4650 # r4650/r4640
or cacheflags, tl
seq t1, t0, PRID_R5000 # r5000
or cacheflags, tl
seq tl, t0, PRID_RM52XX # rm52xx
or cacheflags, t1

#elif R4KPC2WAY == YES
or cacheflags, CF_PC2WAY

#endif

j ra
SEND(_size_cache)

It would probably have made better sense to assume that any PrID(Impl)
field from R5000 up would be (at least) two-way set associative, so if you must
read the CPU ID, do that.

/*
* void size_cache()

* Work out size of I-, D-, and S-caches

*/
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LEAF(mips_size_cache)
lw t0, mips_icache_size
move v0, ra
bQtz t0, 8f # already known?
bal _size_cache
move ra, v0
sw icachesize, mips_icache_size
sw daachesize, mips_dcache_size
sw scachesize, mips_scache_size
sw ilinesize, mips_icache_linesize
sw dlinesize, mips_dcache_linesize
sw slinesize, mips_scache_linesize
and t0, cacheflags, CF_SCSPLIT
sw t0, mips_scache_split
and t0, cacheflags, CF_PC2WAY
move t1, zero
beqz t0, 1f
li t1, 2

1: sw t1, mips_cache_ways
8: j ra
END(mips_size_cache)

/*
* void mips_init_cache()

* Work ont size of and initialise I-, D-, and S-cachas

*
* assumes that at least a cache’s worth of memory has been initialised

* with correct parity

*/
LEAF(mips_init_ cache)

/*
* determine the cache sizes

*/
move v0, ra
bal _size_cache
move ra, v0

/* The caches may be in an indeterminate state,

* so we force good parity into them by doing an

* invalidate, load/fill, invalidate for each line.

*/

/* disable all interrupts and cache exceptions */
mfc0 v0, $sr
li a0, SR_BEV
and a0, v0
or a0, SR_DE
.set noreorder
mtc0 a0, $sr
nop; nop; nop
/* set up initial cache tag - certainly invalid! */
mtc0 zero, $taglo
nop
.set reorder
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The caches need to be invalidated, but all data fields must be filled with
good parity data, or we’ll get random cache parity errors while running the
system. We work in this sequence:

1. Write cache tags to invalidate the secondary cache — we’re going to fill
the primary caches from memory and we don’t want to pick up garbage
from the secondary.

2. Invalidate the primary cache lines and load known-to-be-good data from
memory into them.

3. Fill the secondary cache data lines by creating “dirty” primary cache
lines and pushing them out. We can’t fill the secondary cache from
memory, because we may not have that much memory set up yet.

4. Leave all invalidated again

#if R4KSCACHE
/*
* Initialise secondary cache tags (if present)

*/
blez scachesize, 3f # S-cache present?

/* first data/unified tags */
li a0, KSEG0_BASE
addu a1, a0, scachesize # limit = base + S-cache size
.set noreorder

1: addu a0, slinesize
bne a0, al, 1b
cache Index_Store_Tag_SD, -4(a0) # BDSLOT: clear tag
.set reorder

and a0, cacheflags, CF_SCSPLIT # S-cache split?
beqz a0, 3f

The R4000 cache can be programmed as split, so I- and D-cache accesses
are directed to distinct blocks. If so, we need to do the I-cache section sepa-
rately:

/* then split I-cache, if present */
li a0, KSEG0_BASE
addu a1, a0, scachesize # limit = base + S-cache size
.set noreorder

1: addu a0, slinesize
bne a0, al, 1b
cache Index_Store_Tag_SI, -4(a0) # BDSLOT: clear tag
.set reorder

#endif
3:

/*
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* assume bottom of RAM will generate good parity for the

* primary caches (max 32K)

*/

/*
* initialise primary instruction cache

*/
.set noreorder
li a0, KSEG0_BASE
addu a1, a0, icachesize # limit = base + I-cache size

1: addu a0, ilinesize
cache Index_Store_Tag_I, -4(a0) # clear tag
nop
cache Fill_I, -4(a0) # fill line
nop
bne a0, a1, 1b
cache Index_store_Tag_I, -4(a0) # BDSLOT: clear tag
.set reorder

/*
* Initialise primary data cache

* (for R4600 2-way set-associative caches, we do it in 3 passes)

*/

You’ve seen this primary cache initialization algorithm before in Section
4.10.4. The comment above specifies two-way caches, but in fact this method
copes with a cache of any level of set associativity, so long as it has a least
recently accessed or least recently written replacement policy.

/* 1: initialise D-cache tags */
/* three separate loops, unlike I-cache: see Section 4.10 for why */
.set noreorder
li a0, KSEG0_BASE
addu al, a0, dcachesize # limit = base + D-cache size

1: addu a0, dlinesize
bne a0, al, 1b
cache Index_Store_Tag_D, -4(a0) # BDSLOT: clear tag
.set reorder

/* 2: fill D-cache */
.set noreorder
li a0, KSEG0_BASE
addu al, a0, dcachesize # limit = base + D-cache size

1: addu a0, dlinesize
bne a0, al, 1b
lw zero, -4(a0) # BDSLOT: fill line
.set reorder

/* 3: clear D-cache tags */
.set noreorder
li a0, KSEG0_BASE
addu al, a0, dcachesize # limit = base + D-cache size

1: addu a0, dlinesize
bne a0, a1, 1b
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cache Index_Store_Tag_D, -4(a0) # BDSLOT: clear tag
.set reorder

#if R4KSCACHE
/*
* Initialise the secondary data cache data array

*/
blez scachesize, 3f # S-cache present?

This is rather ugly, because we’re not prepared to assume the existence
of enough correctly initialized memory to fill the whole secondary cache. In-
stead, we generate lines in the primary cache and push them out. This is
seriously unportable and probably works only on R4x00 CPUs.

li a0, KSEG0_BASE
addu al, a0, cachesize # al = base + S-cache size

.set noreorder
/* create matching dirty lines in primary and secondary */

1: cache Create_Dirty_Exc_SD, 0(a0)
nop; nop

cache Create_Dirty_Exc_D, 0(a0)
nop; nop

/* write primary cache line, so it’s modified */
sw zero, 0(a0)
nop;nop

/* push primary cache line out to secondary */
cache Hit_Writeback_Inv_D, 0(a0)
nop; nop

/* reset secondary tag */
addu a0, dlinesize
bne a0, a1, 1b
cache Index_Store_Tag_SD, -4(a0) # BDSLOT: clear tag
.set reorder

/*
* Initialise the secoadary instruction cache data array

*/
and a0, cacheflags, CF_SCSPLIT # S-cache split?
beqz a0, 3f
li a0, KSEG0_BASE
addu al, a0, scachesize # al = base+ S-cache size
.set noreorder

/* fill primary I-cache from secondary (ignoring ecc) */
1: cache Fill_I, 0(a0)

nop; nop

/* write primary I-cache to secondary */
cache Hit_Writeback_I, 0(a0)
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nop; nop

/* reset secondary tag */
addu a0, ilinesize
bne a0, a1, 1b
cache Index_Store_Tag_SI, -4(a0) # BDSLOT: clear tag
.set reorder

#endif

/* we store the sizes only after the caches are initialised */
3: sw icachesize, mips_icache_size

sw dcachesize, mips dcache_size
sw scachesize, mips_scache_size
sw ilinesize, mips_icache}liaesize
say dlinesize, mips_dcache_linesize
sw slinesize, mips_scache_liaesize
and t0, cacheflags, CF_SCSPLIT
sw t0, mips_scache_split
and t0, cacheflags, CF_PC2WAY
move tl, zero
beqz t0, 1f
li t1, 2

1: sw tl, mips_pcache_ways

mtc0 v0, $sr
j ra

END(mips_init_cache)

#define STZE_CACHE(reg, which) \
lw reg, which; \
move v1, ra; \
bgez reg, 9f; \
bal mips_size_cache; \
lw reg, which; \
move ra, v1; \

9: blez reg, 9f

/*
* void mips_flush_cache (void)

*
* write back and invalidate all caches

*/
LEAF(mips_flush_cache)
#if R4KSCACHE

/* secondary cacheops do all the work if present */
SIZE_CACHE(a1, mips_scache_size)
lw a2, mips_scache_linesize
lw v1, mips_scache_split

li a0, KSEG0_BASE
/* here we go with the macro(see above) */
cacheop(a0, a1, a2, Index_Writeback_Inv_SD)

beqz v1, 2f # split S-cache?
cacheop(a0, a1, a2, Index_Invalidae_SI)
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b 2f

9: lw a1, mips_dcache_size
#else

SIZE_CACHE(al, mips_dcache_size)
#endif

/* else flush primary caches individually */
lw a2, mips_dcache_linesize
li a0, KSEG0_BASE
cacheop(a0, al, a2, Index_Writeback_Inv_D)

lw al, mips_icache_size
lw a2, mips_icache_linesize
cacheop(a0, a1, a2, Index_Invalidate_I)

2:;9: j ra
END(mips_flush_cache)

The syntax 2:;9: is a bit odd, but the assembler treats the semicolon as a
line break for all purposes, including another label. We want two labels here
because we need a 9: at the end of every routine that uses the cacheop()
macro.

/*
* void mips_clean_cache (unsigned kva, size_t n)

*
* Write back and invalidate address range in all caches

*/
LEAF(mips_clean_cache)
#if R4KSCACHE

/* secondary cacheops do all the work(if fitted) */
SIZE_CACHE(a2, mips_scache_linesize)
lw vl, mips_scache_split

cacheop(a0, al, a2, Hit_Writeback_Inv_SD)

beqz v1, 2f # split S-cache?
cacheop(a0, al, a2, Hit_Invalidate_SI)

b 2f

9: lw a2, mips_daache_linesize
#else

SIZE_CACHE(a2, mips_dcache_linesize)
#endif

cacheop(a0, al, a2, Hit_Writeback_Inv_D)

lw a2, mips_icache_linesize
cacheop(a0, al, a2, Hit_Iavalidate_I)

2:;9:j ra
END(mips_clean_cache)

/*
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* void mips_flush_dcache (void)

*
* Flush and invalidate data cache only

*/
LEAF(mips_flush_dcache)
#if R4KSCACHE

/* use secondary cacheops if present */
SIZE_CACHE(al, mips_scache_size)
lw a2, mips_scache_lineaize
li a0, KSEG0_BASE
cacheop(a0, al, a2, Index_Writeback_Inv_SD)
b 2f

9: lw a1, mips_dcache_size
#else

SIZE_CACHE(al, mips_dcache_size)
#endif

/* else flush primary data cache */
lw a2, mips_dcache_linesize
li a0, KSEG0_BASE
cacheop(a0, a1, a2, Index_Writeback_Inv_D)

2:;9:j ra
END(mips_flush_dcache)

/*
* void mips_clean_dcache (unsigned kva, size_t n)

*
* Write back and invalidate address range in data caches

*/
LEAF(mips_clean_dcache)
#if R4KSCACHE

/* secondary cacheops do all the work(if fitted) */
SIZE_CACHE(a2, mips_scache_linesize)
cacheop(a0, al, a2, Hit_Writeback_Inv_SD)
b 2f

9: lw a2, mips_dcache_linesize
#else

SIZE_CACHE(a2, mips_dcache_linesize)
#endif

cacheop(a0, a1, a2, Hit_Writeback_Inv_D)

2:;9: j ra
END(mips_clean_dcache)

/*
* void r4k_hit_writeback_inv_dcache (unsigned kva, size_t n)

*
* Write back and invalidate address range in primary data cache

*/
LEAF(r4k_hit_writeback_inv_dcache)

SIZE_CACHE(a, mips_dcache_linesize)
cacheop(a0, a1, a2, Hit_Writeback_Inv_D)

9: j ra
END(r4k_hit_writeback_inv_dcache)
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/*
* void mips_clean_icache (unsigned kva, size_t n)

*
* Write back and invalidate address range in instruction caches

*/
LEAF(mips_clean_icache)
#if R4KSCACHE

/* secondary cacheops do all the work (if fitted) */
SIZE_CACHE(a2, mips_scache_linesize)
cacheop(a0, al, a2, Hit_Invalidate_SI)
b 2f

9: lw a2, mips_icache_linesize
#else

SIZE_CACHE(a2, mips_icache_linesize)
#endif

cacheop(a0, a1, a2, Hit_Invalidate_I)

2:;9: j ra
END(mips_clean_icache)

12.3 MIPS Exception Handling

The exception-handling routines are once again taken (sometimes simplified)
with permission from the Algorithmics SDE-MIPS — note again that the code
is copyrighted and not freely reusable for commercial purposes. In this case,
the mechanism is called xcption; it connects MIPS machine-level exceptions
through to C interrupt handlers and POSIX-like signal handlers.

12.3.1 Xcption: What It Does for Programmers

Firstly, we need to swallow a rather heroic C data type definition:

typedef int(*xcpt_t)(int, struct xcptcontext *);

The golden rule of C declarations is “read it backward, from the name of
the thing being declared”; thus the data type xcpt t is a pointer to a function
that returns an integer. Moreover, the parentheses after the function decla-
ration give us the function’s argument types; there’s an int and a pointer to
an exception context, saved on the stack after an exception.

An xcpt t is just the thing to use in a table of function pointers. As used,
they’re often found bundled with some other data (not important here) in a
structure called xcptaction.

A programmer can provide an xcpt t as a pointer to a handler function,
which will then be invoked whenever a low-level exception occurs with the
field Cause(Exccode) of the Cause register set to a particular value (there’s
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a list of possible values in Table 3.3). In Section 12.4 we’ll show you how this
can be used to catch MIPS interrupts.

The xcption handler routine should return 0 if all goes as expected, but
if it doesn’t the value will be interpreted as a POSIX signal number and a
signal will be delivered to the current application. That in turn provides a
somewhat-portable way for applications to respond to asynchronous events.

The same mechanism also supports a GNU-standard debug stub, which
allows unexpected exceptions to drop into the debugger rather than off the
edge of the universe.

Note that all interrupts are disabled during exception processing, until
and unless they are explicitly unmasked inside a user-supplied handler.

12.3.2 Xcption: C interface Code

The C routine called from assembler to dispatch xcptions is short and sim-
ple:1

int
_xcpt_deliver (struct xcptcontext *xcp)
{

int xcode, sig;

xcode = xcp->cr & CR_XMASK) >> 2;

if (sig = (xcpthandlertab[xcode]) (xcode, xcp)) {
_sig_raise (sig, xcp);
}

return 0;
}

What’s going on here?

• xcode picks up the value that was in the Cause(ExcCode) field in the
Cause register; CR XMASK is defined in one of the CPU-family-specific
include files.

• We look up that code in an array xcpthandlertab[] of pointers to han-
dler functions. The function whose address has been loaded in the ap-
propriate position will be called with two arguments: the Cause(Exccode)
value and the pointer to the exception context.

• If the handler function return value is nonzero, we invoke a signal.

1The real code is more opaque than this, because it abstracts register types and field
positions and such to a larger extent. It can also invoke lower-level user handlers if they’re
linked in.
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12.3.3 Xcption: Low-Level Module

The foundation is an assembler routine that is entered from the MIPS general-
exception entry point and that builds the environment to allow the user to
supply an exception handler written to the xcption framework.

The module is fairly long; here are some signposts to find your way around:

• LEAF(xcpt vecbev) is the entry point of the exception-handling code
(page 373).

• (Actually, the MIPS CPU jumps to one of its standard entry points; tiny
fragments of code that jump to xcpt vecbev are defined at places like
xcpt vecutlb on page 379, and then copied into the right place by the

initialization routine.)

• LEAF( xcptlow init) sets up the vectors and initializes the CPU ap-
propriately (page 381).

• Somewhere down on page 377 we finally have saved enough registers
and built an environment suitable for C programs, and we branch to
xcptcall to go off and do something useful. But even then, LEAF( xcptcall),

on page 382: fakes an indirect call to the C routine xcpt deliver() to
help the debugger keep track of the stack when being used on exception-
triggered code.

• Lastly, the single argument to the C code is a pointer to an exception-
context structure. We use #ifdefs to vary the definition, but we’ll show
the structure for a CPU from the R4000 family. A struct xcptcontext
contains the saved value of all general-purpose registers and those co-
processor 0 registers that need saving:

struct xcptcontext {
reg_t sr;
reg_t cr;
reg_t epc;
reg_t vaddr;

reg_t regs[32];
reg_t mdlo;
reg_t mdhi;

#if #cpu(r4640) || #cpu(r4650)
reg_t iwatch;
reg_t dwatch;

#elif #cpu(cw4010)
reg_t dcs;
reg_t bda;

#elif !#cpu(r4600) && !#cpu(r4700)
reg_t watchlo;
reg_t watchhi;
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#else
reg_t _spare0;
reg_t _sparel;

#endif

struct xcptcontext *prev;
unsigned xclass;

It also provides copies of the key exception-related CP0 registers SR, Cause
(cr), EPC, and BadVaddr(vaddr). C exception code will pick up fields from
those registers to decide what to do next.

Note that because it’s convenient — particularly for emulators and de-
buggers that may need to reference the pre-exception values of registers — to
define all 32 registers together, we’ll store in the table the value of the register
$0, which is hardly going to be a surprise, and the values of the reserved-for-
exception registers k0 and k1. These are completely useless and in any case
can’t reflect their real pre-exception values — they’re going to be used early
in the exception routine.

So here goes with the assembler code.

/*
* xcptlowb.S: SDE-MIPS basic low-level exception handling

*
* This exception handler is not very sophisticated, but it is

* simple and does what is required for most embedded code.

*
* It assumes that sp is at all times a valid, current stack pointer

* into unmapped memory. If your application has sp pointing into

* possibly mapped memory(i.e., kuseg/kseg2), then you will need

* something more like xcptlow.S. It does not save/restore

* foating-point registers: this must be done explicitly if

* exception-level code needs to use the FPA.

*/

#include <mips/asm.h>
#include <mips/regdef.h>
#include <mips/cpu.h>
#iaclude <mips/xcpt.h>
#if #cpu(lr33k)
#include <lsi/lr33000.h>
#endif

#if __mips >= 3
#ifndef __mips64

.set gp64 /* force 64-bit register support */
#endif
#define lr ld
#define sr sd
#if !#cpu(r4640) && !#cpu(r4650)
#define xmfc0 dmfc0
#define rmtc0 dmtc0
#endif
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#define RS 8
#else
#define lr lw
#define sr sw
#define RS 4
#endif

#ifndef rmfc0
#define rmfc0 mfc0
#define rmtc0 mtc0
#endif

What we’ve done with these macros is to define a set of operators (load,
store, and move between general-purpose and CP0 registers) that do register-
length operations — 64 bit if the system configuration requires us to load and
save 64-bit registers, 32 bit otherwise.

Any system where users may have run 64-bit instructions has important
data in the top half of registers, and the exceptionlinterrupt system must
always preserve the whole 64-bit register value. Conversely, if a system uses
only 32-bit instructions, then the top half of registers is known to consist of
just a sign extension (Section 2.7.3), and we need only save/restore 32 bits.

.data
class: .word 0

/*
* Low-level flags controlling exception handling

*/
EXPORTS(_xcpt_flags, MXCPT*4)

.word 0: NXCPT

/*
* We get here from ROM boot exception handler (k0 points here),

* or from one of the RAM exception stubs below

*
* On entry, k1 = exception class

*
* Note: exceptions do not save and restore registers k0 or k1

*/

In this system, the cached exception entry points are just patched to
branch to xcpt vecbev. Algorithmics’ ROM exception entry points (not listed
here) use a convention to allow ROM exceptions to be redirected too; it k0 is
nonzero on entry to the ROM exception routine, its contents are assumea to
be the address of an alternative handler. While running the xcption system,
a will point here.

Until this exception handler has saved enough state to permit nested ex-
ceptions, it will keep k0 zero; that way if anything bad happens, the ROM
handler will trap it and we won’t get into an exception loop.
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Also, before jumping here the exception vectors set k1 to a value (which
we call “exception class”) that tells us which vector was used; think of that
as an extension of the CPU Cause register. It gets stored in a global variable
and eventually is copied into the exception frame.

LEAF(_xcpt_vecbev)
.set noreorder
.set noat

/* save exception class in memory */
la k0, class
sw k1, 0(k0) # had better not trap!
move k0, zero # now boot exceptions will abort

/* allocate exception stack frame (on 8-byte boundary) */
subu k1, sp, XCP_SIZE
srl k1, 3
sll k1, 3

/* save enough registers to get by */
sr AT, XCP_AT(k1)
sr v0, XCP_V0(k1)
sr v1, XCP_V1(k1)
sr a0, XCP_A0(k1)
sr a1, XCP_A1(k1)
sr a2, XCP_A2(k1)
sr a3, XCP_A3(k1)
sr sp, XCP_SP(k1)
sr ra, XCP_RA(k1)

/* fool modern exception code by pretending we are NOT nested */
sw zero, XCP_PREV(k1)

Every now and again, something is beyond explanation. That last line is
one of those.

/* get coprocessor 0 exception state */
mfc0 a0, $cr
mfc0 al, $sr
rmfc0 a2, $vaddr
rmfc0 a3, $epc

#if #cpu(1r33k)
mfc0 v1, $dcic

#endif
/* we can safely use AT now */
.set at

We’ve now saved a good set of everyday registers, which we’re now free to
use, and we have got the exception state into some general registers where
it’s easy to look at.

We’re now going to have lots of #ifdefs, dealing with things that only
occur in some CPUs. You’11 note that while some of these test for specific
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CPUs, where possible we’li use the existence/nonexistence of some register or
feature. R3000-type CPUs depend on swapping data and instruction caches
for I-cache manipulation, under the control of a status register bit SR(SwC)
which is defined in the include file as SR SWC; therefore, when we’re testing
for exceptions in cache managers (they’re fatal) we prefer testing for SR SWC
to trying to list affected CPUs.

/* switch to using sp to point at exception frame */
move sp, k1

#ifdef SR_SWC
/* If SR_PZ || SR_SwC || SR_IsC are set then

* the exception has occurred in some VERY hairy code such

* as during cache handling and is unrecoverable.

*/
and v0, a1, SR_PZ|SR_SWC|SR_ISC
bnez v0, xcpt_hairy
nop

#endif

#1f #cpu(1r33k)
/* save LR330x0 dcic register */
sr v1, XCP_DCIC(sp)

#endif

/* save watchpoint registers and disable watchpoint */
#if defined(C0_DCIC)

mfc0 v0, C0_DCIC
mfc0 v1, C0_BDA
mtc0 zero, C0_DCIC
sr v0, XCP_DCIC(sp)
sr v1, XCP_BDA(sp)

#elif defined(C0_DCS)
mfc0 v0, C0_DCS
mfc0 v1, C0_BDA
mtc0 zero, C0_DCS
sr v0, XCP_DCS(sp)
sr v1, XCP_BDA(sp)

#elif defined(C0_WATCHLO)
mfc0 v0, C0_WATCHLO
mfc0 v1, C0_WATCHHI
mtc0 zero, C0_WATCHLO
sr v0, XCP_WATCHLO(sp)
sr v1, XCP_WATCHHI(sp)

#elif defined(C0_IWATCH)
mfc0 v0, C0_IWATCH
mfc0 v1, C0_DWATCH
mtc0 zero, C0_IWATCH
mtc0 zero, C0_DWATCH
sr v0, XCP_IWATCH(sp)
sr v1, XCP_DWATCH(sp)

#endif

/* stash exception class */
lw v0, class
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/* nothing sensible to store for k0/kl, store zero */
sr zero, XCP_K0(sp)
sr zero, XCP_K1(sp)
or v0, XCPC_USRSTACK # we are still on the user stack
sw v0, XCP_XCLASS(sp)

/*
* We have now finished with the uninterruptible code (using k0/kl, and

* saving exception state), so we can permit nested exceptions; however, we

* cannot permit device interrupts until the interrupt handler does its

* prioritisation and sets SR_IMASK.

*/
la k0, _xcpt_vecbev # restore rain boot exception hook

#if defined(SR_EXL)
/* R4x00-style exceptions */
and v0, a1, ˜(SR_IMASK | SR_EXL | SR_KSU_MASK)

#elif defined(SR_IEC)
/* R3x00-style exceptions */
and v0, a1, ˜(SR_IMASK) # sr.SR_IMASK := 0
srl v1, a1, 2 # sr.SR_IEC := sr.SR_IEP
and v1, SR_IEC
or v0, v1

#endif
mtc0 v0, $sr

.set reorder

/*
* We are now interruptible: dump all remaining state

* into the exception stack frame

*/

Actually, interrupts are guaranteed to be disabled at this stage and will
remain that way until and unless we invoke some kind of interrupt routine
that can figure out which interrupt is active and service it. But a nested
exception now would not overwrite any vital state, and we could return from
it and to our user program intact.

/* coprocessor exception state */
sr a0, XCP_CR(sp)
sr a1, XCP_SR(sp)
sr a2, XCP_VADDR(sp)
sr a3, XCP_EPC(sp)

/* mdhi and mdlo */
mfhi v0
mflo v1
sr v0, XCP_MDHI(sp)
sr v1, XCP_MDLO(sp)

lt’s easy to forget the not-quite-registers hi and lo which are the results
from the multiply unit. But you can’t go trampling randomly on them every
time there’s an interrupt.
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/*
* Save all the other general registers.

*
* You might think that you don’t need to save zero, s0-s7, and s8 but

* software instruction emulators (required for FP operation) and debuggers both

* rely on having all the user’s register values stored together in a

* well-defined structure.

*/
sr zero, XCP_ZERO(sp)
sr t0, XCP_T0(sp)
sr t1, XCP_T1(sp)
sr t2, XCP_T2(sp)
sr t3, XCP_T3(sp)
sr t4, XCP_T4(sp)
sr t5, XCP_T5(sp)
sr t6, XCP_T6(sp)
sr t7, XCP_T7(sp)
sr s0, XCP_S0(sp)
sr s1, XCP_S1(sp)
sr s2, XCP_S2(sp)
sr s3, XCP_S3(sp)
sr s4, XCP_S4(sp)
sr s5, XCP_S5(sp)
sr s6, XCP_S6(sp)
sr s7, XCP_S0(sp)
sr t8, XCP_T8(sp)
sr t9, XCP_T9(sp)
sr gp, XCP_GP(sp)
sr s8, XCP_S8(sp)

/* load our _gp pointer */
la gp, _gp

/* and call the C exception handler */
move a0, sp # argl = &xcp
subu sp, 16 # (arg save area)
move ra,zero # fake return address
b _xcptcall

Remember gp? It’s the register that is maintained to point into the mid-
dle of the data area, so that a lot of static and extern data items can be
loaded/stored with a single instruction (see Section 9.4.1).

The subu sp, 16 is an artifact of the MIPS convention for passing sub-
routine arguments (see Section 10.1).

The bizarre call to xcptcall (a bit of code on page 382) with a zero re-
turn address is a bit of debugger-support trickery. It interposes a bogus
stackframe (with a zero return address) between the C exception handler and
the actual machine exception; innocent debuggers will stop a stack backtrace
there, and xcption-aware debuggers can use it to invoke special knowledge to
trace back over the exception event.

xcptrest:
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.set noat
addu at, sp, 16 # at points to exception frame

And here we are back again. We just have to restore all registers from
where we saved them on entry, rewind the stack, and return. (The choice
of at for the frame pointer here is rather arbitrary; we wanted to choose
something we can restore last.)

xcptrest_other:
/*
* Restore all state

*/

/* restore most general registers */
lr t0, XCP_T0(at)
lr t1, XCP_T1(at)
lr t2, XCF_T2(at)
lr t3, XCP_T3(at)
lr t4, XCP_T4(at)
lr t5, XCP_T5(at)
lr t6, XCP_T6(at)
lr t7, XCP_T7(at)
lr s0, XCP_S0(at)
lr sl, XCP_S1(at)
lr s2, XCP_S2(at)
lr s3, XCP_S3(at)
lr s4, XCP_S4(at)
lr s5, XCP_S5(at)
lr s6, xCP_S6(at)
lr s7, xcP_S7(at)
lr t8, XCP_T8(at)
lr t9, XCP_T9(at)
lr gp, XGP_GP(at)
lr s8, XCP_S8(at)

/* mdhi and mdlo */
1r v0, XCP_MDHI(at)
1r vl, XCP_MDLO(at)
mthi v0
mtlo v1

/* remaining general registers */
1r a0, XCP_A0(at)
1r a1, XCP_A1(at)
1r a2, XCP_A2(at)
1r a3, XCP_A3(at)
1r ra, XCP_RA(at)

/*
* Restore the exception-time status register, which has the

* side effect of disabling interrupts.

*/
.set noreorder
1r v0, XCP_SR(at)



378 12.3. MIPS Exception Handling

Now we have serious magic coming up. In MIPS CPUs, not much care is
taken to hide the pipeline when you’re doing control register updates; control
bits in SR take effect when they take effect, and users are supposed to read a
table of when that is in each case and to program accordingly. But it may still
be unexpected that on R4000 CPUs the process of disabling interrupts im-
plicitly by setting the exception level bit SR(EXL) takes one clock cycle longer
than the process of enabling interrupts explicitly by clearing the interrupt
enable bit SR(IE).If you update SR to do both those things simultaneously,
you can get an unwanted interrupt. An additional and worse implication is
that by the time that interrupt event works its way up the pipeline, the CPU
thinks it’s at exception level and then it processes the interrupt exception as
if it were a nested exception.

Although this behavior is bad, it can be documented not to be a bug by
patching the table of control bit delays. It’s easy enough to fix: Set SR(EXL)
first and then wait a couple of clock cycles before restoring the start-of-
exception value of SR (which most likely has interrupts enabled).

The #if uses the presence of the SR(EXL) bit as characteristic of R4x00-
style exception handling.

#if defined(SR_EXL)
# clear SR_IMASK before setting SR_EXL (nasty window)
1i v1, ˜(SR_IMASK|SR_EXL)
and v1, v0
mtc0 v1, $sr
or v0, SR_EXL # make sure that EXL really is set
nop

#elif defined(SR_IEC)
1i v1, ˜(SR_IEC|SR_KUC) # make sure than interrupts are disabled
and v0, v1

#endif
lr v1, XCP_V1(at)
mtc0 v0, $sr

An R3000-like CPU (with the SR(IEc) bit defined) is just cheerfully over-
writing the status register to clear out the privilege and interrupt bits — can
this be right? Yes, because when we return from the exception below, the
rfe instruction is going to pop the SR(KUx, IUx) stack and lose the value
we just overwrote in any case.

#1f defined(C0_DCIC)
1r v0, XCP_BDA(at)
1r sp, XCP_DCIC(at)
mtc0 v0, C0_BDA
mtc0 sp, C0_DCIC

#elif defiaed(C0_DCS)
1r v0, XCP_BDA(at)
1r sp, XCP_DCS(at)
mtc0 v0, C0_BDA
mtc0 sp, C0_DCS
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#alif defined(C0_WATCHLO)
1r v0, XCP_WATCHLO(at)
1r sp, XCP_WATCHHI(at)
mtc0 v0, C0_WATCHLO
mtc0 sp, C0_WATCHHI

#elif defined(C0_IWATCH)
1r v0, XCP_IWATCH(at)
1r sp, XCP_DWATCH(at)
mtc0 v0, C0_IWATCH
mtc0 sp, C0_DWATCH

#endif

/*
* we are now uninterruptible and can use k1 safely

*/
lr kl, XCP_EPC(at)
lr AT, XCP_AT(at)

#ifdef SR_EXL
rmtc0 kl, $epc
nop; nop
eret
nop

#else
j k1
rfe

#eadif
.set reorder
.se at

END(_xcpt_vecbev)

/*
* See comment above about this catastrophe

*/

SLEAF(xcpt_hairy)
b xcpt_hairy # no hope - loop forever

SEND(xcpt_hairy)

Let’s return to exceptions. This generates pieces of code suitable to be
copied to the MIPS standard exception entry points, which will jump into
the handler above. Note that we use the same exception handler for every
kind of event, including the TLP miss exceptions that the MIPS architecture
so kindly separated out. Now we know why RISC architectures don’t have
multiple interrupt vectors.

Anyway, here are the branches. They don’t look very exciting.

.set noat

.set noreorder

#ifndef XCPC_XTLBMISS

/* utlb exception code (copied to 0xa0000000) */
_xcpt_vecutlb:
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la k1, _xcpt_vecbev
j k1
1i kl, XCPC_TLBMISS

_xcpt_endutlb:

#else

/* tlbmiss exception code (copied to 0xa0000000) */
_xcpt_vectlb:

la k1, _xcpt_vecbev
j k1
1i kI, XCPC_TLBMISS

_xcpt_endtlb:

/* xtlbmiss exception code (copied to 0xa0000080) */
_xcpt_vecxtlb:

la k1, _xcpt_vecbev
j k1
1i k1, XCPC_XTLBMISS

_xcpt_endxtlb:

#endif

/* general exception code */
_xcpt_vecgen:

la k1, _xcpt_vecbev
j k1
1i kl, XCPC_GENERAL

_xcpt_endgen:

#if #cpu(r4640) || #cpu(r4650) || #cpu(rm52xx) || #cpu(rm7000)
/* interrupt exception code (copied to 0xa0000200) */
/* XXX you could fast vector here */
_xcpt_vecint:

la k1, _xcpt_vecbev
j k1
1i kl, XCPC_GENERAL

_xcpt_endint:
#endif

#if #cpu(1r33k)
/* debug exception code (cpied to 0xa0000040) */
_xcpt_vecdbg:

la k1, _xcpt_vecbev
j k1
1i k1, XCPC_DEBUG

_xcpt_enddbg:
#endif

.set reorder

.set at

#ifdef XCPC_CACHEERR
#include "xcptcache.s"
#endif

/* Macro to copy exception handler to UNCACHED low memory */
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#dafine XCPTCOPY(offs, start, end) \
1i t0, KSEG1_BASE + offs; \
la t1, start; \
la t2, end; \

1: 1w t3, 0(t1); \
addu t1, 4; \
sw t3, 0(t0); \
addu t0, 4; \
bne ti, t2, 1b

Why uncached? Because you can’t execute instructions out of the data
cache. In fact, you’re also going to need to be sure that the I-cache does
not already contain some previous contents of these locations. This code
assumes that this cannot be the case.

/*
* Low-level exception handler initialization function.

* Call only when a stack is set up and memory valid.

* RAM handler stubs are installed via UNCACHED memory;

* also sets k0 = &_xcpt_vecbev for ROM BEV handler.

*
* It will normally not be called when running undex a

* PROM monitor which we want to allow to continue

* catching exceptions itself.

*/

LEAF(_xcptlow_init)
#if !#cpu(164360)

/* disable all interrupts */
mfc0 t4, $sr
and t4, ˜SR_IE
mtc0 t4, $sr

/* copy exception handlers down to low memory */
#ifndef XCPC_XTLBMISS

XCPTCOPY(0x000, _xcpt_vecutlb, _xcpt_endutlb)
XCPTCOPY(0x080, _xcpt_vecgen, _xcpt_endgen)

#else
XCPTCOPY(0x000, _xcpt_vectlb, _xcpt_endtlb)
XCPTCOPY(0x080, _xcpt_vecxtlb, _xcpt_endxtlb)
XCPTCOPY(0x180, _xcpt_vecgen, _xcpt_endgen)

#endif
#ifdef XCPC_CACHEERR

XCPTCOPY(0x100, _xcpt_veccache, _xcpt_endcache)
#endif
#if #cpu(1r33k)

XCPTCOPY(0x040, _xcpt_vecdbg, _xcpt_enddbg)
#endif
#if #cpu(r4640) || #cpu(r4650) || !#cpu(rm52xx) || #cpu(rm7000)

XCPTCOPY(0x200, _xcpt_vecint, _xcpt_endint)
#endif

lw t0, _ram_based
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beqz t0, 1f

/* using RAM-based handlers, so switch off boot exceptions */
and t4, ˜SR_BEV
mtc0 t4, $sr

#endif /* !#cpu(164360) */

/* set up ROM BEV handler hook (always, cannot hurt) */
1: la k0, _xcpt_vecbev

j ra
END(_xcptlow_init)

/*
* This function exists simply for the debugger.

* The debugger can see that ra is the return address

* and in the normal case it is zero so it looks no further.

* It also recognises this special name "_xcptcall" and can

* trace back across the exception frame.

*
* On entry: a0 == &xcp

*/

LEAF(_xcptcall)
subu sp, 24
sr ra, 16(sp) /* == 0 normally */

/* punt out to xcpt_deliver */
jal _xcpt_deliver
lr ra, 16(sp)
addu sp, 24
beQz ra, xcptrest
j ra

END(_xcptcall)

12.4 MIPS Interrupts

The interrupt handler we’re going to look at here is built on the exception
handler described in Section 12.3. The interrupt handler is just one of the
possible exception action routines, so we know that

xcpthandlertab[XCPTINTR] == &intrhandler

where XCPTINTR is actually zero, because that’s the Cause(ExcCode) value
for an interrupt.

Once an interrupt occurs and control transfers into intrhandler() the
handler looks for interrupts that are active and wanted and the handler can
call a different routine for each of the MIPS CPU’s eight possible interrupt
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flags. There are utility routines to keep a table of individual interrupt rou-
tines, to allow you to register drivers’ interrupt routines, and to handle un-
registered or spurious interrupts.

But here’s the guts of the handler:

/*
* low-level interrupt exception handler

*/
static int intrhandler (int xcptno, struct xcptcontext *xcp)
{

unsigned int cr = XCP_CAUSE (xcp) & XCP_STATUS (xcp) & CR_IMSX;

The Cause(IP) interrupt active bits simply track the corresponding CPU
inputs. The matching bits of the status register, SR(IM) are individual active-
high enables for those interrupts. So we’ve now computed a bit vector of
interrupts that are trying to be active.

struct intraction * ia;
int sig = 0;
int intr:

while (cr != 0) {
if ((cr & _intrmask) == ) {

_mon_printf("\nUnregistered interrupt: epc=%p, sr=%x, cr=%x\n",
REG_TO_VA (xcp->epc), XCP_STATUS (xcp),
XCP_CAUSE (xcp));

return SIGKILL;
}

intrmask is a soft interrupt mask, which enables only interrupts for
which a registered interrupt handler exists. The xcption allows us to fast
return a nonzero value and will send a signal to the controlling application
— in this case, it is usually fatal.

/* find highest-priority interrupt bit number */
intr = priotab[(cr & _intrmask) >> 8];
ia = &intrtab[intr];

/* call its handler at its ipl */
splx (ipltab[ia->ia_ipl].mask);
sig = (ia->ia_handler) (ia->ia_arg, xcp);

priotab is just a table to speed a find-first-set-bit operation. Then we can
find a structure pointer is relating to this interrupt input.

The splx() function adjusts the mask in the status register, SR(IM), to
disable this interrupt and all those lower in priority: Then we call the handler:

intrblock();
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intrblock() disables all interrupts in the status register, to make sure
no hardware interrupt can get in while we figure out what’s happening.

/* check for a signal request */
if (sig)

return sig;

/* fetch new cause register */
cr = mips_getcr() & XCP_STATUS (xcp) & CR_IMASK;

As we said before, the interrupt flags in the cause register just track input
signals and may change at any time, so we recompute and go around again
until there are really no active interrupts.

}
return 0;

}

12.5 Tuning for MIPS

The following example is the heavily used C library function memcpy() tuned
heroically. This is freely redistributable code from a BSD release, used with
thanks to the University of California.

/*-

* Copyright (c) 1991, 1993

* The Regents of the University of California. All rights reserved.

*
* This code is derived from software contributed to Berkeley by

* Ralph Campbell.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation cad/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLTED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
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* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER, CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INCONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT Of THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*/

#include <mipe/asm.h>
#include <mips/regdef.h>

/* use 64-bit operations if available */
#if __mips >= 3
#define L 1d
#define LL ldl
#define LR ldr
#define S sd
#define SL sdl
#define SR sdr
#define RS 8
#else
#define L 1w
#define LL lwl
#define LR lwr
#define S sw
#define SL swl
#define SR swr
#define RS 4
#endif

/* moving bytes in chunks, so endianaess matters */
#ifdef MIPSEL
# define LHI LR
# define LLO LL
# define SHI SR
# define SLO SL
#endif
#ifdef MIPSEB
# define LHI LL
# define LLO LR
# define SHI SL
# defins SLO SR
#endif

Let’s review these definitions. The strange instructions like ldr and ldl
are for unaligned accesses; these two act in a pair to load a doubleword from
an arbitrarily aligned location.

What we have defined are the following:
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Symbol Means

L Load a word-size chunk

S Store a word-size chunk

RS Size of a word, in bytes

LHI Word-size unaligned load (higher addresses)

LLO Word-size unaligned load (lower addresses)

SHI Word-size unaligned store (higher addresses)

SLO Word-size unaligned store (lower addresses)

We’ll also use free registers. The t0-t9 registers are by definition free for
our use in a subroutine; so are the argument registers a0-a3 and the return-
value registers v0 and v1.

/* memcpy(to, from, n) */
LEAF(memcpy)

.set noreorder
move v0, a0 # save to for return
beq a2, zero, .ret
sltu t2, a2, 12 # check for small copy
bne t2, zero, .smallcpy # do a small bcopy

We’re going to consign small copies (12 bytes or less by measurement) to
something simple.

memcpy() — by the rules of the C standards — doesn’t have to handle
over-lapped regions, which would make life a lot more complicated.

The basic strategy is to try to do the bulk of the copy with aligned big
chunks of data. Where the source and destination are aligned the same,
that’s good (we make it a special case); where they’re not, we use unaligned
loads and aligned stores.

xor v1, a1, a0 # compare low bits of addresses
and v1, RS-1
subu a3, zero, a0 # compute # bytes to word align address
beq vq, zero, .aligned # addresses can both be word aligaed
and a3, RS-1 # BDSLOT - harmless if we branch

beq a3, zero, 1f
subu a2, a3 # subtract from remaining count
LHI v1, 0(a1) # get next RS bytes (unaligned)
LLO v1, RS-1(a1)
addu al, a3
SHI v1, 0(a0) # store 0..RS-1 bytes to align a0
addu a0, a3

/* Try a 4X unrolled unaligned block copy */
1: and v1, a2, (RS*4)-1 # remaining size % blocksize

subu a3, a2, v1 # size of remaining blocks
beq a3, zero, 1f # none?
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move a2, v1 # bytes remaining after block copy
addu a3, a1 # compute ending address

2: LHI v1, RS*0(a1) # copy block a1 unaligned, a0 aligned
LLO v1, RS*O+RS-1(a1)
LHI t0, RS*1(a1)
LLO t0, RS*1+RS-1(a1)
LHI t1, RS*2(al)
LLO t1, RS*2+RS-1(a1)
LHI t2, RS*3(al)
LLO t2, RS*3+RS-1(a1)
S v1, RS*0(a0)
S t0, RS*1(a0)
S t1, RS*2(a0)
addu a1, RS*4
addu a0, RS*4
bne a1, a3, 2b
S t2, -RS(a0) # keep back 1 store for the BDSLOT

1: and v1, a2, RS-1 # compute number of words left
subu a3, a2, v1
beq a3, aero, .smallcpy # none?
move a2, v1 # bytes remaining after word copy
addu a3, a1 # compute ending address

2: LHI v1, 0(a1) # copy words a1 unaligned, a0 aligned
LLO v1, RS-1(a1)
addu al, RS
addu a0, RS
bne a1, a3, 2b
S v1, -RS(a0)

b .smallcpy
nop

.aligned:
/* Both addresses have the same alignmeat: do initial bytes to align */
beq a3, zero, 1f
subu a2, a3 # subtract from remaining count
LHI v1, 0(a1) # copy 1, 2, or 3 bytes to align
addu a1, a3
SHI v1, 0(a0)
addu a0, a3

/* Try a 4X unrolled block copy */
1: and v1, a2, (R3*4)-1 # remaining size % blocksize

subu a3, a2, v1 # size of remaining blocks
beq a3, zero, 1f # none?
move a2, v1 # bytes remaining after block copy
addu a3, al # compute ending address

2: L v1, RS*0(al)
L t0, RS*1(al)
L t1, RS*2(a1)
L t2, RS*3(a1)
S v1, RS*0(a0)
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S t0, RS*1(a0)
S t1, RS*2(a0)
addu al, RS*4
addu a0, RS*4
bne al, a3, 2b
S t2, -RS(a0)

/* Try a word at a time */
1: and v1, a2, RS-1 # remaining size % word size

subu a3, a2, v1 # size of remaining words
beQ a3, zero, .smallcpy # none?
move a2, v1 # bytes remaining after word copy
addu a3, a1 # compute ending address

2: L v1, 0(a1) # copy words
addu al, RS
addu a0, RS
bne a1, a3, 2b
S v1, -RS(a0)

.smallcpy:
/* Last resort: byte at a time*/
beq a2, zero, .ret
addu a3, a2, a1 # compute ending address

1: lbu v1, 0(a1) # copy bytes
addu a1, 1
addu a0, 1
bne a1, a3, 1b
sb v1, -1(a0)

.ret: j ra
nop
.set reorder

END(memcpy)



Appendix A
Instruction Timing and Optimization

MIPS CPUs are heavily pipelined, so the speed with which they can exe-
cute a piece of code depends on how well the pipeline works. In some

cases, the correctness of the code depends on how the pipeline works — par-
ticularly with the CPU control coprocessor 0 instructions and registers.

Dependencies passing through explicitly used registers are fairly obvious,
if messy; in addition, there are also occasional dependencies on implicitly
used registers. For example, CPU control flags in the status register SR affect
the operation of all instructions, and changes must be made very carefully.

The great majority of MIPS instructions need to obtain their operands for
the end of the RD pipeline stage and need to produce their result at the
end of the immediately following ALU stage, as illustrated in Figure A.1. If all
instructions could always stick to these rules, any instruction sequence could
be correctly run at maximum speed. The best trick in the MIPS architecture
is that the vast majority of instructions can stick to these rules.

Where this can’t be done, for some reason, then an instruction taking
operands from the immediately preceding instruction can’t run on time and
correctly. This situation can be detected by the hardware and fixed by delay-
ing the second instruction until the data is ready (an interlock) or it can be
left to the programmer to avoid sequences of instructions that try to use data
that isn’t ready (a pipeline hazard).

A.1 Avoiding Hazards: Making Code Correct

Possible hazards include the following:

• Load delay: This was a hazard in early MIPS CPUs; the instruction
immediately following a load could not reference the loaded data. That
sometimes required the compiler/assembler to use a nop instruction

389



390 A.2. Avoiding Interlocks to Increase Performance

ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache

ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache

ALU

WB
to

register 
file

RD
from

register 
file

IF
from

I-cahce

MEM
from

D-cache
Instruction 1

Instruction 2

Instruction 3

I-cache Register
file

ALU D-cache Register
file

Instruction
Sequence

Time

Figure A.1: Pipeline stages for two instructions with no delay needed

when nothing useful could be safely moved into the delay slot. But from
the R4000 onward, MIPS CPUs have been interlocked so as to be free of
hazards affecting ordinary user-level instructions.

• Multiply unit hazards: Results from the integer multiplier on MIPS CPUs
are interlocked, so there’s no delay slot from the mflo instruction that
obtains the result. However, the independence of the integer multiply
hardware produces its own problems; see Section A.3.

• Coprocessor 0 hazards: The coprocessor 0 control instructions often
read or write registers with unusual timing, creating pipeline problems.
Many of these are not interlocked. Detailed information must be sought
in the user’s manual for your particular CPU, but we’ll look at what you
have to do on an R4000 CPU (probably the most tricky of any MIPS CPU)

Note that the branch delay slot, although introduced to ease pipelineg, is
by definition part of the MIPS architecture and therefore not a hazara; it’s
just peculiar.

A.2 Avoiding Interlocks to Increase Performance

We lose performance with any interlock that happens when the CPU could,
with cunning, have been doing useful work instead. We’d like to get the com-
piler (or for heavily used functions perhaps a dedicated human programmcr)
to reorganize code to run optimally.

Compilers — and humans — find this challenging. A program that is
heavily optimized to avoid interlocks usually has several stages of computa-
tion pulled apart and then interleaved, and it gets very difficult to see what
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is going on. If code has only been moved from its natural sequential position
by four or five instructions, it’s usually possible to cope. Larger movements
get more and more problematic.

In a single-pipeline machine (most MIPS CPUs to date), most instruction
stake one clock rycle, so we can expect to succeed at reorganizing instruc-
tions that take four to five clock cycles to complete and that can successfully
overlap with other instructions. In MIPS CPUs, these criteria are a good fit
only for floating-point instructions, so heroic scheduling improves FP perfor-
mance but does little for integer code.1 It’s beyond the scope of this book to
go into this in detail; if you want an excellent review of applicable compiler
techniques look in Hennessy and Patterson, Computer Architecture: A Quan-
titative Approach. For detailed timing of individual CPUs, look in the specific
user’s manual.

On a smaller scale, there’s an example of code optimized around load
interlocks in Chapter 12 on page 384.

A.3 Multiply Unit Hazards: Early Modification of
hi and lo

When a MIPS CPU takes an interrupt or other exception, most of the instruc-
tions in the pipeline are cancelled and the result write back is inhibited. But
the integer multiply unit has few connections to the rest of the CPU and runs
on, indifferent to an exception. This means that changes to the multiply
unit result registers lo and hi cannot be prevented once multiply and divide
instructions start.

An exception might occur just in time to prevent an mfhi or mflo from
completing its write back but still might allow a subsequent multiply or di-
vide instruction to start — and once the second operation gets launched the
original data will be lost.

To avoid this, it’s enough (on all MIPS CPUs) to ensure that at least two
clock cycles separate an mfhi or mfio instruction from a follwing multiply or
divide instruction. Good compilers and assemblers will police this for you,
and you’ll never know it’s happening until you disassemble the code and find
unexpected nops.

1That’s one of the reasons why the Silicon Graphics compiler, while slightly worse than
GNU C on integer code, is substantially faster — perhaps as mach as 30% — on heavyweight
floating-point programs.
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A.4 Avoiding Coprocessor 0 Hazards: How Many
nops?

The programmer’s question is, how many instructions (perhaps nops) do I
need to put between a particular pair of instructions to make them work
safely?

It would be possible, in principle, to produce an exhaustive list of pairs
of instructions and how many clock cycles were required between them, but
that would take a long time. But we can reduce the size of the job by noting
that trouble occurs only when

• The instruction producing the data takes longer than the standard time
(the standard time is the end of the ALU stage) and/or

• The instruction using the data requires it to be valid before the standard
time (in this case, the standard time is the start of the ALU pipestage)

We don’t need to document intructions that produce and use data at the
standard time, only those that deviate from this righteous path. For each of
those, we need to note when the result is produced and/or when the operand
is needed.1 Armed with that, we should be able to produce correct or efficient
sequences for the most complicated cases.

Table A.1 shows the timing for an R4000/4400 CPU, essentially as found
in Heinrich, The R4000/R4400 User Manual (see biblography for Web ad-
dress). This table gives the pipestage in which operands are used and in
which results become available to to succeeding instructions. The number
of clock cycles (typically nops) required between a pair of dependent instruc-
tions is

ResultPipestage - OperandPipestage - l

Table A.1: Hazardous coprocessor 0 instructions and event
timings for an R4000/R4400 CPU

Instruction/event Operands Results
What Pipestage What Pipestage

mtc0 CP reg 7

dmtc0

mfc0 CP reg 4

dmfc0

— continued —

1It would be enough — and simplest — to document the number of clock cycles by which
the result is late or the operand early. But the MIP S-derived table uses pipeline stages.
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Table A.1: continued

Instruction/event Operands Results
What Pipestage What Pipestage

tlbr Index, TLB 5-7 PageMask, EntryHi 8

EntryLo0, EntryLo1

tlbwi Index/Random 5-8 TLB 8

tlbwr PageMask, EntryHi

EntryLo0, EntryLo1

tlbp PageMask, EntryHi 3-6 Index 7

eret EPC/ErrorEPC 4 SR[EXL,ERL] 4-8

TLB

SR 3 LLbit 7

cache xxHitxx SR[CH] 8

cache cache line x cache line x

load/store EntryHi 4

ASID

SR[KSU,EXL,ERL,RE]

Config[K0,DB]

TLB

Confog[SB] 7

WatchHi 4-5

WatchLo

exception EPC 8

(load/store) SR

Cause

BadVaddr

Contex, XContext

exception EPC 8

(I-fetch) SR

Cause 4

BadVaddr

Contex, XContext

I-fetch EntryHi[ASID] 0

SR[KSU,EXL,ERL]

Config[K0,IB]

Config[SB] 3

TLB 2

CP usable SR

Interrupt Cause[IP] 3

seen SR[IM,IE,EXL,ERL]

Whhy -1? A result produced in pipestage n+1 and an operand needed in
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pipestage n produces ideal pipelining, so no nop is required. The -1 is an
artifact of the way the pipestages are counted, really.

For most other MIPS CPUs you should find a similar table in the appropri-
ate user’s manual. We’ve used the R4000/4400 as an example here because
its long pipeline (you’ll see up to 8 pipestages in the table) and position as the
head of the MIPS III CPU family mean that pretty much any sequence that
runs on an R4000 will be safe (though perhaps not optimal) on any subse-
quent CPU.

Note that although the instruction mfc0 delivers data late into its general-
purpose register destination, the late result is not noted in the table because
it’s interlocked. This table only lists timings that can cause hazards.

A.5 Coprocessor 0 Instruction/Instruction Schedul-
ing

We saw the following piece of code for a TLB miss handler on a 64-bit CPU
(32-bit address space) in Chapter 6:

.set noreorder

.set noat
TLBmissR4K:

dmfc0 k1, C0_CONTEXT
nop # (1)
lw k0, 0(k1)
lw k1, 8(k1)
mtc0 k0, C0_ENTRYLO0
mtc0 k1, C0_ENTRYLO1
nop # (2)
tlbwr #
nop # (3)
eret # (4)
nop # (5)
.set at
.set reorder

We’re now in a position to account for the number of nops placed in it:

1. The R4000 CPU and most of its descendants are not capable of passing a
coprocessor 0 register value through to the next instruction; the dmfc0
instruction’s timing is much like a load. The Heinrich R4000/R4400
User Manual gives hints that this operation may be fully interlocked in
an R4000, and certainly any delay greater than one clock cycle is inter-
locked. But it’s not made plain, and the nop here won’t have any adverse
effect on performance, so we’ll leave it in.
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2. From Table A.1, mtc0 writes the register EntryLo1 in pipestage 7, and
the tlbwr instruction needs that data set up for pipestage 5. So just
one nop is needed (calculated as 7-5-1). It may well not be required for
some other CPU, but it’s worth leaving in for portability reasons.

3. The tlbwr has no obvious dependencies, but in fact it’s important that
all its side effects are completed before we return to user code. tlbwr
does not finish writing the TLB until pipestage 8, and the fetch of a
normal instruction needs the TLB set up In pipestage 2; we must have
a minimum of 5 instruction slots between the tlbwr and the exception
return. The eret is followed by its branch delay slot – there’s a nop at (5)
in this case — and then (because of the R4000’s long pipeline) by a two-
clock-cycle delay while the pipeline refills after the branch. However,
that’s still only four instructions; so we need an additional nop at (3),
before eret.

4. Another dependency exists between eret, which resets the status reg-
ister SR(EXL) field into its normal user state, and the first I-fetch of
the user program. However, this timing is beyond the reach of the pro-
grammer, so the machine is built so that the branch delay slot plus the
two-cycle further branch delay is sufficient.

Armed with Table A.1, you should be able to work out anything!

A.6 Coprocessor 0 Flags and Instructions

As we saw previously, some of the CPU control registers (coprocessor 0) con-
tain bitfield values or flags that have side effects on the operation of other
instructions. A usual rule of thumb is to assume that any such side effects
will be unpredictable on the three instruction periods following the execution
of an mtc0.

But the following are specifically noted:

• Enabling/disabling a group of coprocessor instructions: If you enable a
coprocessor (making its particular instructions usable) by changing one
of the SR(C) bits, the mtc0 instruction takes effect at pipestage 7 and the
new value must be stable by pipestage 2 of a coprocessor instruction.
So four intervening instruction issues are required in this case.

• Enabling/disabling interrupts: If you change the interrupt state of the
CPU by writing to SR(IE), SR(IM), or SR(EXL), then Table A.1 says that
that takes effect in pipestage 7. The interrupt signals are sampled for
an instruction in pipestage 3, determining whether the instruction pro-
ceeds or is preempted by the interrupt. That means that three instruc-
tions (worked out as 7-3-1) must be executed before the new interrupt
state is safely installed.
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During those three instruction times, an interrupt can be detected and
can lead to an exception. But the status register was changed by an
instruction that issued before the interrupted one, so the rules say the
status register change will still occur.

Suppose then that you’ve disabled interrupts by setting the exception-
level bit SR(ExL). You will normally do this at only one place and that’s
at the end of an exception handler. An exception handler of any complex-
ity saves the start-of-exception value of SR to be restored when contol is
about to be returned to the user program, and part of that start-of-
exception value is that SR(ExL) is set.

If an interrupt occurs in one of the three instruction slots following the
instruction that sets SR(ExL), an interrupt exception will occur but with
SR(ExL) already set; that causes very peculiar things to happen, includ-
ing that the exception return address EPC is not recorded.1 This would
be unrecoverable, so it’s vital to make sure that interrupts are already
disabled when you set SR(ExL); you can do this by making sure that
you clear SR(IE) and/or SR(IM) at least three instruction times earlier.

• TLB changes and instruction fetches: There is a five-instruction delay
between a change to the TLB and when it can take effect on instruc-
tion translation. Additionally, there is a single-entry cache used for
instruction translations (called the micro-TLB) that is implicitly flushed
by loading EatryHi; this can also delay the effect.

You must obviously do TLB updates only in code running in an un-
mapped space. kseg0 is the usual choice.

1See Section 6.7.2 for a discussion of why this bizarre behavior is a good idea.



Appendix B
Assembler Language Syntax

If you really want to figure out what can be in your assembler sources,
read this appendix. The compiler-dir directives in the syntax are for use by

compilers only, and they are not described in this book.

statement-list:
statement
statement statement-list

statement:
stat /n
stat ;

stat:
label
label instruction
label data
instruction
data
symdef
directive

label:
identifier:
decimal:

identifier:
[A-Za-z.$ ][A-Za-z0-9.$ ]

instruction:
op-code
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op-code operand
op-code operand, operand
op-code operand, operand, operand

op-code:
add
sub
etc.

operand:
register
( register )
addr-immed ( register )
addr-immed
float-register
float-const

register:
$decimal

float-register:
$fdecimal

addr-immed:
label-expr
label-expr + expr
label-expr - expr
expr

label-expr:
label-ref
label-ref - label-ref

label-ref:
numeric-ref
identifier
.

numeric-ref
decimalf
decimalb

data:
data-mode data-list
.ascii string
.asciiz string
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.space expr

data-mode:
.byte
.half
.word
.float
.double

data-list:
data-expr
data-list, data-expr

data-expr:
expr
float-const
expr : repeat
float-const : repeat

repeat:
expr

symdef
constant-id = expr

constant-id:
identifier

directive:
set-dir
segment-dir
align-dir
symbol-dir
block-dir
compiler-dir

set-dir:
.set [no]volatile
.set [no]reorder
.set [no]at
.set [no]macro
.set [no]bopt
.set [no]move

segment-dir:
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.text

.data

.rdata

.sdata

align-dir:
.align expr

symbol-dir:
.globl identifier
.extern identifier, constant
.comm identifier, constant
.lcomm identifier, constant

block-dir:
.ent identifier
.ent identifier, constant
.sent identifier, constant
.mask expr, expr
.fmask expr, expr
.frame register, expr, register
.end identifier
.end

compiler-dir:
.alias register, register
.bgnb expr
.endb expr
.file constant string
.galive
.gjaldef
.gjrlive
.lab identifier
.livereg expr, expr
.noalias register, register
.option flag
.verstamp constant constant
.vreg expr, expr

expr:
expr binary-op expr
term

term:
unary-operator term
primary
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primary:
constant
( expr )

binary-op: one of the following:
* / %
+ -
<< >>
&
ˆ
|

unary-operator: one of the following
+ - ˜ !

constant:
decimal
hexadecimal
octal
character-const
constant-id

decimal:
[1-9][0-9]+

hexadecimal:
0x[0-9a-fA-F]+
0x[0-9a-fA-F]+

octal:
0[0-7]+

character-const:
’x’

string:
"xxxx"

float-const: for example:
1.23 .23 0.23 1. 1.0 1.2el0 1.2e-15
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Appendix C
Object Code

Object code is the unsavory gunk that becomes necessary so you can com-
pile programs one module at a time and grows into the stuff that holds

the many parts of a software development toolchain together.

To do its job properly, the object code must encapsulate the whole output
of the compilation of a module, including the following:

• The code and initialized data.

• A symbol table relating shared names (functions, variables, etc.) to lo-
cations within the object module.

• Fixup records: These are recipes for how to reach and update address
fields inside the code and data, as the module is linked with other mod-
ules and assigned a fixed set of program addresses.

• Debug information: A source-level debugger generally makes no attempt
to interpret source code (C is easy enough to parse, but think of the
difficulties involved when using conditional compilation). Instead, infor-
mation such as the C source file and line number that gave rise to a
problem piece of code and data is generated by the compiler and passed
through the object module.

In an attempt to bring some order into this chaos, object files are split
into chunks that are usually called sections: A section may contain code, a
symbol table, or debug information, but all sections can be treated the same
way for some purposes.

If object code were standardized, customers could mix and match tools
from different vendors and have them cooperate seamlessly, and there would
be a market in reusable software modules that could be distributed in o?ect
form. However, some source owners are unwilling to distribute source code
because it can so easily be copied and disguised. The open-ended nature of
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these aims, the need to evolve the object code as functions are added to tools
anywhere within the toolchain, and the commitment to binary encoding have
combined to make standardization difficult.

The problems have been further exacerbated by much-publicized stan-
dards efforts — notably common object file format (COFF), introduced by
AT&T in the 80s — which fell far short of achieving interworking. COFF’s
successor executable and linking format (ELF), is better; however, the stan-
dards still tend to define the boxes in which information is kept, rather than
the information inside them.

This appendix describes two object file formats that are often used in MIPS
development systems: a COFF derivative called ECOFF, used and promoted
by MIPS Corporation in its heyday, and a MIPS-specific variant of ELF.

The object files you meet can be classified as one of a few forms. A relocat-
able object file is the immediate output file generated by compiling a module,
which is suitable for linking with other relocatable object files to create an
executable object file, which holds a complete program, ready for direct exe-
cution by a CPU. A relocatable file includes fixup (relocation) information and
symbol tables which allow the link editor to combine the individual modules
and to patch instructions or data that depend on the program’s final location
in memory. Other parts of the file carry debug information, if the compiler
was asked to provide it.

Although it’s usual to link relocatable files into an executable file in a sin-
gle step, it’s not compulsory. You can just link relocatable files into another,
larger file; some linkers give you ways to hide some symbols at this stage too,
which can be useful if you’re t?ng to glue together chunks of software that
have name clashes (i.e., the same name used for two different functions).

An executable object file will not include relocation information and the
program sections of it are accurate images of how the program should be in
memory before you start it. The object file may add a simple header that tells
the operating system or bootstrap loader where each part of the object file is
to be located in memory and possibly where execution should start.

An object code library holds a collection of relocatable object files, with
kind of overall symbol table that allows a tool to pick out which file contains
a definition for a particular named function or variable. Object code libraries
provide a natural way to import into a program as much as is needed of
a set of prebuilt software; they are an absolutely essential part of program
development.

UNIX-tradition libraries appear to have been shoehorned by accident into
an existing mechanism designed to support multifile archives (for backup
or transportation). The necessary symbol file was just glued on as another
item in the archive. That’s why UNIX-influenced systems call the library-
generating tool ar and use a “.a” suffix for library files.
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Your software development system will be equipped with tools to allow you
to inspect the contents of an object file and tools to convert an executable
file into alternative (possibly ASCII) formats that are acceptable to a PROM
programmer or evaluation board. It’s time we looked at what those are.

C.1 Tools

Figure C.1 shows you a typical compilation system. This figure shows the
compiler generating an assembler intermediate file. This has the dual ad-
vantages of isolating the compiler from object code standards and ensuring
that everything that the compiler can say to tne linker has a textual (assem-
bler) form. It would be more efficient for the compiler to generate object code
directly, and some still do; however, as development platforms have become
faster, that becomes less important.

To keep the picture fairly straightforward, we’ve left off a whole raft of
tools that fiddle with object code, and we have ignored useful items like user-
written libraries.

At the bottom of Figure C.1 you’ll find the eventual consumers of object
files: programs that interpret the file either to generate a runnable program
in memory or debuggers that want to relate raw addresses in the program to
symbols and line numbers in the code. With that in mind, we’ll take a look
inside a typical object file.

C.2 Sections and Segments

An object file consists of a number of separate sections: The biggest ones
correspond to your program’s instructions and data; additional sections hold
information for linkers and debuggers. Each section has a name to identify
it, such as .text or .rdata. A name starting with “.” is one of those strange
conventions that was probably intended to avoid conflict with any possible
name of a function or variable. The standard program sections recognized by
typical UNIX-influenced MIPS development systems are discussed in Section
9.5, and there’s a bare list in Appendix B.

The object file needs to distinguish the program’s code and data because
the linker will eventually want to merge the different parts of your program
that need to be located together in memory (e.g., a ROMmable program needs
all code and read-only data in ROM, but writable data in RAM). When the link
editor produces the final executable object file it concatenates all sections of
the same name together and then further merges those sections that are
located together in memory into a smaller number of contiguous segments.
An object file header is prepended to identify the position of each segment in
the file and its intended location in memory.
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User’s
source code

Kit source

Third-party
source

Compiler

Assembler Libraries
Third-party

binary
software

Linker

Debug
monitor

ROM
convert

User’s
loader

Runnable
Program

Object code

Object code

Assembler code

Figure C.1: Components of a typical cross-development toolkit: user-supplied
files are dark, files that come with the toolkit are medium, and third-party files
are light.
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Of course, once we’ve invented separate sections to hold program data
it’s convenient to use the mechanisms for delimiting and naming sections to
separate out other components of the module, such as symbol tables and
relocation records. But we’re now getting down toward individual flavors of
object code.

C.3 ECOFF (RISC/OS)

The original MIPS Corporation compilers were UNIX-based and used the ex-
tended common object file format (ECOFF); this was eventually replaced in
Silicon Graphics systems in about 1994. But development systems from
other vendors often use or at least support interlinking with this format, in
the interests of compatibility. ECOFF is based on an earlier format called
common object file format (COFF), which first appeared in early versions of
UNIX System V. COFF was a brave (and largely unsuccessful) attempt to de-
fine a flexible object code format that would be portable to a large number of
processor architectures.

The MIPS engineers wanted the flexibility of COFF to support gp-relative
addressing (Section 9.4.1), which would have been impossible with the re-
strictive format used on earlier UNIX systems. However, they decided to
replace the COFF symbol table and debug data with a completely different
design. The ECOFF symbol table format is certainly much more powerful
and compact than the rather primitive COFF format, but it’s complicated
and proprietary — so much so that for several years its description was not
generally available.

Fortunately, end users are unlikely to be concerned with the internal
structure of the symbol tables: The most complex interface between the ob-
ject code and user software is likely to be a run-time loader in your system,
and helpful tool vendors should give you an example of such a loader as
part of the software package. In any case, to load a fully resolved program
you probably only need to recognize the COFF file header and optional a.out
header, which are largely unchanged from the original COFF definitions.

C.3.1 File Header

The COFF file header consists of the 20 bytes at the start of the file listed
in Table C.1 on page 408. Of this list, only the following fields are really
important:

• f magic: This must be one of the following values



408 C.3. ECOFF (RISC/OS)

Table C.1: COFF file header
Offset Type Name Purpose

0 unsigned short f magic Magic number (see below)

2 unsigned short f nscns Number of sections

4 long f timdat Time and date stamp (UNIX-style)

8 long f symptr File offset of symbol table

12 long f nsyms Number of symbols

16 unsigned short f opthdr Size of optional header

18 unsigned short f flags Various flag bits

Name Value Meaning

MIPSEBMAGIC 0x0160 Big-endian MIPS binary

MIPSELMAGIC 0x0162 Little-endian MIPS binary

SMIPSEBMAGIC 0x6001 Big-endian MIPS binary with little-endian headers

SMIPSELMAGIC 0x6201 Little-endian MIPS binary with big-endian headers

The endianness stuff looks worrisome, and it should be: You’re looking
at a naive bug retrospectively made into a feature. The COFF file is just
a stream of bytes, and the way it represents longer integers(16-bit short
and 32-bit long values) can be either big-endian (most-significant byte
first) or little-endian (least-significant byte first). MIPS decided that the
COFF file’s convention would vary to match the endianness of the target
for which this module was compiled. So long as the development host
and target are the same sort of machine, the COFF format fits naturally
onto the host.

But in cross-development the host and the target are different. It’s
quite possible to write endianness-safe object tools (you have to avoid
the temptation to just lay C-defined data structures over raw file data);
but MIPS didn’t do that. So the SMIPSEBMAGIC and SMIPSELMAGIC
magic numbers are what you see on object files where the host is of
the wrong endianness for the target and the object code tools have been
written naively.

Modern toolkits should only generate the first two file types, but tolerat-
ing the alternative forms might occasionally be useful.

• f nscns: This is the number of section headers in the file. This is also
needed to work out the program’s offset.

• f opthdr: This is the size in the file of the a.out header. You’ll need this
value to work out the program’s offset in the file.
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C.3.2 Optional a.out Header

The a.out header is a fossil from an earlier, simpler object code format, which
has been shoehorned into COFF to make it easier to port loaders. It follows
the COFF file header and does the job of coalescing the COFF sections into
exactly three contiguous segments: text (instructions and read-only data);
data (initialized, writable data); and BSS (uninitialized data, set to zero).

Table C.2: a.out file header
Offset Type Name Purpose

0 short magic Magic number

2 short vstamp Version stamp

4 long tsize Text size

8 long dsize Data size

12 long bsize BSS size

16 long entry Entry-point address

20 long text start Text base address

24 long data start Data base address

28 long bss start1 BSS base address

32 long gpmask1 General registers used mask

36 long cprmask[4]1 Coprocessor registers used masks

52 long gpvalue1 GP value for this file

The a.out header consists of the bytes listed in Table C.2.

The magic number in this structure does not specify the type of CPU, but
instead describes the layout of the object file, as follows:

Name Value Meaning

OMAGIC 0x0107 Text segment is writable

NMAGIC 0x0108 Text segment is read-only

ZMAGIC Ox010b File is demand-pageable (not for embedded use)

The following macro shows how to calculate the file offset of the text seg-
ment:

#define FILHSZ sizeof(struct filehdr)
#define SCNHSZ /* sizeof(struct scnhdr) */ 40

#define N_TXTOFF(f, a)\
((a).magic == ZMAGIC ? 0 : ((a).vstamp < 23 ? \

((FILHSZ + (f).f_opthdr + (f).f_nscns * SCNHSZ + 7) & ˜7) : \
((FILHSZ + (f).f_opthdr + (f).f_nscns * SCNHSZ + 15) & ˜15) ) )

In words, and ignoring ZMAGIC files, it is found after the COFF file header,
a.out header, and COFF section headers, rounded up to the next 8- or 16-
byte boundary (depending on the compiler version).

1New to ECOFF; not found in the original COFF definition.
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C.3.3 Example Loader

The following code fragment, which returns the entry-point address of the
program or zero on failure, draws together the above information to imple-
ment a very simple-minded ECOFF file loader, as might be found in a boot-
strap PROM that can read files from disk or network:

unsigned long load_ecoff (int fd)
{

struct filhdr fh;
struct aouthdr ah;

/* read file header and check */
read (fd, &fh, sizeof (fh));

#ifdef MIPSEB
if (fn.f_magic != MIPSEBMAGIC)

#else
if (fn.f_magic != MIPSELMAGIC)

#endif
return 0:

/* read a.out header and check */
read(fd, &ah, sizeof(an));
if (ah.magic != OMAGIC && ah.magic != NMAGIC)

return 0:

/* read text and data segments, and clear bss */
lseek (fd, N_TXTOFF (fn, an), SEEK_SET);
read (fd, an.text_start, an.tsize);
read (fd, ah.data_start, ah.dsize);
memset (ah.bss_start, 0, ah.bsize};

return ah.entry;

C.3.4 Further Reading

For more detailed information on the original COFF format, consult any pro-
grammer’s guide for UNIX V.3. The ECOFF symbol table extensions are not
documented, but the header files that define it (copyright MIPS Corporation,
now MTI) are available for reuse and redistribution. You’ll find copies with
the rights documented in recent versions of GNU binary utilities.

C.4 ELF (MIPS ABI)

Executable and linking format (ELF) is an attempt to improve on COFF and
to define an object file format that supports a range of different processors
while allowing vendor-specific extensions that do not break compatibility with
other tools. It first appeared in UNIX System V Release 4 and is used by
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Table C.3: ELF file header
Offset Type Name Purpose

0 unsigned char e ident[16] File format identification

16 unsigned short e type Type of object file

18 unsigned short e machine CPU type

20 unsigned long e version File format

24 unsigned long e entry Entry-point address

28 unsigned long e phoff Program header file offset

32 unsigned long e shoff Section header file offset

36 unsigned long e flags CPU-specific flags

40 unsigned short e ehsize File header size

42 unsigned short e phentsize Program header entry size

44 unsigned short e phnum Number of program header entries

46 unsigned short e shentsize Section header entry size

48 unsigned short e shnum Number of section header entries

50 unsigned short e shstrndx Section header string table index

recent versions of MIPS Corporation compilers and some other development
systems.

As in our examination of COFF/ECOFF, we will look only at the minimum
amount of the structure necessary to load an executable file into memory.

C.4.1 File Header

The ELF file header consists of 52 bytes at the start of the file and provides
the means to determine the location of all the other parts of the file, as listed
in Table C.3. The following fields are relevant when loading an ELF file:

• e ident: This contains machine-independent data to identify this as an
ELF file and to describe its layout. The individual bytes within it are as
follows:

Offset Name Expected value Purpose

0 EI MAG0 ELFMAG0=0x7f Magic number identifying an ELF file

1 EI MAG1 ELFMAG1=‘E’

2 EI MAG2 ELFMAG2=‘L’

3 EI MAG3 ELFMAG3=‘F’

4 EI CLASS ELFCLASS32=1 Identifies me’s word size

5 EI DATA ELFDATA2LSB=1 Indicates little-endian headers and program

ELFDATA2MSB=2 Indicates big-endian headers and program

6 EI VERSION EV CURRENT=1 Gives file format version number



412 C.4. ELF (MIPS ABI)

• e machine: This specifies the CPU type for which this file is intended,
selected from among the following:

Name Value Meaning

EM M32 1 AT&T WE32100

EM SPARC 2 SPARC

EM 386 3 Intel 80386

EM 68K 4 Motorola 68000

EM 88K 5 Motorola 88000

EM 860 7 Intel 80860

EM MIPS 8 MIPS 83000

Obviously, for this discussion the value should be EM MIPS.

• e entry: This is the entry-point address of the program.

• e phoff: This is the file offset of the program header, which will be
required to load the program.

• e phentsize: This is the size (in bytes) of each program header entry.

• e phnum: This is the number of entries in the program header.

C.4.2 Program Header

Having verified the ELF file header, you will require the program header. This
part of the file contains a variable number of entries, each of which specifies
a segment to be loaded into memory Each entry is at least 32 bytes long and
has the layout as noted in Table C.4. The relevant fields are as follows:

Table C.4: Program header

Offset Type Name Purpose

0 unsigned long p type Type of entry

4 unsigned long p offset File offset of segment

8 unsigned long p vaddr Virtual address of segment

12 unsigned long p paddr Physical address of segment (unusedl)

16 unsigned long p filesz Size of segment in file

20 unsigned long p memsz Size of segment in memory

24 unsigned long p flags Segment attribute flags

28 unsigned long p align Segment alignment (power of 2)

• p type: Only entries marked with a type of PT LOAD(1) should be loaded;
others can be safely ignored.

• p offset: This holds the absolute offset in the file of the start of this
segment.
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• p vaddr: This is the virtual address in memory at which the segment
should be loaded.

• p filesz: This is the size of the segment in the file; it may be zero.

• p memsz: This is the size of the segment in memory. if it is greater than
p filesz, then the extra bytes should be cleared to zero.

• p flags: This contains a bitmap giving read, write, and execute permis-
sions for the segment:

Name Value Meaning

PF X 0x1 Execute

PF W 0x2 Write

PF R 0x4 Read

It is largely irrelevant for embedded systems, but it does allow you to
identify the code segment.

C.4.3 Example Loader

The following code fragment, which returns the entry-point address of the
program or zero on failure, draws together the above information to imple-
ment a very simple-minded ELF file loader, as might be found in a bootstrap
PROM that can read files from disk or network:

unsigned long load_elf (int fd)
{

E1f32_Ehdr eh;
E1f32_Phdr ph[16];
int i;

/* read file header and check */
read(fd, &eh, sizeof (eh));

/* check header validity */
if (eh.e_ident[EI_MAG0] != ELFMAG0 ||

eh.e_ident[EI_MAG1] != ELFMAG1 ||
eh.e_ident[EI_MAG2] != ELFMAG2 ||
eh.e_ident[EI_MAG3] != ELFMAG3 ||
eh.e_ident[EI_CLASS] != ELFCLASS32 ||

#ifdef MIPSEB
eh.e_ident[EI_DATA] != ELFDATA2MSB ||

#else
eh.e_ident[EI_DATA] != ELFDATA2LSB ||

#endif
eh.e_ident[EI_VERSION) != EV_CURRENT ||
eh.e_machine != EM_MIPS)
return 0;

/* is there a program header of the right size? */
if (eh.ephoff == 0 || eh.e_phnum == 0 || eh.ephnum > 16 ||



414 C.5. Object Code Tools

eh.ephentsize != sizeof(Elf32_Phdr))
return 0;

/* read program header */
lseek (fd, eh.ephoff, SEEK_SET);
read (fd, ph, eh.e_phnum * eh.e_phentsize);

/* load each program segment */
for (i = 0; i < eh.e_phnum; i++) {

if (ph[i].p_type == PT_LOAD) {
if (ph->p_filesz) {

lseek(fd, ph[i].p_offset, SEEK_SET);
read(fd, ph[i].p_vaddr, ph[i].p_filesz);

}
if (ph[i].p_filesz < ph[i].p_memsz)

memset (ph[i].p_vaddr + ph[i].p_filesz, 0,
ph[i].p_memsz - ph[i].p_filesz);

}
}
return eh.eh_ent;

}

C.4.4 Further Reading

The ELF format, including MIPS-specific extensions, is extensively docu-
mented in the book System Five ABI MIPS Processor Supplement (Prentice
Hall 1991).

C.5 Object Code Tools

Your software development system will be equipped with a number of tools for
examining and manipulating object files. The following list assumes UNIX-
type names, but systems with a different ancestry will have similar tools,
even if the names are different.

Program name Function

ar This tool allows you to list object files and to add them to or remove them
from a library The name comes from archive, the historical UNIX name
for the file type used to store libraries and later specialized for this pur-
pose.

convert Converts an executable object file from binary to some other format
which can be downloaded to a PROM programmer or evaluation board.

1d This is the linker/loader, which is used to glue object codes together and
also to assign fixed target system addresses to sections (in some sys-
tems this would involve two separate programs, typically called link and
locate).

nm This lists the names in an object file’s symbol table in alphabetic or nu-
meric order.

— continued —
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Program name Function

objdump/odump This displays the program data of the object file in various useful forms; in
particular, it can usually disassemble the code sections.

ranlib If present, this builds a global table of contents in a library, which makes it
much faster for 1d to read. On modern systems ay usually has an option
to do this job, and ranlib may well just be an alias for that option.

size This displays the size of each section in the object file.

strip This removes everything from the object file that is not necessary to load
the program, making it (much) smaller; it gets rid of symbol tables and
debug information. Some people do this to make it harder to disassem-
ble the program.
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Appendix D
Evolving MIPS

D.1 MIPS16

MIPS16 is an optional instruction set extension that can reduce the size
of binary programs by 30-40%, and was launched to the world in mid-

97. Its implernentors hope that it will make the CPUs more attractive in
contexts where code size is a major concern — which mostly means very iow
cost systems. While it will only be used in certain implementations, it is a
multivendor standard: LSI, NEC, and Philips are all producing CPUs that
support MIPS16.

We said back in Section 1.2 that what makes MiPS binaries larger than
those for other architectures is not that MIPS instructions do less work, but
that they are larger — each is 4 bytes in size, in contrast to a typical average
of 3 bytes for some CISC archiectures.

MIPS16 adds a mode in which the CPU decodes fixed-size 16-bit instruc-
tions. Most MIPS16 instructions expand to one regular MIPS III instructions,
so it’s clear that this will be a rather restricted subset of instructions. The
trick is to make the subset sufficient to encode enough of the program effi-
ciently to make a substantial impact on the overall program size.

Of course, 16-bit instructions don’t make this a 16-bit instruction set;
MIPS16 CPUs are real MIPS CPUs with either 32- or 64-bit registers and
operations that work on the whole of those registers.

MIPS16 is far from a complete instruction set — there’s neither CPU con-
trol nor floating-point instructions, for example.1 But that’s OK, because
every MIPS16 CPU must also run a complete MIPS ISA. You can run a mix-
ture of MIPS16 and regular MIPS code; every function call or jump-register
instruction can change the mode.

1MIPS did not invent the idea of providing an alternate half-size version of just part of the
instruction set ;Advanced RISC Machine’s Thumb version of its ARM CPU was out first.

417
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In MIPS16 it’s convenient and effective to encode the mode as the least-
significant bit of an instruction address. MIPS16 instructions have to be even
byte aligned, so bit 0 has no role as part of the instruction pointer; instead,
every jump to an odd address starts MIPS16 execution, and every jump to
an even address returns to regular MIPS. The target address of the MIPS
subroutine-call instruction jal is always word-aligned, so a new instruction
jalx hides the mode change in the instruction.

To crush the instruction to half size we allocate only 3 bits to choose a reg-
ister for most instructions, allowing free access to only eight general-purpose
registers; also, the 16-bit constant field found in many MIPS instructions
gets squeezed, often to 5 bits. Many MIPS16 instructions only specify two
registers, not three; in addition, there are some special encodings described
in the next section.

D.1.1 Special Encodings and Instructions in MIPS16

The squashed general-purpose instructions are OK, but there are two partic-
ular weaknesses that will add size back to the program; the 5-bit immediate
field is inadequate to build constants, and there’s not enough address range
on load/store operations. Three new kinds of instruction and one extra con-
vention help out.

extend is a special MIPS16 instruction consisting of a 5-bit code and an
11-bit field that is concatenated with the immediate field in the following
instruction, to allow an instruction pair to encode a 16-bit immediate. It
appears as an instruction prefix in assembly language.

Loading constants takes extra instructions even in regular MIPS and would
be a huge burden in MIPS16; it’s quicker to put the constants into memory
and load them. MIPS16 adds support for loads relative to the instruction’s
own location (PC-relative loads), allowing constants to be embedded in the
code segment (typically, just before the start of a function). These are the
only MIPS16 instructions that don’t correspond exactly to a normal MIPS
instruction — MIPS has no PC-relative data operations.

Many MIPS load/stores are directed at the stack frame and $29/sp is
probably the most popular base register. MIPS16 defines a group of instruc-
tions that implicitly use sp, allowing us to encode a function’s stack frame
references without needing a separate register field.

MIPS load instructions always generate a full 32-bit address. Since load
word instructions are only valid for an address that is a multiple of four, the
two least-significant bits are wasted. MIPS16 loads are scaled: The address
offset is shifted left according to the size of the object being loaded/stored,
increasing the address range available from the instruction.

As an additional escape mechanism, MIPS16 defines instructions that al-
low it to do an arbitrary move between one of the eight MIPS16-accessible
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registers and any of the 32 MIPS general registers.

D.1.2 MIPS16 Evaluated

MIPS16 is not a suitable language for assembly coding, and we’re not go-
ing to document it here. It’s intended for compilers. Most programs compiled
with MIPS16 seem to shrink to 60-70% of their MIPS size, which is more com-
pact than 32-bit CISC architectures, similar to ARM’s Thumb and reasonably
competitive with pure 16-bit CPUs.

There’s no such thing as a free lunch however; a MIPS16 program will
probably compile into 40-50% more instructions than would be required for
MIPS. That means that running a program through the CPU core will take 40-
50% more clock cycles. However, low-end CPUs are usually largely memory
limited, not core limited, and the smaller MIPS16 program requires less band-
width to fetch and will promote lower cache miss rates. Where the caches are
small and program memory is narrow, MIPS16 will close the gap on and pos-
sibly overhaul regular MIPS code.

Because of the performance loss, MIPS16 code is not attractive in comput-
ers with large memory resources and wide buses. That’s why it’s an optional
extension.

At the upper end of its range, MIPS16 will find itself in competition with
software compression techniques. A regular MIPS program compressed ROM
storage with a general-purpose file compression algorithm will be smaller
than the unencoded MIPS16 equivalent and little larger than the compressed
MIPS16 equivalent;1 if your system has enough volatile memory to be able to
use ROM as a file system and to decompress code into RAM for execution,
software decompression of a full ISA will most likely give you better overall
performance.

There’s also a clear trend toward writing systems that make extensive use
of code written in a byte-coded interpreted language (Java or its successors)
for the bulk of code that is not time critical. That kind of intermediate code
is very small, much more efficient than any machine binary; if only the in-
terpreter and a few performance-critical routines are left in the native ma-
chine ISA, a tighter instruction set encoding will only affect a small part of
the program. Of course, interpreters (particularly for Java) may themselves
be quite large, but the inexorable increase in application complexity should
soon cause that to dwindle in importance.

I expect to see MIPS16 applied to a small range of low-power, size-, and
cost-constrained systems between 1998-2003. It was worth inventing, be-
cause some of these systems — such as “intelligent” mobile phones — are
likely to be produced in huge volumes.

1Tighter encodings have less redundancy for a compression algorithm to exploit.
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D.2 MIPS V/MDMX

MIPS V and MDMX were announced together in early 1997, and both were
slated for introduction in a new MIPS/SGI CPU in 1998. But that CPU was
cancelled, and there is some doubt about their future.

Both are aimed at overcoming the perceived deficiencies of conventional
instruction sets when the ISAs are confronted by multimedia applications.
Jobs like encoding/decoding audio for soft modem or streaming applications
or image/video compression/decompression use mathematically based algo-
rithms that were once seen as the preserve of special-purpose digital signal
processors. At the computational level, multimedia tasks like this often in-
volve the repeated application of the same operation to large vectors or arrays
of data.

Inside a register-based machine, the solution commonly adopted is to
pack multiple data items into a single machine register and then to perform
a register-to-register instruction that does the same job on each field of each
of its registers. This is a very explicit form of parallel processing called single
instruction, multiple data (SIMD).

This idea was first seen in a microprocessor in Intel’s now-vanished i860
CPU (circa 1988); it resurfaced much more visibly as the MMX extension to
Intel’s x86 instruction set, launched in 1996.

MDMX provides for manipulation of 8×8-bit integers within a 64-bit reg-
ister, with a set of operations that do the same thing to all eight slices. The
instructions include normal arithmetic (add, subtract, multiply), but there
are also multiply-accumulate instructions that collect their results in a giant
accumulator with enough precision to prevent overflow.

Since these instructions are used in contexts where the special data types
are fairly clearly separated from normal program variables, it makes sense for
the MDMX instruction set to work with the floating-point registers. Recycling
existing registers in this way means that existing operating systems need not
be changed (they already save and restore floating-point registers on task
switches).

Like MDMX, Intel’s MMX provides “octibyte” eight-way instructions for
8×8-bit numbers that are packed into one 64-bit register. The MIPS MDMX
also defines 4×16-bit (quad-short) and 2×32-bit (paired-word) formats, but
the early signs are that some MDMX implementations may decide that the
octibyte formats and instructions are enough.

When arithmetic works on only 8-bit numbers, results frequently under-
flow and overflow. Multimedia application performance would not be en-
hanced if we had to program in lots of overflow test conditions, and it’s often
more helpful for the machine operations to quietly truncate overflowed and
underflowed results to the largest and smallest representable numbers (255
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and 0 for unsigned 8-bit), a process called saturating arithmetic. MDMX has
that ability.

That brings us to MIPS V. Although named as if it intends to be an in-
cremental instruction set like MIPS I through MIPS IV; MIPS V is a direct
analog of MDMX in the floating-point domain, providing paired-single opera-
tions that do twin FP functions on pairs of single-precision numbers that are
packed into 64-bit floating-point registers.

MIPS V is less weird than MDMX; MIPS IV includes a fairly comprehensive
set of floating-point operations and it is straightforward to provide paired-
single versions of most of them; even paired-compare can be done, since
MIPS IV CPUs already have multiple floating-point condition bits to receive
results. However, MIPS V does not provide paired versions of complex multi-
cycle functions that would have required extensive new resources (no square
root or divide, for example).

D.2.1 Can Compilers Use Multimedia Instructions?

The argument that led to the introduction of SIMD multimedia instructions
parallels the argument that led to the provision of vector processing units in
supercomputers from the late 70s onward. It’s fairly easy to build a hand-
crafted matrix-arithmetic package for a vector processor. It’s significantly
harder to compile a program written in a high-level language to make use
of vector operations, but supercomputer vendors made some progress with
that, too. Often they were focusing on Fortran; the semantic weakness that
makes Fortran a poor language for general programming does make it an
easier language to optimize, because side effects are pretty explicit.

The consensus view seemed to be that a vectorizing Fortran compiler did
not work well on old programs (“dusty decks,” a charming piece of Fortran
slang). Such a compiler required the programmer to write or adapt loops
to make them optimizer friendly before it could deliver significant benefits.
That may be a good division of labor: The loops may be stylized but can
still be understood by programmers as sequential code when the resulting
explicitly parallel code is hard to fathom. The term “optimizer friendly” is
vague: A parallel processing theoretician would define it as the absence of
specific kinds of side effects whereas a practical compiler may be looking for
a loop that adheres to some much more rigid conventions so that a dumb
pattern matcher can recognize it as safe to vectorize.

Vectorizing C is more difficult, because the memory and pointer-based
model it uses implicitly for any array access can make it very hard to elimi-
nate all side effects in anything but the simplest loops. It hasn’t been done
much in production.

Given this history, what prospect is there of developing C and C++ compil-
ers that successfully optimize programs to exploit multimedia SIMD instruc-
tions? My guess is that prospects are poor in the immediate future. Intel’s
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MMX is the most widely used modern SIMD instruction set and is currently
being marketed to assembler language users only.1 I don’t expect to see com-
pilers using x86 MMX. If large-scale successful use is made of MMX and is
dependent on assembler subroutines, its effect would be to tie those appli-
cations into the x86 architecture; this would hardly be something that Intel
would in a hurry to change.

It’s widely speculated, however, that in 1998 or 1999 Intel will introduce
a further ISA extension that will add more data formats to a “son of MMX,”
including paired single-precision floating point. If this more capable instruc-
tion set gets compiler support, then that might create a pool of software that
could also be applied to MIPS V.

D.2.2 Applications for MDMX

Like x86 MMX, MDMX should be useful for 3D graphics and video applica-
tions where the CPU pushes pixel values about and for the kind of relatively
low-precision signal processing needed for a software modem.

Unfortunately, near-display 3D rendering depends for its performance on
careful integration of video memory. CPUs, even well-equipped ones, can’t
compete with cheap PC-world accelerators which have glueless interfaces to
wide video memory.2 Image and video retouching applications do run pro-
grams that access pixels on this level, but they’re desktop PC applications.

Software modems could be useful for low-end consumer devices that want
to use telephony. They’re in competition with cheap integrated modem de-
vices, and on a wider scale they’re in competition with a shift toward digital
telephony delivered to the home.

It looks to me as if MDMX’s best opportunity would be in a games console,
in conjunction with a tightly integrated CPU/video system.

D.2.3 Applications for MIPS V

The paired-single floating-paint instructions and formats aim to increase
bandwidth on the kind of repetitive floating-point calculations found in ap-
plications for high-end graphics and multimedia. Although that looks like
the Silicon Graphics market, increasing use of 3D graphics everywhere may
make this kind of capability useful in a wider sphere.

1A cynic would say that MMX has served its purpose by becoming required by any x86
clone and that whether it is actually used is quite beside the point. And such games and
graphics applications as are likely to benefit are written by programmers who take a perverse
delight in writing assembler.

2Perhaps they could compete if anyone built CPUs with glueless interfaces wide memory
and integrated video refresh data channels. But I don’t see much sign of MIPS products of
that kind.
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Limited compiler support for MIPS V is also more plausible than for MDMX.
While the paired operations look as if they are an alternative to dual-issue
instructions in a superscalar CPU, they are actually complementary. The
parallelism exploited by SIMD instructions comes from a higher level in the
compiler, and the low-level scheduler may still find opportunities for dual-
issuing a paired floating-point instruction with some integer or housekeeping
operations.

D.2.4 Likely Success of MDMX/MIPS V

SGI’s 1997 decision to abandon development of its H1 high-end processor
project left both instruction sets without an announced vehicle. But i believe
there will be at least one CPU aimed at the embedded market that supports
MDMX. It will be interesting to see what happens.

So far MIPS V is without a CPU; however, it has a longer shelf life than
MDMX and would still be a useful adjunct to a CPU launched in 1999.
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MIPS Glossary

$f0-$f31 registers : The 32 general-purpose 32-bit floating-point registers.
In MIPS I (32-bit) CPUs, only even-numbered registers can be used for
arithmetic (the odd-numbered registers hold the low-order bits of 64-bit,
double-precision numbers).

$nn register : One of the CPU’s 32 general-purpose registers.

a0-a3 register : Aliases for CPU registers $4-$7, conventionally used for
passing the first four words of the arguments to a function.

ABI (application binary interface) : A particular standard for building pro-
gram binaries that in turn is supposed to guarantee correct execution
on a conforming environment. Note, in particular, MIPS/ABI which is
an ABI for 32-bit MIPS programs available on computers from Silicon
Graphics, Siemens/Nixdorf, and some other manufacturers.

Acrobat : Trade name for an online document-viewing program distributed
(free, to date) by Adobe Systems. Often abused to mean the file for-
mat acceptable to the viewer, which Adobe calls PDF (Portable Docu-
ment Format). PDF is a compressed, indexed, and obfuscated relative of
PostScript.

address regions : Refers to the division of the MIPS program address space
into regions called kuseg, kseg0, ksegl, and kseg2. See under individual
region names.

address space : The whole range of addresses as seen by the application
program, Programs running under a protected OS have their addresses
checked for validity and translated since such an OS can run many
applications concurrently, there are many address spaces.

Algorithmics : The UK company, specializing in MIPS technology and tools,
of which the author is a partner.

alignment : Positioning of data in a memory with respect to byte-address
boundaries. Data items are called naturally aligned if they start on an
address that is zero moduio their own size. MIPS CPUs require that their
machine-supported data objects are naturally aligned; hence words (4
bytes) must be on 4-byte boundaries, and a floating-point double datum
must be on an 8-byte boundary.
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alloca : C library function returning a memory area that will be implicitly
freed on return from the function where the call is made from.

Alpha : The range of RISC CPUs made by Digital Semiconductor; it is the
nearest relative to MIPS.

ALU (arithmetic/logic unit) : A term applied to the part of the CPU that
does computational functions

analyzer : See logic analyzer.

Apache group (SVR4.2) : An industry group of suppliers of MIPS-architecture
UNIX systems who are cooperating on a standard version of Univel’s
System V Release 4.2 operating system and the MIPS ABI standard.

architecture : See instruction set architecture.

archive : Alternative name for an abject code library.

argument : In C terminology, a value passed to a function. Often called a
parameter in other languages. C arguments are parameters passed by
value, if that helps.

ASCII : Used very loosely for the character encoding used by the C language.

ASIC (Application-Specific Integrated Circuit) : A chip specially designed
or adapted for use in a particular circuit.

ASIC-core CPU : A microprocessor designed to be built in as one component
of an ASIC, making what is sometimes called a “system on a chip.” MIPS
CPUs are increasingly being used as cores.

ASID : The address space ID maintained in the CPU register EntryHi. Used
to select a particular set of address translations: Only those transla-
tions whose own ASID field matches the current value will produce valid
physical addresses.

assembler, assembly code : Assembler code (sometimes called assembly code
or assembly language) is the human-writable form of a computer’s ma-
chine instructions. The assembler is the program that reads assembly
language and translates it to an executable program, probably through
an interim object code.

associative store : A memory that can be looked up by presenting part of
the stored data. It requires a separate cornparator for each data field, sg
large associative stores use up prodigious amounts of logic. The MIPS
TLB, if fitted, uses a fully associative memory with between 32 and 64
entries.

associativity : See cache, set-associativity.
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ATMizer : A component made by LSI Logic for ATM network interfacing,
which has an internal MIPS CPU as just one component inside.

atomic, atomically, atomicity : In computer science jargon, a group of op-
erations is atomic when either all of them happen or none of them do.

backtrace : See stack backtrace.

BadVaddr register : CPU control register that holds the value of an address
that just caused a trap for some reason (misaligned, inaccessible, TLB
miss, etc.).

bcopy : C library function to copy the contents of a chunk of memory.

benchmark : A program that can be run on many different computers, with a
view to finding something about their relative performance. Benchmarks
have evolved from fragments of code intended to measure the speed at
some very specific task to Iarge suites that should give some guidance
as to the speed at which a system handles common applications.

BEV (boot exception vectors) : A bit in the CPU status register that causes
traps to go through a pair of alternate vectors located in uncached (ksegl)
memory. The locations are close to the reset-time start point so that they
can both conveniently be mapped to the same read-only memory.

bias : See floating-point bias.

BiCMOS : A particular technology for building chips, mixing dense and cool
CMOS transistors for internal logic with faster and electrically quieter
bipolar transistors for interface. It had a vogue for CPUs in the late
80s, but nobody used it successfully until Intel, who built some early
Pentiums this way.

big-endian : Describes an architecture where the most-significant part of a
multibyte integer is stored at the lowest byte address; see Section 11.6.

bitfield : A part of a word that is interpreted as a collection of individual bits.

blocksize : See cache line size.

bootstrap : A program or program fragment that is responsible for starting
up from a condition where the state of the CPU or system is uncertain.

branch : In the MIPS instruction set, a PC-relative jump

branch and link : A PC-relative subroutine call.

branch delay slot : The position in the memory-stored instruction sequence
immediately following a jump/branch instruction. The instruction in
the branch delay slot is always executed before the instruction that is
the target of the branch. It is the target of the branch. It is sometimes
necessary to fill the branch delay slot with a nop instruction.
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branch optimization : The process (carried out by the compiler, assembler,
or programmer) of adjusting the memory sequence of instructions so as
to make the best use of branch delay slots.

branch penalty : Many CPUs pause momentarily after taking a branch,
because they have fetched instructions beyond the branch into their
pipeline and must backtrack and refill the pipeline. This delay (in clock
cycles) is called the branch penalty. It’s zero on short-pipeline MIPS
chips, but the two-clock-cycle branch penalty on the long-pipeline R4000
was a significant factor in reducing its efficiency.

BrCond3-0 : CPU inputs that are directly tested by the coprocessor condi-
tional branch instructions.

breakpoint : When debugging a program, a breakpoint is an instruction
position where the debugger will take a trap and return control to the
user. Implemented by pasting a break instruction into the instruction
sequence under test.

BSS : In a compiled C program, that chunk of memory that holds variables
declared but not explicitly initialized. Corresponds to a segment or ob-
ject code. Nobody seems to be able to remember what BSS ever stood
for!

bss : Most C compilation systems use this strange name for the data area to
which are assigned global variables that have not been explicitly initial-
ized.

burst read cycles : MIPS CPUs (except for some very early parts) refill their
caches by fetching more than one word at a time from memory (4 words
is common) in a burst read cycle.

busctrl register : CPU register, implemented only on IDT’s R3041 CPU,
that allows the programmer to set up some options for how bus accesses
are carried out.

byte : An 8-bit datum.

byte order : Used to emphasize the ordering of items in memory by byte
address. This seems obvious, but it can get confusing when considering
the constituent parts of words and halfwords.

byte-swap : The action of reversing the order of the constituent bytes within
a word. This may be required when adapting data acquire from a ma-
chine of nonmatching endianness.

C preprocessor : A program typically run as the first pass of the C com-
piler, which is responsible for textual substitutions and omissions. It
processes com- menu and the useful directives that start with a “#”, like
#define, #include, and #ifdef. Despite its pairing with C, it is in
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fact a general-purpose macro language that can be, and often is, used
with other languages. In this book, its important non-C application is to
preprocess assembly language programs.

C++ : A compiled language retaining much of the syntax and appearance of
C, but offering a range of object-oriented extensions.

cache : A small auxiliary memory located close to the CPU, which holds
copies of some data recently read from memory. M1PS caches are cov-
ered extensively in Chapter 4.

cache, direct-mapped : A direct-mapped cache has, for any particular lo-
cation in memory, only one slot where it can store the contents of that
location. Direct-mapped caches are particularly liable to become inef-
ficient if a program happens to make frequent use of two variables in
different parts of memory that happen to require the same cache slot;
however, direct-mapped caches are simple, so they can run at high clock
rates.

MIPS CPUs prior to some of the later members of the R4x00 family were
direct mapped for speed. However, since about 1994 on-chip caches
seem to have had little trouble keeping up with the CPU pipeline, and
cache miss rates have become extremely important in performance.
Most new CPU introductions from the mid-90s on feature more com-
plicated caches.

cache, duplicate tags : In cache-coherent multiprocessors, the bus inter-
face controller must often look at the CPU’s cache-specifically, at the
cache tags — to check whether a particular bus transaction should in-
teract with the data currently in the cache. Such accesses are costly,
either in delays to the CPU if the bus interface time-slices the tags with
the CPU or in hardware and interlocks if the tags are dual ported. It’s
often cheaper to keep a second copy of the cache information the bus
interface is interested in, which is updated in parallel with the main
cache-the events that cause either to change are bus-visible anyway.
The duplicate tags don’t need to be perfect to be useful; if they allow the
bus interface to avoid accessing the CPU’s tags in a high proportion of
cases, they’ll still make the system more efficient.

cache, physical-addressed : A cache that is accessed entirely by using phys-
ical (translated) addresses. Early MIPS CPU caches, and all MIPS sec-
ondary caches, are like this.

cache, set-associative : A cache where there is more than one place in the
cache where data from a particular memory location may be stored.
You’ll commonly see two-way set associative caches, which means there
are two cache slots available for any particular memory data. In effect
there are two caches searched simultaneously, so the system can cope
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with a situation where two frequently accessed items are sitting at the
same cache index.

A set-associative cache requires wider buses than a direct-mapped cache
and cannot run quite as fast. Early RISCs used direct-mapped caches
to save pins on the external cache. Although the wide buses are not
much of a problem for on-chip caches, some early integrated CPUs still
had direct-mapped caches to boost the clock frequency. These days,
set-associative on-chip caches are usually preferred for their lower miss
rate.

cache, snooping : In a cache, snooping is the action of monitoring the bus
activity of some other device (another CPU or DMA master) to look for ref-
erences to data that are held in the cache. Originally, the term “snoop-
ing” was used for caches that could intervene, offering their own version
of the data where it was more up to date than the memory data that
would otherwise be obtained by the other master; the word has come to
be used for any cache that monitors bus traffic.

cache, split : A cache that has separate caches for instruction fetches and
for data references.

cache, write-back : A D-cache where CPU write data is kept in the cache but
not (for the time being) sent to main memory. The cache line is marked
as “dirty.” The data gets written back to main memory either when that
line in the cache is needed for data from some other location or when
the line is deliberately targeted by a write-back operation.

cache, write-through : A D-cache where every write operation is made both
to the cache (if the access hits a cached location) and simultaneously
to memory. The advantage is that the cache never contains data that is
not already in memory, so cache lines can be freely discarded.

Usually, the data bound for memory can be stored in a write buffer while
the memory system’s (relatively slow) write cycle runs, so the CPU does
not have to wait for the memory write to finish.

Write-through caches work very well as long as the memory cycles fast
enough to absorb writes at something a little higher than the CPU’s
average write rate.

cache aliases : In a memory-mapped OS you can sometimes have the same
data mapped at different locations. This can happen with data shared
between two tasks’ distinct address spaces or with data for which there
is a separate application and kernel view.

Now, many MIPS CPUs use program (virtual) addresses to index the
cache — it saves time to be able to start the cache search in parallel
with translating the address. But if different program addresses can
access the same data, we could end up with the same data in the cache
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at two locations — a cache alias. If we then start writing the locations,
that’s going to go horribly wrong.

Cache aliases turn out to be avoidable. The paged address translation
used in MIPS CPUs means that at least 12 low-order addresses are un-
changed by translation, and it turns aut that you only use about 15
low-order address bits to index the biggest likely cache. Kernel software
needs to be careful when generating multiple different addresses for a
page that the pages are allocated to program addresses where bits 12-15
are the same.

cache coherency : The name for that state of grace where the contents of
your cache will always deliver precisely what your program and the rest
of the system has stored into the cache/memory combination. Many
complex techniques and hardware tricks are deployed in the search for
coherency; MIPS CPUs like the R4000SC and R10000 have clever fea-
tures in the cache for this. But such technology is not much used out-
side the world of large server computers, as yet.

cacne flush : A somewnat ambiguous term, which we think is worth avoid-
ing. It is never quite clear whether it means write back or invalidate or
both.

cache hit : What happens when you look in the cache and find what you
were looking for.

cache index : All practical caches are either direct mapped, consisting of a
single memory array, or n-way set associative for some small n; in an n-
way set-associative cache each set behaves like a direct-mapped cache.
The cache index is that part of the address that is used to select the
cache location in each set.

cache invalidation : Marks a line of cache data as no longer to be used.
There’s always some kind of valid bit in the control bits of the cache line
for this purpose. It is an essential part of initialization for a MIPS CPU.

cache isolation : The basic mechanism for D-cache maintenance on pre-
R4000 MIPS CPUs, described in Section 4.9. It puts the CPU into a mode
where data loads/stores occur only to the cache and not to memory. In
this mode partial-word stores cause the cache line to be invalidated.

cache line size : Each cache slot can hold one or more words of data, and
the chunk of data marked with a single address tag is called a line. Big
lines save tag space and can make for more efficient refill; but big lines
waste space by loading more data you don’t need.

The best line size tends to increase as you get further from the CPU and
for big cache miss penalties. MIPS I CPUs always had 1-word data cache
lines, but later CPUs tend to favor 4 or 8 words.
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cache miss : What happens when you look in the cache and don’t find what
you are looking for.

cache miss penalty : The time the CPU spends stalled when it misses in the
cache, which depends on the system’s memory response time.

cache profiling : Measuring the cache traffic generated when a particular
program runs, with a view to rearranging the program in memory to
minimize the number of cache misses. It is not clear how practicable
this is except for very small programs or sections of program.

cache refill : The memory read that is used to obtain a cache line of data
after a cache miss. This is first read into the cache, and the CPU then
restarts execution, this time “hitting” in the cache.

cache set : One chunk of a set-associative cache.

cache simulator : A software tool used for cache profiling.

cache tag : The information held with the cache line that identifies the main
memory location of the data.

cache write back : The process that takes the contents of a cache line and
copies them back into the appropriate block of main memory. It s usu-
ally performed conditionally, because cache lines have a “dirty” flag that
remembers when they’ve been written since being fetched from memory.

cacheable : Used of an address region or a page defined by the memory
translation system.

CacheERR register : CPU control (coprocessor 0) register in R4000 CPUs
and descendants, full of information for analyzing and fixing cache par-
ity/ECC errors.

cacheop : A CPU control instruction found in R4000 and later CPUs that
provides all kinds of cache line maintenance operations.

callee : In a function call, the function that is called.

caller : In a function call, the function where the call instruction is found
and where control is returned to afterward.

Cause register : CPU control register that, following a trap, tells you what
kind of trap it was. Cause also shows you which external interrupt
signals are active.

ceiling : A floating-point-to-integer conversion, rounded to the nearest in-
tegerthat is as least as positive. Implemented by the MIPS instruction
ceil.

char : C name for a small quantity used to hold character codes. In MIPS
CPUs (and practically always, nowadays) this is a single byte.
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CISC : An acronym used to refer to non-RISC architectures. In this book, we
mean architectures like the DEC VAX, Motorola 68000, and Intel x86
(32-bit version). All these instruction sets were invented before the great
RISC discovery and all are much harder than a RISC CPU to execute
fast.

clock cycle : The period of the CPU’s clock signal. For a RISC CPU, this is
the rate at which successive pipeline stages run.

CMOS : The transistor technology used to make all practical MIPS CPUs.
CMOS chips are denser and use less power per transistor than any other
kind, so they are favored for leading-edge integration. With CPUs the
ability to put a lot of circuitry into a small space has proven to be the
key performance factor, so all fast CPUs are now CMOS.

COFF : A standard object file format, which turned out to be far too loosely
specified to let tools interoperate.

coherency : See cache coherency.

Compare register : CPU control register provided on CPUs for implementing
a timer (all MIPS III CPUs do this, as do some MIPS I CPUs such as IDT’s
R3041).

Config register : CPU control register for configuring basic CPU behavior. It
is standard on MIPS III and also found in some MIPS I derivatives.

console : The putative I/O channel on which messages can be sent for the
user and user input can be read.

const : C data declaration attribute, implying that the data is read-only. It
will often then be packed together with the instructions.

Context register : CPU control register seen only on CPU types with a TLB.
Provides a fast way to process TLB misses on systems using a certain
arrangement of page tables.

context switch : The job of changing the software environment from one
task to another in a multitasking OS.

coprocessor : Some part of the CPU, or some other closely coupled machine
part, that executes some particular set of reserved instruction encod-
ings. This is a MIPS architecture concept that has succeeded in sepa-
rating off optional or implementation-dependent parts of the instruction
set and thus reducing the changes to the mainstream instruction set.
It’s been fairly successful, but the nomenclature has caused a lot of
confusion.

coprocessor condition : Every coprocessor subset of special instructions in
the MIPS architecture gets a single bit for communicating status to the
integer CPU, tested by a bcxt/bcxf instruction. See Chapter 3.
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coprocessor conditional branches : The instructions such as bc0t label
branch according to the sense of coprocessor conditions which are usu-
ally CPU input signals; these can be useful sometimes. If there is a
floating-point unit on-chip, coprocessor condition bit 1 is hardwired to
the FP condition code.

coprocessor 0 : The (rather fuzzily defined) bits of CPU function that are
connected with the privileged control instructions for memory mapping,
exception handling, and such like.

core CPU : See ASIC-core CPU.

Count register : Continuously running timer register, available in R4000-
like CPUs and some earlier ones.

CPCOND : See coprocessor conditional branches.

cpp : The C preprocessor program.

CSE (common subexpression elimination) : The most fundamental opti-
mization step for an optimizing compiler (see Section 10.12).

cycle : Clock cycle.

D-cache : Data cache (MIPS CPUs always have separate instruction and data
caches).

D-TLB : Some MIPS processors have tiny separate translation caches fed
from the main TLB to avoid a resource conflict when translating both
instruction and data addresses; a D-TLB is specifically for data and is
found on the R4600 CPU and its successors. Its operatian is invisible to
software, other than an occasional extra clock spent fetching main TLB
entries.

data dependencies : The relationship between an instruction that produces
a value in a register and a subsequent instruction that wants to use that
value.

data path swapper : See byte-swap.

data/instruction cache coherency : The job of keeping the I-cache and D-
cache coherent. No MIPS CPU does this for you; it is vital to invalidate
I-cache locations whenever you write or modify an instruction stream.
See cache coherency.

debugger : A software tool for controlling and interrogating a running pro-
gram.

DECstation : Digital Equipment Corporation’s trade name for the MIPS-
architecture workstations they produced between 1990 and 1993.

delayed branches : See branch delay slot.
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delayed loads : See load delay slot.

demand paging : A process by which a program is loaded incrementally. It
relies on an OS and underlying hardware that can implement virtual
memory — references to thus-far-unloaded parts of the program are
caught by the OS, which reads in the relevant data, maps it so that the
program will see it in the right place, and then returns to the program,
re-executing the reference that failed. It’s called paging because the unit
of memory translation and loading is a fixed-size block called a page.

denormalized : A floating-point number is denormalized when it is holding a
value too small to be represented with the usual precision. The way the
IEEE754 standard is defined means that it is quite hard for hardware to
cope directly with denormalized representations, so MIPS CPUs always
trap when presented with them or asked to compute them.

dereferencing : A fancy term for following a pointer and obtaining the mem-
ory data it points at.

direct mapped : See cache, direct-mapped.

directive : One of the terms used for the pieces of an assembler program that
don’t generate machine instructions but that tell the assembler what to
do; for example, .global. They’re also called “pseudo-ops.”

dirty : In a virtual memory system, this describes the state of a page of
memory that has been written to since it was last fetched from or written
back to secondary storage. Dirty pages must not be lost.

disassembler : A program that takes a binary instruction sequence in mem-
ory and produces a readable listing in assembler mnemonics.

DMA (direct memory access) : An external device transferring data to or
from memory without CPU intervention.

double : C and assembler language name for a double-precision (64-bit)
floating-point number.

doubleword : The preferred term for a 64-bit data item (not used for floating
point) in MIPS architecture descriptions.

download : The act of transferring data from host to target (in case of doubt,
host tends to mean the machine to which the user is connected).

DRAM : Used sloppily to refer to large memory systems (which are usually
built from DRAM components). Sometimes used less sloppily to discuss
the typical attributes of memories built from DRAMs.
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DSP (digital signal processor) : A particular style of microprocessor aimed
at applications that process a stream of data derived from an analog-
to-digital convertor. DSPs focus on speed at certain popular analog al-
gorithms, such as FFT, and are good at multiplying. Compared to a
general-purpose processor they often lack precision, easy programming
in high-level language, and the facilities to build basic OS facilities. But
the definition of DSP is not much more firm than that of RISC.

duplicate tags : See cache, duplicate tags.

dword : The MIPS assembler name for a 64-bit integer datum, or double-
word.

dynamic linking : A term for the process by which an application finds
a library subroutine at run time, immortalized by Microsoft as DLLs.
Run-time linking with shared library functions is part of the MIPS/ABI
standard and is used in every modern desktop and server OS; it is not
yet relevant to embedded systems.

dynamic variables : An old-fashioned programmer’s term for variables (like
those defined inside C functions) that are really or notionally kept on
the stack.

ECC (error correcting code) : Stored data is accompanied by check bits
that are not only effective in diagnosing corruption but permit errors
(supposed to affect only a small number of bits) to be rectified. Some
MIPS R4x00 CPUs use an ECC that adds 8 check bits to each 64-bit
doubleword for data both in the caches and on the memory bus (and
probably in memory too, though that’s a system design decision).

ECL (emitter-coupled logic) : An electrical standard for deciding whether a
signal represents a one or a zero. ECL allows faster transitions and less
noise susceptibility than common standard TTL, but with a penalty in
higher power consumption. It’s now pretty much obsolete. The name
describes the transistor implementation originally used in this sort of
chip.

ECOFF (extended common object file format) : An object code format, par-
ticularly used by MIPS Corporation and Silicon Graphics, extensively
evolved from UNIX Systems Laboratories’ COFF (common object file for-
mat).

ELF (executable and linking format) : An object code format defined by
Univel for UNIX SVR4.2, and which is mandated by the MIPS ABI stan-
dard.

emacs : The Swiss Army knife of text editors and the essential tool for real
programmers, emacs runs the Lisp program of your choice every time
you hit a key. It is indescribably customizable, so with any job you do
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you get small and valuable contributions from numerous people who
went before you. This book was written with it.

embedded : Describes a computer system that is part of a larger object that
is not (primarily) seen as a computer. Describes everything from video
games to glass furnace controllers.

emulator : See in-circuit emulator; software instruction emulators.

endianness : Whether a machine is big-endian or little-endian. See Chapter
11.

endif : The end of a piece of code conditionally included by the magic of cpp.
See also ifdef, ifndef.

EntryHi/EntryLo register : CPU control registers implemented only in CPUs
with a TLB. Used to stage data to and from TLB entries.

EPC (exception program counter) register : CPU control register telling you
where to restart the CPU after an exception.

epilogue : See function epilogue.

EPROM (erasable programmable read-only memory) : The device most com-
monly used to provide read-only code for system bootstrap; used sloppily
here to mean the location of that read-only code.

errno : The name of the global variable used for reporting I/O errors in most
C libraries.

ErrorEPC register : R4x00 and later CPUs detect cache errors, and to allow
them to do so even if the CPU is halfway through some critical (but
regular) exception handler the cache-error system has its own separate
register for remembering where to return to. See section 4.10.1.

ExcCode : The bitfield in the Cause register that contains a code showing
what type of exception just occurred.

exception : In the MIPS architecture, an exception is any interrupt or trap
that causes control to be diverted to one of the two trap entry points.

exception, IEEE : See floating-point (IEEE) exception. Alas, this is a different
animal from a MIPS exception.

exception victim : On an exception, the victim is the first instruction in se-
quence not to be run (yet) as a result of the exception. For exceptions
that are caused by the CPU’s own activity, the victim is also the in-
struction that led to the exception. It’s also normally the point to which
control returns after the exception; but not always, because of the effect
of branch delays.

Executable : Describes a file of object code that is ready to run.
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exponent : Part of a floating-point number. See Chapter 7.

extended floating point : Not provided by the MIPS hardware, this usually
refers to a floating-point format that uses more than 64 bits of storage
(80 bits is popular).

extern : C data attribute for a variable that is defined in another module.

fault, faulting : See page fault.

FCC (Floating-point unit condition code) : MIPS I through MIPS III CPUs
have only one; higher-numbered ISAs have eight.

FCR31 register : Another name for fpcsr (floating-point control/status reg-
ister). See Chapter 7.

FIFO (First-in, first-out) : A queue that tempararily holds data, where the
items have to come out in the same order they went in.

fixup : In object code, this is the action of a linker/locator program when
it adjusts addresses in the instruction or data segments to match the
location at which the program will eventually execute.

flag : Used here (and often in computer books) to mean a single-bit field in a
control register.

floating-point accelerator (FPA) : The name for the part of the MIPS CPU
that does floating-point math. Historically, it was a separate chip.

floating-point bias : An offset added to the exponent ofa floating-point num-
ber held in IEEE format to make sure that the exponent is positive for
all legitimate values.

floating-point condition code/flag : A single bit set by FP compare instruc-
tions, which is communicated back to the main part of the CPU and
tested by bc1t and bc1f instructions.

floating-point emulation trap : A trap taken by the CPU when it cannot
implement a floating-point (coprocessor 1) operation. A software trap
handler can be built that mimics the action of the FPA and returns con-
trol, so that application software need not know whether FPA hardware
is installed or not. The software routine is likely to be 50-300 times
slower.

floating-point (IEEE) exception : The IEEE754 standard for floating-point
computation considers the possibility that the result can be “excep-
tional” — a catch-all term for various kinds of result that some users
may not be happy with. The standard requires that conforming CPUs
allow each type of exception to he caught — and then it gets confus-
ing, because the MIPS mechanism for catching events in general is also
called exception.
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foo : The ubiquitous name for a junk or worthless file.

Fortran : Early computer language favored for scientific and numerical uses,
where its reasonable portability outweighed its appalling flaws.

FP : Floating point.

fp (frame poimter) register : A CPU general-purpose register ($30) some-
times used conventionally to mark the base address of a stark frame.

FPA : Floating-point accelerator.

fpcond : Another name for the FP condition bit (also known as coprocessor
1 condition bit).

fpcsr register : The MIPS FPA’s control/status register. See Chapter 7.

fraction, fractional part : Part of a floating-point value. (Also called the
mantissa.) See Chapter 7.

frame, framesize : See stack frame.

Free Software Foundation : The Lone Rangers of free software and the (loose)
organization that keeps the copyright of GNU software.

fully associative : See associative store.

function : The C language name for a subroutine, which we use through
most of this book.

function epilogue : In assembler code, the stereotyped sequence of instruc-
tions and directives found at the end of a function and concerned with
returning control to the caller.

function inlining : An optimization offered by advanced compilers, where
a function call is replaced by an interpolated copy of the complete in-
struction sequence of the called function. In many architectures this is
a big win (for very small functions) because it eliminates the function-
call overhead. In the MIPS architecture the function-call overhead is
negligible, but inlining is still sometimes valuable because it allows the
optimizer to work on the function in context.

function prologue : In assembler language, a stereotyped set of instructions
and directives that start a function, saving registers and setting up the
stack frame.

gcc : The usual name for the GNU C compiler.

gdb : The GNU debugger, partner to GNU C.
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global : Old-fashioned programmer’s name for a data item whose name is
known and whose value may be accessed across a whole program. Slop-
pily extended to any named data item that is awarded its own storage
location — and that should properly be called static.

global pointer : The MIPS gp register, used in some MIPS programs to pro-
vide efficient access to those C data items defined as static or extern
that live at a fixed program address. See Section 2.2.1.

globl : Assembler declaration attribute for data items or code entry points
that are to be visible from outside the module.

GNU : The name of the Free Software Foundation’s project to provide freely
redistributable versions for all the components of a UNIX-like OS (with
the possible exception of the kernel itself).

GNU C compiler : Free product of an extraordinary interaction between mav-
erick programmer and Free Software Foundation leading light Richard
Stallman and a diverse collection of volunteers from all over the world.
GNU C is the best compiler for MIPS targets unless you’re using a Silicon
Graphics workstation.

GOT (global offset table) : An essential part of the dynamic linking mecha-
nism underlying MIPS/ABI applications.

gp register : CPU register $28, often used as a pointer to program data.
Program data that can be linked within ±32K of the pointer value can
be loaded with a single instruction. Not all toolchains, nor all run-time
environments, support this.

halfword : MIPS architecture name for a 16-bit data type.

hazard : See pipeline hazard.

heap : Program data space allocated at runtime.

Heinrich, Joe : Esteemed author of the definitive MIPS User’s Manual, from
which almost all official MIPS ISA manuals are derived.

Hennessy, John : MIPS’s intellectual father and founding parent, Professor
Hennessy led the original MIPS research project at Stanford University.

hit, cache : See cache hit.

I-cache : Instruction cache (MIPS CPUs always have separate instruction
and data caches). The I-cache is called upon when the CPU reads in-
structions.

ICU : Interrupt control unit.
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idempotent : A mathematician’s term for an operation that has the same
effect when done twice as done once (and hence also the same effect
when done nine times or 99). Stirring your coffee is an idempotent
operation, but adding sugar isn’t.

When a pipelined CPU takes an exception, and subsequently returns to
the interrupted task, it’s difficult to make sure that everything gets done
exactly once; if you can make some of the operations idempotent, the
system can survive a spuriously duplicated operation. All MIPS branch
instructions, for example, are idempotent.

IDT : Integrated Device Technology Corporation.

IEEE : An acronym for the Institute of Electrical and Electronics Engineers.
This professional body has done a lot to promulgate standards in com-
puting. Their work is often more practicable, sensible, and constructive
than that of other standards bodies.

IEEE754 floating-point standard : An industry standard for the represen-
tation of arithmetic values. This standard mandates the precise behav-
ior of a group of basic functions, providing a stable base for the devel-
opment of portable numeric algorithms.

ifdef, ifndef : #ifdef and #endif bracket conditionally compiled code in
the C language. This feature is actually affected by the C preprocessor
and so can be used in other languages too.

immediate : In instruction set descriptions, an immediate value is a con-
stant that is embedded in the code sequence. In assembler language, it
is any constant value.

implementation : Used in opposition to “architecture.” In this book it most
often means we’re talking about how something is done in some partic-
ular CPU.

in-circuit emulator (ICE) : A device that replaces a CPU chip with a module
that, as well as being able to exactly imitate the behavior of the CPU,
provides some means to control execution and examine CPU internals.
Microprocessor ICE units are inevitably based on a version of the micro-
processor chip (often a higher-speed grade).

It is often possible to do development without an ICE — and they are
expensive and can prove troublesome.

index register : CPU control register used to define which TLB entry’s con-
tents will be read into or written from EntryHi/EntryLo.

index, cache : See cache index.

Indy : A popular Silicon Graphics workstation, powered by a MIPS CPU.
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inexact : Describes a floating-point calculation that has lost precision. Note
that this happens very frequently on the most everyday calculations; for
example, the number 1

3
has no exact representation. IEEE754 compli-

ance requires that MIPS CPUs can trap on an inexact result, but nobody
ever turns that trap on.

infinity : A floating-point data value standing in for any value too big (or too
negative) to represent. IEEE754 defines how computations with positive
and negative versions of infinity should behave.

inline, inlined, inlining : See Function inlining.

instruction scheduling : The process of moving instructions around to ex-
ploit the CPU’s pipelining for maximum performance. On a simple
pipelined MIPS CPU, that usually comes down to making the best use of
delay slots. This is done by the compiler and (sometimes) by the assem-
bler.

instruction set architecture (ISA) : The functional description of the CPU,
which defines exactly what it does with any legitimate instruction stream
(but does not have to define how it is implemented).

instruction synthesis by assembler : The MIPS instruction set onnits many
useful and familiar operations (such as an instruction to load a constant
outside the range ±32K). Most assemblers for the MIPS architecture will
accept instructions (sometimes called macro-instructions) that they im-
plement with a short sequence of machine instructions.

int : The C name for an integer data type. The language doesn’t define how
many bits are used to implement an int, and this freedom is intended
to allow compilers to choose something that is efficient on the target
machine.

interlock : A hardware feature where the execution of one instruction is
delayed until something is ready. There are few interlocks in the MIPS
architecture.

interrupt : An external signal that can cause an exception (if not masked).

interrupt mask : A bit-per-interrupt mask, held in the CPU status register,
that determines which interrupt inputs are allowed to cause an inter-
rupt at any given time.

interrupt priority : In many architectures the interrupt inputs have built-
in priority; an interrupt will not take effect during the execution of an
interrupt handler at equal or higher priority. The MIPS hardware doesn’t
do this, but the system software often imposes a conventional priority
on the interrupt inputs.
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interruptible : Generally used of a piece of program where an interrupt can
be tolerated (and where the programmer has therefore allowed inter-
rupts to occur).

invalidation : See cache invalidation.

IPL (interrupt priority level) : A concept used in designing and describing
operating systems. See Section 5.8.

Irix : The operating system on the Silicon Graphics workstations/servers.

ISA : Instruction set architecture.

isolate cache : See cache isolation.

issue, instruction : When talking about computer implementations, issue
is the point where some CPU resources get used to begin doing the op-
erations associated with some instruction.

I-TLB : A tiny hardware table duplicating information fram the TLB that is
used for translating instruction addresses without having to fight the
hardware that is translating data addresses. Called the “micro-TLB” in
early MIPS CPUs. It is not visible to software, unless you’re counting
time so carefully that you notice the one-clock pause in execution when
an I-fetch has to access the main TLB.

JPEG : A standard for compressing image data.

JTAG : A standard for connecting electronic components to implement test
functions. The JTAG signals are intended to be daisy chained through
all the active components in a design, allowing one single point of access
for everything. It’s never been successful enough to do that, but it re-
mains a popular and useful way of connecting up on-chip test functions.

jump and link (jal) instruction : MIPS instruction set name for a function
call, which puts the return address (the link) into ra.

k0 and k1 registers : Two general-purpose registers that are reserved, by
contains vention, for the use of trap handlers. It is difficult to contrive a
trap handler that does not trash at least one register.

kernel : The smallest separately compiled unit of an operating system that
contains task scheduling functions. Some OSs (like UNIX) are mono-
lithic with big kernels that do a lot; some are modular with small kernels
surrounded by helper tasks.

kernel privilege : For a protected CPU, a state where it’s allowed to do any-
thing. That’s usually how it boots up; and in small systems or simple
operating systems, that’s how it stays.
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Kernighan, Brian : Co-author (with Dennis Ritchie) of The C Programming
Language, and generally held responsible for systematizing the C lan-
guage. No programmer should ever read another book about C.

kludge : An engineer’s derogatory expression for a quick and dirty fix.

kseg0, ksegl : The unmapped address spaces (actually, they are mapped in
the sense that the resulting physical addresses are in the low 512MB),
kseg0 is for cached references and ksegl for uncached references. Stan-
dalone programs, or programs using simple OSs, are likely to run wholly
in kseg0/ksegl.

KSU, KU : The kernel/user privilege field in the status register (described in
Section 3.3.)

kuseg : The low half of the MIPS program address space, which is accessi-
ble by programs running with user privileges and always translated (in
CPUs equipped with a TLB). See Figure 2.1.

latency : The delay attributable to some unit or other. Memory read latency
is the time taken for memory to deliver some data and is generally a
much more important (and more neglected) parameter than bandwidth.

leaf function : A function that itself contains no other function call. This
kind of function can return directly to the ra register and typically uses
no stack space.

level sensitive : An attribute of a signal (particularly an interrupt signal).
MIPS interrupt inputs are level sensitive; they will cause an interrupt
any time they are active and unmasked.

library : See object code library.

line size : See cache line size.

linker : A program that joins together separately compiled object code mod-
ules, resolving external references.

little-endian : An architecture where the least-significant part of a multibyte
integer is stored at the lowest byte address; see Section 11.6.

LLAddr register : A CPU control (coprocessor 0) register in R4000 and later
CPUs, with no discernible software use outside diagnostics. It holds an
address from a previous load-linked (ll) instruction.

lo, hi registers : Dedicated output registers of the integer multiply/divide
unit. These registers are interlocked — an attempt to copy data from
them into a general-purpose register will be stalled until the multi-
ply/divide can complete.

load delay : See load delay slot.
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load delay slot : The position in the instruction sequence immediately fol-
lowing a load. An instruction in the load delay slot cannot use the value
just loaded (the results would be unpredictable). The compiler, assem-
bler, or programmer may move code around to try to make best use of
load delay slots, but sometimes you just have to put a “nop” there.

load/store architecture : Describes an ISA like MIPS, where memory data
can be accessed only by explicit load and store instructions. Many other
architectures define instructions (e.g., “push” or arithmetic on a memory
variable) that implicitly access memory.

loader : A program that takes an object code module and assigns fixed pro-
gram addresses to instructions and data, in order to make an executable
file.

local variable : A named data item accessible only within the module cur-
rently being compiled/assembled.

locality of reference : The tendency of programs to focus a large number of
memory references on a small subset of memory locations (at least in
the short term). It’s what makes caches useful.

logic analyzer : A piece of test equipment that simultaneously monitors the
logic level (i.e., as 1 or 0) of many signals. It is often used to keep a list
of the addresses of accesses made by a microprocessor.

long : C extra-precision integer; it is 32 bats on MIPS (same as an int).

loop unrolling : An optimization used by advanced compilers. Program
loops are compiled to code that can implement several iterations of the
loop without branching out of line. This can be particularly advanta-
geous on architectures (unlike MIPS) where a long pipeline and instruc-
tion prefetching makes taken branches costly. Even on the MIPS ar-
chitecture, however, it can help by altowing intermingling of code from
different loop iterations.

LSI : LSI Logic Corporation, which makes MIPS CPUs — these days, mostly
as ASIC core components to be integrated by their customers into sys-
tems on a chip.

MAC (multiply/accumulate) : An instruction that both does multiplications
and keeps a running total of the results. Several 90s MIPS CPUs imple-
ment such instructions in the integer multiplier, accumulating in the
multiply unit’s own hiho output register. However, these instructions
tend to be called mad.

macro : A “word” in a computer language that will be replaced by some pre-
defined textual substitution before compilation/assernbly. More specif-
ically, it’s something defined in a C preprocessor #define statement.
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MAD, MADD : See multiply-add.

mantissa : Part of the representation of a floating-point number. (Also called
fraction or fractional part). See Chapter 7.

mapped : Term used to describe a range of addresses generated by a pro-
gram that will be translated in some nontrivial way before appearing as
physical addresses.

mask : A bitfield used to select part of a data structure with a bitwise logical
“and” operation.

MDMX : A MIPS-proposed extension to the MIPS IV ISA that uses the FP
registers to represent small arrays of integers (of length 8 or 16 bits) and
provides arithmetic- and graphics-oriented operations that do the same
thing simultaneously to all the integers in the array. This is similar to
the MMX to the x86 architecture defined by Intel and available in their
Pentium-MMX CPUs.

This kind of operation is thought to be useful for accelerating common
tasks in audio and video processing (multimedia).

memcpy() : A function from the standard C library for copying blocks of data.

micro-TLB : The MIPS TLB is dedicated to translating data addresses. Use of
the TLB to translate addresses for I-fetch would lead to resource conflict
and would slow the CPU. The micro-TLB remembers the last used I-
fetch program page and physical page and saves a reference to the real
TLB until execution crosses a page boundary. When this happens, a
one-clock-cycle stall occurs while the micro-TLB is refilled from the data
TLB.

microcode : Many CPUs consist of a low-level core (the micro-engine) pro-
grammed with a wide, obscure machine language (microcode). instruc-
tions from the official ISA are implemented by microcode subroutines.

During the 70s microcode was the favored way of managing the com-
plexity of a CPU design. As better design tools were developed in the
80s, particularly better circuit simulators, it became possible to go back
to implementing ISA operations directly in hardware. But many CPUs
(particularly CISCs) still use microcode for complicated or obscure in-
structions.

MiniRISC : An LSI Logic trade name for a series of MIPS CPU cores optimized
for small size.

MIPS : We use this as the name of the architecture

MIPS/ABI : The latest standard for MIPS applications, supported by all UNIX
system vendors using the MIPS architecture in big-endian form.
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MIPS Corporation : The organization that commercialized and promoted the
MIPS architecture. Sometimes sloppily used to include its successor, the
MIPS Technologies group within Silicon Graphics.

MIPS silicon vendor : Any company building and selling MIPS CPUs or
components containing MIPS CPUs. The roll call includes LSI Logic,
IDT, Performance Semiconductor, NEC, Siemens, Toshiba, NKK, Philips
Semiconductor, QED, and Sony.

MIPS System VR3, RISC/OS, and Irix : These are all ways of referring to
the same basic operating system, a derivative of UNIX System V Release
3. This OS supports RISCware applications.

MIPS UMIPS 4.3BSD : MIPS Corporation’s first operating system was a deriva-
tive of Berkeley’s BSD4.3 version of UNIX.

MIPSEB, MIPSEL : These are the words you use to request big-endian and
little-endian output (respectively) from most MIPS compiler toolchains.

misaligned : Unaligned.

MMU (memory management unit) : The only memory management hard-
ware provided in the MIPS architecture is the TLB, which can translate
program addresses from any of up to 64 pages into physical addresses.

Modula-2 : Pascal programming language with a standardized separate-
compilation extension. Mostly used in European computer science edu-
cation.

MPEG : Standard for the efficient (compressed) digital representation of mov-
ing video images.

MTI (MIPS Technologies, Inc.) : Subsidiary of Silicon Graphics and inheri-
tor of the MIPS architecture.

multiply-add : A single instruction that multiplies two numbers together
and then performs an addition sum. Multiply-add instructions are often
a powerful and effective way of encoding numerical algorithms, particu-
larly for floating point. MIPS IV and higher CPUs have an FP instruction
called madd, and Toshiba’s R3900 and its descendants have a genuine
integer multiply-add.

Several other variant CPUs of the 90s have integer instructions called
MAD or something like it, but they are strictly multiply-accumulate in-
structions, where the addend and results must both use a fixed register.

multiprocessor : A system with multiple processing elements; in practice
we’ll use it only when there are multiple similar processing elements
dynamically scheduled to run a common pool of programs.
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multitasking : A CPU operating system that supports multiple threads of
control. At the most mundane level, a thread is characterized by a stack
and a next-instruction address. There needs to be some scheduler in
the OS that picks which task to run next and makes sure that all tasks
make progress.

NaN (not a number) : A special floating-point value defined by lEEE754 as
the value to be returned from operations presented with illegal operands.

naturally aligned : A datum of length n is naturally aligned if its base ad-
dress is zero mod n. A word is naturally aligned if it is on a 4-byte
boundary; a halfword is naturally aligned if it is on a 2-byte boundary;
see also alignment.

NEC : Electronic component manufacturer and leading supplier of MIPS CPU
chips.

nested exception/interrupt : What happens when you get a MIPS excep-
tion while still executing the exception handler from the last one. This
is sometimes OK.

nibble : A 4-bit quantity.

NKK : The semiconductor division of a large Japanese trading company.
NKK started selling MIPS CPUs about 1994, in a generally low-key way,
with second sources of IDT R46xx products.

NMI (nonmaskable interrupt) : Available (both as an input signal and as
an event) on R4000 and subsequent components. On MIPS CPUs, it’s
not quite clear whether it’s a nonmaskable interrupt or a very soft reset;
there’s no real difference.

noalias, noat, nobopt, nomacro, noreorder, novolatile : Assembler lan-
guage controls, which turn off various aspects of the way the assembler
works. See Section 9.5.6 for details.

nonleaf function : A function that somewhere calls another function. Nor-
mally the compiler will translate them with a function prologue that
saves the return address (and possibly other register values) on a stack
and a function epilogue that restores these values.

nonvolatile memory : Applied to any memory technology that retains data
with the system power off.

nop, no-op : No operation. On MIPS this is actually an alias for sllv zero,
zero, zero, which doesn’t have much effect; its binary code is all ze-
roes.

normalize : The action of converting a floating-point value to the normalized
form by shifting the mantissa and modifying the exponent. The IEEE
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standard for all except very small numbers is a normalized representa-
tion.

NT : Windows/NT.

nullified : Applied to an instruction that although it has been started in
the pipeline, will not be allowed to have any effect — its write back
is suppressed and it’s not allowed to cause an exception. In general,
instructions never have any effect until at least the MEM pipestage. In
32-bit MIPS CPUs, instructions are only nullified when an exception
occurs before they have committed to the MEM stage, but from MIPS II
onward this technique is used more widely, for example to implement
the “likely” variants of branch instructions.

NVRAM : Nonvolatile RAM, used rather generically to refer to any writable
storage that is preserved while the system is powered down.

objdump : Typical name for a utility program that decodes and prints infor-
oration from an object file.

object code : A special file format containing compiled program source and
data, in a form that can be quickly and easily converted to executable
format.

object code library : A file holding several (separately compiled) modules
of object code, together with an index showing what public function
or variable names are exported by each module. Sometimes called an
archive. The system linker can accept libraries as well as object modules
and will link only those modules from the library that are required to
satisfy external references from the supplied modules.

octal : Base 8 notation for binary numbers, traditionally written with a lead-
ing zero. In fact, an integer written with a leading zero will most likely
be interpreted as octal by the assembler.

offset : The name commonly used for the signed 16-bit integer field used in
many MIPS instruction types.

op-code : The field of the binary representation of an instruction that is
constant for a given instruction mnemonic, excluding register selectors,
embedded constants, and so on.

operand : A value used by an operation.

optimizer : The part of a compiler that transforms one correct representa-
tion of a program into a different equivalent representation that (it is to
be hoped) is either smaller or likely to run faster.

OS : Operating system.
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overflow : When the result of an operation is too big to be represented in the
output format.

padding : Spaces left in memory data structures and representations that
are caused by the compiler’s need to align data to the boundaries the
hardware p refers.

page : A chunk of memory, a power-of-two bytes in size and naturally aligned,
that is the unit of memory handled by the address translation system.
Most MIPS operating systems deal in 4KB fixed-size pages, but the hard-
ware is sometimes capable of mixing translations with a number of dif-
ferent page sizes.

page fault : An OS term meaning an event where a program accesses a lo-
cation in a page for which there is no valid physical page translation
assigned; in such an OS a page fault is resolved by fetching the appro-
priate contents, allocating physical memory, setting up the translation,
and restarting the program at the offending instruction.

page mode memory : A way of using a DRAM memory array. In DRAMs it
is much faster to make repeated access to a single region of memory
where the row address presented to the DRAM component is common.
Some memory controllers use this to optimize accesses where the CPU
repeatedly reads/writes a particular area of memory.

page table : A possible implementation of the TLB miss exception is to keep
a large number of page translations in a table indexed by the high-order
virtual address; such a structure is called a page table.

paged : A memory management system (such as MIPS) where fixed-size
pages (in MIPS they are 4KB in size) are mapped; high bits are translated
while the low bits (11 bits for MIPS) are passed through unchanged.

PageMask register : Register used in the MIPS memory management system,
see Chapter 6.

parameter : When talking about subroutines, some programmers talk about
passing parameters to subroutines and some(following the C program-
ming manual) talk about passing arguments to functions. They’re talk-
ing about the sane thing.

parity : The simplest error check. A redundant bit is added to a byte or other
multibit datum and set so that the total number of 1 bits (including the
parity bit) is made odd (odd parity) or even( even parity).

partial word : A piece of data less than a whole word but that the hardware
can transfer as a unit. In the MIPS architecture this can be 1, 2, or 3
bytes.
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Pascal : Computing language invented by Niklaus Wirth in the 70s as a
simplified block-structured language suitable for teaching. There was a
time during the 80s when Pascal was seriously canvassed as an alterna-
tive to C, but with no consensus on the desperately needed extensions
it didn’t succeed.

Patterson, David : From the MIPS point of view, he is Professor Hennessy’s
sidekick and co-author (see Hennessy and David Patterson). Outside
the MIPS field, David Patterson is probably just as famous, having led
the Berkeley RISC project from which the Sparc descended.

PC (program counter) : Shorthand for the address of the instruction cur-
rently being executed by a CPU.

PC relative : An instruction is PC relative if it uses an address that is
encoded as an offset from the instruction’s own location. PC-relative
branches within modules are convenient because they need no fixing
when the entire module is shifted in memory; this is a step toward
position-independent code.

PCI : I/O bus invented for PCs about 1993 and now a universal way of gluing
I/O controllers to computers.

PDP-11 : The world’s favorite minicomputer in the 70s, made by DEC. It was
vastly influential, because good design decisions and superb documen-
tation made it the best thing for programmers to play with.

peephole optimization : A form of optimization that recognizes particular
patterns of instruction sequence and replaces them by shorter, simpler
patterns. Peephole optimizations are not terribly important for RISCs,
but they are very important to CISCs, where they provide the only mech-
anism by which compilers can exploit complex instructions.

PFN (physical frame number) : The high-order part of the physical address,
which is the output of the paged MMU.

Philips : A chip company that makes MIPS chips, mostly as cores.

physical address : The address that appears on the outer pins of your CPU
and that is passed on to main memory and the I/O system. Not the
same as the program address (virtual address).

physical cache : Short for “cache that is physically indexed and physically
tagged,” meaning that the physical (translated) address is used for both
these functions.

PIC : See position-independent code.

pinout : For a chip, the allocation of signals to physical pins (and perhaps
the list of interface signals required).
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pipeline : The critical architectural feature by which several instructions are
executed at once; see Section 1.1.

pipeline concealment by assembler : MIPS assembler language does not
usually require the programmer to take account of the pipeline, even
though the machine language does. The assembler moves code around,
or inserts nops, to prevent unwanted behavior.

pipeline hazard : A case where an instruction sequence won’t work due to
pipeline problems. Hazards affecting user-level programs are described
in Section 1.5.5, and those resulting from CPU control instructions are
discussed in Section A.4.

pipeline stay : See stall.

pipestage : One of the five phases of the MIPS pipeline.

pixie, pixprof : Profiling tools. pixie is a special tool provided by MIPS Cor-
poration that can be used to measure the instruction-by-instruction be-
havior of programs at high speed. It works by translating the original
program binary into a version that includes metering instructions that
count the numner of times each basic block is executed (a basic block
is a section of code delimited by branches and/or branch targets).

pixprof takes the huge undigestible array of counts produced by a pixie
run and munches them down into useful statistics. One day, perhaps,
these tools or similar ones will be available with other toolkits.

PlayStation : Sony’s 1995 games machine, driven by a 32-bit MIPS micro-
processor.

porting/portability/portable : Adapting a program designed to work on one
computer to work on another. A readily ported program is portable, and
you can rate programs according to their portability.

Portsize register : CPU control register provided on IDT’s R3041 CPU vari-
ant and used to define the bus transfer width used for accesses in vari-
ous regions.

position-independent code (PIC) : Code that can execute correctly regard-
less of where it is positioned in program address space. PIC is usually
produced by making sure all references are PC relative. PIC is an essen-
tial part of the MIPS ABI standard, where sharable library code must be
compiled to be position independent. Unfortunately, the MIPS architec-
ture is poorly adapted for PIC.

POSIX : A still-evolving IEEE standard for the programming interface pro-
vided by a compliant operating system.
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PostScript : A computing language as well as a digital way of represent-
ing a printed page. A truly brilliant idea, originally from Xerox Parc,
which failed to take over the world mostly because Adobe Systems, Inc.
thought it would make more money by keeping it out of the mass mar-
ket.

pragma : The C compiler #praqma directive is used to select compiler options
from within the source code.

precise exception : Following an exception, all instructions earlier in in-
struction sequence than the instruction referenced by EPC are completed
whereas all instructions later in instruction sequence appear never to
have happened. The MIPS architecture offers precise exceptions.

precision of data type : The number of bits available for data representa-
tion.

preprocessor : See C preprocessor.

PRId register : CPU control register (read-only) that tells you the type and
revision number of your CPU. You shouldn’t rely on it for much.

primary cache : In a system with more than one level of cache, this is the
cache closest to the CPU.

privilege level : CPUs capable of running a secure OS must be able to oper-
ate at different privilege levels. The MIPS CPU can operate at just two:
kernel and user. This is sufficient. User-privilege programs are not al-
lowed to interfere with each other or with the privileged kernel programs;
the privileged programs have got to work.

privilege violation : A program trying to do what it’s not allowed to, which
will cause an exception. The OS must then decide what punishment to
mete out.

process : A UNIX word for that chunk of computation that corresponds to a
word on the command line; it consists of a thread of control, a program
to run, and an address space in which it can run safely.

profiling : Running a program with some kind of instrumentation to derive
information about its resource usage and running.

program address : The software engineer’s view of addresses, as generated
by the program. Also known as virtual address.

prologue : The mysterious bit at the beginning of a function which is stan-
dardized by the needs of the toolchain, OS, or architecture.

PROM (programmable read-only memory) : Used sloppily to mean any read-
only program memory.
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protected OS : An operating system that runs tasks at a low privilege level,
where they can be prevented from doing destructive things.

PTEBase : Part of the MIPS Context or XContext registers and typically
loaded with a pointer to an in-memory page table of translations ready
to be loaded into the TLB.

QED : Quantum Effect Devices, Inc., the most prolific MIPS CPU design
group of the 90s.

quad-precision (128-bit) floating point : Not supported by MIPS hardware,
but referred to in some documentation.

R2000, R3000 : The original implementations of the MIPS ISA, packaged to
a ce external static RAMS as cache.

ra register : CPU register $31, conventionally used for the return address
from subroutines. This use is supported by the ISA, in that it is used by
the jal instruction (whose 26-bit target address field leaves it no room
to specify which register should receive the return address value).

RAM (random access memory) : Computer memory that can be both read
and written. See ROM.

Random register : A CPU control register present only if there is a TLB. It in-
crements continually and autonomously and is used for pseudoranaom
replacement of TLB entries.

ranlib : A program used to maintain object-code libraries: It makes indexes.

read priority : Because of the write buffer, the CPU package may simulta-
neously want to do a read and a (delayed) write. It is possible, and can
boost performance, to do the read first. If the CPU is always waiting for
the read data, the condition is called read priority. But it causes co-
herency problems when the location being read is affected by a pending
write, so few MIPS CPUs tried it (LSI’s LR33000 was an exception).

register renaming : A technique for implementing high-performance com-
puters that permits instructions to be executed out of their normal se-
quence, without this sequence being visible to the programmer. Used
(heroically) in the MIPS R10000.

relocatable object module : A chunk of object code that still contains the
necessary information and records for a program to be able to find and
alter all the offsets and hidden addresses that tie the module to a par-
ticular location in memory.

relocation : The process of patching binary object code to make it runnable
at a different location in memory.
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renormalization : After a floating-point calculation, the number is probably
no longer normalized. Renormalization is the process of making it so
again.

reset : Used in this manual for the event that happens when you activate
the Reset input to the CPU; this happens at power-on or system re-
initialization.

RISC (reduced instruction set computer) : Generic term used in this book
for a class of CPU architectures designed for easy pipelining. They were
introduced in the second half of the 80s.

RISCware : A long-forgotten standard for interchange of binary programs
between different UNIX-style OSs on MIPS CPUs.

RMW (read-modify-write) : A frequently encountered sequence of actions a
storage location of any kind.

ROM (read-only memory) : A storage device that can’t be written. (More
often these days, it means it can’t be written in normal operation —
there’s often some off-line or exceptional means by which it can be re-
programmed. )

rounding mode : Defines the exact behavior of floating-point operations.
Configurable through the floating-point status/control register (see Chap-
ter 7).

s0-s9 registers : A collection of CPU general-purpose registers ($16-$23 and
$30) conventionally used for variables of function scope. They must be
saved by any function that modifies them.

S-cache : See secondary cache.

sandbox : A safely fenced off set of resources (disk, filespace, memory, CPU
time) within which untrusted programs can be safely run. One of the
Internet’s best pieces of jargon.

scalar : A simple variable (as distinct from an array or data structure). By
analogy, a CPU that operates on single chunks of data at a time is called
scalar. This term was originally used to distinguish such a CPU from a
vector processor, which can operate on a whole chunk at a time.

scheduler : In a multitasking system, the scheduler is the program that
decides what task to run next.

SDE-MIPS : The Algorithmics toolkit for developing programs for MIPS tar-
gets, built around GNU C.

SDRAM (synchronous DRAM : Bulk memory chips with a supercharged in-
terface that provide much bigger transfer rates than their predecessor
(regular DRAM).
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secondary cache : In a system with more than one level of cache, this is the
cache second closest to the CPU.

section : The name for the chunks used to separate out the code, various
kinds of data, debug information, and so on from a program and to
carry them through the object code. Eventually, you get to decide where
in memory each section ends up.

segment : See kseg0, kseg1.

segmentation : An obsolete approach to memory translation and protection,
where program addresses are modified by being added to a base address.
It was used in the x86, but it hasn’t been needed since the 386.

semaphore : A powerful organizing concept for designing robustly cooperat-
ing multitasking or multiprocessing systems; see Section 5.8.4.

set, cache : See cache set.

set associative : See cache, set associative.

SGI : Silicon Graphics, Inc., dominant supplier of MIPS-powered computers
and guardians of the MIPS architecture.

short : In C, the name for an integer data type at least as big as a char and
no larger than an int. In 32- and 64-bit architectures, a short seems
always to be a 16-bit integer.

signal : A kind of primitive interrupt that is fed to regular programs in a
UNIX-type OS. Improved in Berkeley UNIX, and codified by the POSIX
working group to represent a reasonably clean and simple way of com-
municating simple events in a multitasking system.

silicon vendor : In the MIPS world, one of the companies making and selling
MIPS CPUs.

SIMM (single in-line memory module) : A way of packaging memory on
tiny plug-in circuit boards so you can fit it to PCs just prior to sale or
even upgrade them in the field. Like a lot of PC hardware, this has taken
over everywhere and is now the most popular way of attaching memory
chips.

snooping, snoopy : See cache, snooping.

soft reset : In digital electronics, reset is that ubiquitous signal that is as-
serted to get everything back to a starting condition. For a CPU, it repre-
sents an instant roll of the karmic wheel — death and resurrection in a
few milliseconds. Sometimes you’d rather reset your CPU in a way that
allows it to remember something of its past life — that’s a “soft reset.”
See Section 5.9.
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software instruction emulators : A program that emulates the operation of
a CPU/memory system. It can be used to check out software too low
level to be compatible with a debugger.

software interrupts : Interrupts invoked by setting bits in the Cause register
and that happen when those bits are unmasked. See Section 5.8.

Sony : Consumer electronics company that used MIPS chips in its PIaySta-
tions.

source-level debugger : A debugger that interprets current program state
in terms of the source program (instruction lines, variable names, data
structures). Source-level debuggers need access to source code, so when
working with embedded system software the debugger must run on the
host and obtains its information about the program state from a simple
debug monitor running on the target.

sp register/stack pointer : CPU register $29, used by convention as a stack
pointer.

SPARC : The Sun Microsystem RISC architecture, which has sold more desk-
top systems than any other. Derived fairly directly from the University of
California at Berkeley RISC project, whereas MIPS came out of Stanford
University. Stanford (on the San Francisco peninsula) is private and
somewhat conservative; Berkeley (across the bay) is public and radical.
There’s a lot of social history in microprocessor design.

sparse address space : Some OS tactics (notably, using an object’s address
as a long-term handle) work only if you have a much larger address
space than you really need, so you can afford to spread things out thinly
and allocate space recklessly as a sparse address space. No sparse-
address OS has been commercially successful yet.

speculative execution : A CPU implementation technique where the CPU
runs instructions before it really knows it should (most commonly, while
it’s still figuring out whether or not a conditional branch should have
happened). Used in the MIPS R10000.

SR register : CPU status register, one of the privileged control registers. Con-
tains control bits for any modes the CPU respects. See Section 3.3 for
details.

SRAM (Static RAM) : Writable random-access memory that does not require
periodic refresh and that has faster initial access time.

SRBrCond : See BRCOND=0.

stack : The last in, first out data structure used to record the execution state
of CPUs that are running the most interesting languages.
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stack argument structure : A conceptual data structure used in Section
10.1 to explain how arguments are passed to functions according to the
MIPS convention.

stack backtrace : A debugger function that interprets the state of the pro-
gram stack to show the nest of function tails that has got to the current
position. Depends wholly on strict stack usage conventions, which as-
sembler programs must notate with standard directives.

stack frame : A fancy phrase for the piece of stack used by a particular
function.

stack underrun : An error that occurs when you try to pop more off a stack
than was ever put on it.

stale data : Term used for data lying about that has been superseded by a
more recent write. It could be data in memory where a CPU’s cached
copy has been updated but has not yet been written back; it could be
data in a cache where the memory contents have been replaced by a
DMA device and the cache has not yet been invalidated. Using stale
data is a bug.

stall : Condition in which the pipeline is frozen (no instruction state is ad-
vanced) while the CPU waits for some resource to do its thing.

standalone software : Software operating without the benefit of any kind of
operating system or standard run-time environment.

Stanford : The San Francisco-area university where the MIPS academic
project was run by Professor Hennessy, and from where the MIPS com-
pany was born.

static variable : C terminology for a data item that has a compile-time fixed
place in memory.

status register : The MIPS register SR. In an older CPU it would have been
the control/status register and in fact there are far more control func-
tions than status-reading functions provided through SR.

stdarg : ANSI-approved C macro package that hides the implementation-
dependent details of how to provide for functions with a variable number
of arguments or arguments whose type can only be determined at run
time (or both).

strcmp : C library function that compares two (null-terminated) strings.

strcpy : C library function that copies a (null-terminated) string.

strength reduction : Optimization technique in which an “expensive” opera-
tion is replaced, where possible, by one or a short sequence of “cheaper”
operations. For example, multiply by a constant may be more efficiently
replaced by a sequence of shift and add operations.
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supercomputer : Colloquially, a computer built for performance essentially
without regard for cost. Computer architecture people tend to be refer-
ring to processors with vector floating-point instructions.

superpipelined CPU : If pipelining is a good thing, perhaps it can be made
better by cranking up the clock rate and breaking down execution stages
into smaller pieces, each of which can fit into the shrunken clock cy-
cle. The MIPS R4000 CPU was slightly superpipelined, breaking each
of the I-fetch and D-cache access stages into two and removing half
clock cycles to get an eight-stage pipeline. In doing so, the R4000 es-
tablished that over a wide range of RISC-like architectures, five stages
is just about optimal.

superscalar : A CPU implementation that attempts to start more than one
instruction at the same time. This ugly word comes from an attempt to
define a third alternative to supercomputers or superpipelined CPUs.

supervisor privilege level : Intermediate privilege level between kernel and
user; see Section 3.3.2.

swap caches : To temporarily reverse the roles of the I- and D-caches, so that
the cache maintenance functions can operate on the I-cache. Controlled
by a status register bit.

swapper : See byte-swapper.

Sweazey, Paul : Lead author of the “FutureBus” paper, which first described
the approach to cache coherence used by modern multiprocessors.

sync, synchronization barrier : An instruction that allows a programmer to
indicate where the order of reads and writes in a program really matters.
Any read or write preceding the sync instruction in program order must
be carried out before any read or write follawing the sync.

synthesized instructions : See instruction synthesis by assembler.

syscall (system call) : An instruction that produces a trap. It has a spare
field, uninterpreted by the hardware, that software can use to encode
different system call types.

t0-t9 register/temporaries : CPU registers $8-$15, $24-$25, convention-
ally used as temporaries; any function can use these registers. The
downside is that the values can’t be guaranteed to survive any function
call.

TagHi, TagLo registers : Coprocessor 0 registers in R4000-style MIPS CPUs,
which are staging posts for cache tag contents. See Section 4.10.

temporary register : See t0.
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thrashing : Collapse of a heuristic optimization characterized by a repeated
cycle of failure. Cache thrashing is a specific case where two locations
in frequent use by a program compete for the same cache storage, re-
peatedly displacing each other and making the cache ineffective.

timer : As a facility for CPUs, a constant-rate counter with some mechanism
to cause an interrupt when the counter reaches some specified value.

TLB (translation lookaside buffer) : The associative store that translates
program to physical page numbers. When the TLB doesn’t contain the
translation entry you need, the CPU takes an exception and it is up
to system software to load an appropriate entry before returning to re-
execute the faulting reference. See Chapter 6.

TLB, wired entries : The first eight TLB entries are conventionally reserved
for statically configured entries and are not randomly replaced.

TLB Invalid exception : The exception taken when a TLB entry matches the
address but is marked as not valid.

TLB miss : The exception taken when no TLB entry matches the program
address.

TLB Modified exception : The exception taken when a TLB entry matches
a store address but that entry is not flagged as writable.

TLB Probe : An instruction used to submit a program address to the TLB to
see what translations are currently in force.

TLB refill : The process of adding a new entry to the TLB following a miss.

toolchain, toolkit : The complete set of tools required to produce runnable
programs starting from source code (compiler, assembler, linker, librar-
ian, etc.).

Toshiba : Japanese chip maker and MIPS licensee. Toshiba has not been
prominent as a supplier of CPU components but is more visible in the
core CPU market, where their R3900 design has been influential.

translated address or address region : A MIPS program (virtual) address
that is destined to be translated through the TLB (or to cause an error).
This includes the kuseg region where all user-privilege software must
run as well as the mapped kernel-privilege region kseg2. The 64-bit
CPUs have more translated regions.

translation lookaside buffer : See TLB.

trap : An exception caused by some internal event affecting a particular
instruction.

tribyte : A load/store that carries 3 bytes of data. Produced only by the
special instructions lwl/lwr, as described in Section 2.5.2.
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trunc : The floating-point instruction trunc rounds a floating-point number
to the next integer toward zero.

TTL : An acronym for transistor-transistor logic, this is a signalling conven-
tion that enables you to decide whether an electrical signal represents 1,
0, or something in between and undefined. TTL is based on the habits
of some early 5V logic families. TTL signalling has commonly been used
in all microprocessor systems at least up to the late 90s; its most likely
replacement is a slight modification to fit in with 3.3V power supplies.

two-way set associative : See cache, set-associative.

UART (universal asynchronous receiver/transmitter) : A serial port con-
troller.

Ultrix : DEC’s trade name for their BSD-family operating system running on
MIPS-based DECstation computers. Note that Ultrix, unlike practically
all other MIPS UNIX-like systems, runs in little-endian mode and thus
is completely software incompatible with MIPS ABI or RISCware.

UMIPS : MIPS Corporation’s first UNIX port, a version of 4.3BSD.

unaligned access exception : Trap caused by a memory reference (load/store
word or halfword) at a misaligned address.

unaligned data : Data stored in memory but not guaranteed to be on the
proper alignment boundary. Unaligned data can only be accessed reli-
ably by special code sequences.

uncacheable : Memory areas where CPU reads and writes never search
through or affect the cache. True of the region ksegl or translated ad-
dress regions where the TLB entry is flagged as uncached.

uncached : A CPU read/write that doesn’t search through or write to the
cache.

underllow : What happens when a floating-point operation should produce
a result that is too small to represent properly. See also denormalized.

unified cache : A cache that is searched and updated for all CPU cycles,
regardless of whether they are instruction fetches or data references. By
contrast, most MIPS caches are split into I- and D-cache.

unimplemented instruction exception : Exception taken when the CPU
does not recognize the instruction code; it is also used when it cannot
successfully complete a floating-point instruction and wants the soft-
ware emulator to take over.

union : A C declaration of an item of data that is going to have alternative
interpretations with different data types. If you store data of one type
and read it back as the other type, the result is highly unportable, in an
interesting sort of way.



462

uniprocessor : A CPU that doesn’t share its memory with another.

Unisoft V.4 (Uniplus+) : Another version of UNIX SVR4, this one MIPS ABI
compliant.

unix-type : When lowercase, means a system something of the manner of
real UNIX, but without any implication as to ownership or regulation.
Includes freeware like Linux and OSs from the various OpenBSD and
FreeBSD groups and commercial OSs like Sun’s Solaris or SGI’s Irix.

unmapped : The kseg0, ksegl address spaces.

unrolled loop : A loop in a program, transformed by arranging that (most
of the time) the work of more than one iteration of the loop is done
between jumps. It can often make programs go faster; it’s sometimes
done automatically by clever compilers.

user-privilege level : The lowest privilege state for a MIPS CPU, where only
the regular instruction set is usable and program addresses must stay
inside kuseg. An operating system can prevent user-privilege programs
from interfering with each other or the OS.

user space : The space of user-privilege-accessible addresses (kuseg).

utlbmiss exception : An exception caused by a user-privilege address for
which no mapping is present in the TLB. A utlbmiss exception is vec-
tored to a unique, second exception entry point. This was done because
this is by far the most common trap in a hardworking operating system,
and it saves time to avoid the code that must work out what kind of trap
has occurred. Strictly speaking, the name only applies to the R3000;
R4000-style CPUs send all TLB misses through the special entry point.

v0-v1 registers : CPU registers $2-$3, conventionally used to hold values
being returned by functions.

varargs : An old but now deprecated version of stdarg.

VAX : DEC’s groundbreaking 32-bit minicomputer architecture, definitely
not a RISC. The first minicomputer to support virtual memory (hence
the “V”).

vector, vector processor : A processor that has instructions that perform
the same operation on a whole collection of data at a time, mostly
floating-point operations. This is an example of parallel processing char-
acterized as single instruction, multiple data (SIMD); it was the first kind
of parallel processing to be useful. Number-crunching supercomputers
depend on vector processing for their speed.

virtual address : See program address.
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virtual memory (VM) : A way of running an application without actually
giving it all the memory it thinks it needs, but in such a way that it
doesn’t know the difference. You do this by arranging that an attempt
to access something that isn’t really there causes the operating system
to be called in. The OS finds the required memory (be it code or data),
changes the mapping so the application will find it, and then restarts
the application at the instruction that led to the bad access. Bigger OSs
(UNIX-like or modern Windows) always use virtual memory.

VMS : The operating system DEC developed for the VAX minicomputer.

void : A data type used to tidy up C programs, indicating that no value is
available.

volatile : An attribute of declared data in either C or assembler. A volatile
variable is one that may not simply behave like memory (i.e., does not
simply return the value last stored in it). In the absence of this attribute,
optimizers may assume that it is unnecessary to reread a value; and if
the variable represents a memory-mapped I/O location you are polling,
this will be a mistake.

VPN (virtual page number) : The part of a program (virtual) address that
gets translated. The low-order bits of the program address (which are
the address within a page, usually a 4KB page) pass unchanged through
to the physical address.

VxWorks : A real-time OS used in embedded applications, written and sold
by Wind River Systems, Inc.

WatchHi, WatchLo register : Coprocessor 0 registers that implement a data
watchpoint, available in some R4000-style CPUs.

watchpoint : A debugger Feature that will cause the running program to be
suspended and control passed back to the user whenever an access is
made to the specified address. NEC’s Vr4300 CPU has one of these.

wbflush : A standard name for the routine/macro that ensures that the
write buffer is empty.

wbflush() : The MIPS-convention name for a function that returns only after
all the CPU’s pending writes are completed on the CPU bus interface.

Whitechapel : A briefly flowering UK-based UNIX workstation company that
shipped the first MIPS desktop computers.

workstation : Used here to mean a desktop computer running a UNIX-like
OS.

wraparound : Some memory systems (including the MIPS cache when iso-
lated) have the property that accesses beyond the memory array size
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simply wrap around and start accessing the memory again at the begin-
ning.

write buffer : A FIFO store that keeps both the address and data of a CPU
write cycle (usually up to four of each). The CPU can continue execu-
tion while the writes are carried out as fast as the memory system will
manage. A write buffer is particularly effective when used with a write-
through cache.

write-back cache : See cache, write-back.

write-through cache : See cache, write-through.

XContext register : Coprocessor 0 register associated with the TLB (memory
management hardware). Provides a fast way to process TLB misses on
systems using a certain arrangement of page tables for 64-bit-addressed
virtual memory regions.

zero register : CPU register $0, which is very special: Regardless of what is
written to it, it always returns the value zero.
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