MII—P S

TECHNOLOGIES

EJTAG Specification

Document Number: M D00047
Revision 3.10
July 5, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2000-2005 M1 PS TechnologiesInc. All rightsreserved.

Copyright © 2000-2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies®). Any copying,
reproducing, modifying or use of thisinformation (inwholeor in part) that is not expressly permitted in writing by M1PS Technologies
or an authorized third party isstrictly prohibited. Ataminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technol ogies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS 11, MIPSI1I, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4K Sd, M4K, 5K, 5K ¢, 5Kf, 20K ¢, 24K, 24K ¢, 24Kf, 24K E, 24K Ec, 24K Ef, 25K f, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 THE EJTAG SYSEEIM ...ttt sttt sttt h b s a e e bt b e bt s e e e b e b se e e et e e e e e h e e b e e Rt eheebesbesbeebesbeseesbebees 1
0 g oo (Bt i'o I (o I = AN C OOV PP PRPT 1
1.2 HiSIONCAl PEISPECLIVE ...ttt b bbbt et e e s e et e e et et e bt e b e e bt eaeebesbesbesbenbesaeseennan 1
IRl N N R 0= o= o 1]) =TRSO 4

1.3.1 Debug Exception and DEDUG MOTEc.oiiiiiiiiiiiieeee ettt st b e b e b b e 4
G2 ® i oo ol =N] BN 1Y = 0T o S 5
1.3.3 Debug Breakpoint INSIFUCLIONccoiiiiiiieriiteiesie ettt st ettt s ae b sbe e sbenbe e 5
1.3.4 Hardware BreakPOINTScceoiiriririeriietesie sttt sttt ae st s ae b b et et seene e e e e et e st e b e e bt sbe et e sbesbenbenbeseen 5
1.3.5 SINGIE-SEEP EXECULION ...ttt sttt ettt e b e b b et b et se e e e e e e et e bt e b e saeebesbenbesbenbenbeneen 5
1.4 EJTAG Components 8N OPLIONScoueiuiruirierierieieiereeeeieeiee e st stesiesaesbesbeseessesbeseeseesse e et eseeseesesaesbesbeseessenseseessensan 6
1.4.1 EJTAG ProceSS0r COre EXTENSIONSccereiuiriirierierieeeeeeeiesiesie sttt sae et st seeseese et esesse st saesbesbeseessesseseens 6
L A2 EJTAG TESEACCESS POI ...viieiiieeeiie sttt ettt bt b et e st e se st es e st e nenbenestenensaneenan 7
I C R BT o U0l @e g 10 I =0 [S 7
1.4.4 Hardware Breakpoint UNITcccooiiiiiiiiiese ettt st et sae b nbe bbb e 7
1.5 EJTAG-Specific COProCeSSOr O REJISIEISoiuiiiiieieeeieieei ettt sttt sttt e et a e ae b e b e e b et seeseenean 7
1.6 Memory-Mapped EJTAG REGISIEIS ..ottt et ettt a et ae b b e b bbb seennas 8
R R B T oW o [l Oo gL 0] L= [S 8
1.6.2 Instruction Hardware Breakpoint REJISIEISccoiiriiiieieieieiresie sttt s sae e s st sb b e 8
1.6.3 Data Hardware Breakpoint REJISLENScoiiiiirierieieeeeeeeee sttt sttt st sbe b b se b b e 9
1.7 Memory-Mapped EJTAG MEMOIY SEOIMENL ooeiieieieiieiere ettt st s se e sae b e sbeseese e beseeseenean 9
1.8 EJTAG TeSt ACCESS POt REJISIEISocueiciiceicie ettt sttt ettt e et e st e sse e e e saeetesteenaesteentesreentesneeeeenns 10
1.9 The Implications of Multiprocessing and Multithreading for EJTAG ..ot 10
1.10 REIGLEO DOCUMENTS ...ttt ettt sttt ettt ettt heeb e s beea e eb e s b e se e eb e b e sE e re e e e n e et eaeeae e st e bt ebeebesbesbesbesbeseens 11
1.11 NOtationS 8N CONVENLIONS cc.eiuiiuirierieitistesie sttt et eie et eae bt aesaeebesbeseess e beseeseeasense e e e ese e st asesbesbesbesbesbesbeseens 11
L1100 COMPLIBNCE ...eieieeeiieee ettt ettt b et e e e e e et e heeheehe e bt eh e e bt s b e e b e be s e e se e e e n e e ne e st ebeebeeheebesbesaeebenbeses 11
1.11.2 UNPREDICTABLE and UNDEFINED OPEI@lioNScccveerueerieerieesierestesessesessesessesessessesessesesseessenens 12
1.11.3 Register FIEld NOLBLHIONSccveiiieiieiiiciese ettt e st e et e et e e reeeeeseestesaeestesanestesnaessennsensenas 13
L. 1T AVAUE NOBLIONS ...cueieeieeeeeieeei ettt ettt st e et e et h e e ae s bt sh e s bt s be e b e b e s e e se et e m s et e st ebeebeebeebesbesbesrenbeses 13
O RSN (o[=] N o = 1 o] OSSO PP 13

Chapter 2 DebUg CONLIOI REJISLENcoiiteiiierietereet ettt ettt b e e b e e b e bt e bt e et b e st b et sb et b et st e et e s 15

Chapter 3 Hardware BrEaKPOINEScueoieieieriieseses e seestes e seeseesseeeeesesses e ssessessesaestessesaessensensenseneesessessessessessessensessessenses 19
130 A 11 T [T ' o PPN 19

3.1.1 Instruction Breakpoint FEBLUIESccuieiiiireseseeree e eees sttt e e e e e e e e e e e snessessesnesresresnens 20
3.1.2 Data BreakpOint FEALUIESccociiiiiiise st sies e et e e e e s e e et te e se e ae e e e e eseeseesessessessesnenteseesnnns 20
3.2 Overview of Instruction and Data Breakpoint REJISLEISccccvveiiiineii e seesee e sre e 20
3.2.1 Overview of Instruction Breakpoint REJISLEIScccceieeerereresese e se s ee e e s sne st e snens 21
3.2.2 Overview of Data Breakpoint REJISLEIScccvvererierieiececise s s s see e se s ae e e e e eses e e esesse s e snessessesnens 21
3.3 Conditions for Matching BreaKPOINtScccieeereerieieeieerieeesesese e te e st se e e e e seesee e e e ssessessesaesresseseessenses 22
3.3.1 Conditions for Matching INStruction BreakPOiNtSccccveeeieresereieseseseseeseesaeseeseeessessessessessessessesseseens 22
3.3.2 Conditions for Matching Data BreakpOintScccceveieeieeieeerereseseseseese e seesseseeseeseesessesessessessessessesseseens 24
3.4 Debug EXceptions from BreakPOiNSccccicrererieieeeeesie s s sese e ste e see et se e e e seeseeseesessessessessessessesesssenses 28
3.4.1 Debug Exception Caused by Instruction Breakpointccceoveereienisinseseseseseeseeseesessessessesessessessesnens 28
3.4.2 Debug Exception by Data Breakpointcccevererieiieieeicesese s e seese s seese e e sseeseses e ssessessessessesseseens 29
3.5 Breakpoints Used @S THQQEIPOINTSuciviiereriereereeseeseeeesesesessessessesrestesseseessesseseensessensessssessessessessessessessessessessensen 31
3.6 Instruction Breakpoint REGISLEIScccviiieieirriereseseeeeese e s s st sttt e e e e e e e e eseesessessesressesaesreseeseesnensn 31
3.6.1 Instruction Breakpoint Status (IBS) REGISIEN voveeeeeececeees et sre e snens 32
3.6.2 Instruction Breakpoint Address n (IBAN) REGISIEN voveeeeee vt snens 33
3.6.3 Instruction Breakpoint Address Mask N (IBMN) REGISLENooviiiiiiiese et 34
3.6.4 Instruction Breakpoint ASID n (IBASIDN) REGISLENecuveeeeeee st e e sne st 34

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.6.5 Instruction Breakpoint Control N (IBCN) REGISIEYoouiiiiiiiieerere e 35

3.7 Data BreakpoiNt REGISLEISciiiiiieriitirtee ettt ettt bt e e se et b e se e e e et et e seeheeaeeaeebenbesaeebesbesaesnetan 37
3.7.1 Data Breakpoint Status (DBS) REJISLENc.oiuiiiiieeeie ettt et s sbe e e 37
3.7.2 Data Breakpoint Address N (DBAN) REGISIEN ...t s 39
3.7.3 Data Breakpoint Address Mask N (DBMN) REGISLENc.ooiiiiiiiieie ettt 39
3.7.4 Data Breakpoint ASID N (DBASIDN) REJISLEN ..ottt 40
3.7.5 Data Breakpoint Control N (DBCN) REGISLEN ..ottt et sae b sre b sen 41
3.7.6 Data Breakpoint Value n (DBVN) REQISIEN cooiiiieiiieeeerene ettt st sne b 43

3.8 Recommendations for Implementing Hardware BreakpointSoooeviiinine e 44
3.8.1 Number of Instruction Breakpoints Without Single StEPPINGccccveririreienereree e 44
3.8.2 Data Breakpoints with DataValue COMPAIESc.coueieeeeerirtsiesiesie st st e se e esae e saesbesee e 44
3.8.3 Data Breakpoint Compare 0N INValid DELAcceoeeiiriieeiirere e s 44
3.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Vaue Comparesc.ccoccveeeeene 45

3.9 BreakpOiNt EXAMPIES ..ottt sttt b e bt bbb bt se et b se et et et et e heeh e e Rt eheebenhesheebenb e e e b 45
3.9.1 Instruction Breakpoint EXAMPIES ..ottt sbe bbb e 45
3.9.2 DA@BIrEaKPOINT ...ttt h b b bbb e b et e R Re et eh e b e eae b b neen 46

Chapter 4 PC SAMPIING ...ecveiteeiiteeitee sttt sttt ettt sttt b et bbb et e b e se e b seebese e b e s e eb e eEebeee e Rt e b e ae e b e ne e b et s b et et et et e e e 49

g T 14 [o 1 o o TS 49

4.2 Overview of the PC SaMPIING FEALUINEcoiiiiiireeiie ettt n s 49
4.2.1 PC SampPling iN WaIT SEAEEocveuirieeirieiirteeirteesi sttt bbbttt st e e 50
4.2.2 PC SaMPliNg @MT PrOCESSONc.oiueuirieiirieiirteesteisteesie sttt et b e bbb st bt bt sttt be e 50

Chapter 5 EJTAG Processor COre EXIENSIONSccccviiiuirierereseeeeseeseeeesesessessesessesses e saessessessessssssssssesssssessesssssessessessenses 51

B.L OVEIVIBIW ..ottt sttt sttt sttt e et se st e st s b et e b e e e b e s e e ke se ke A e bt se e bt e AR e e A e Rt e A e Rt e b e Rt e b et e b e ne ek e neebeneebeseebeneenenbeneas 51

VA D1 o 8o 1Y Koo [= ot U1 1 o] o 51
5.2.1 Debug MOAE INSIFUCLION SELcvecviiiieiesiesie e et e e ettt sttt s e e e e e e e esa e e e e ssessessesaenreseesnens 52
5.2.2 Debug MOOE ATAIESS SPACEecvvveeieiiierieriestiseseseeteee e e ese s e s e srestesrestestesteseessenaeneeneeseeseeseesessessesaestessesenns 52
5.2.3 Debug Mode Handling Of ProCESSOr RESOUICESccueveeeereeisiesiesiestestesieseessessesesseesesessessessessessessessessens 56
5.2.4 CPO and dseg SegmMENt HAZAITScccccvieieererereesieieseeeseseseste e sae st te e sne e e e eeesesseesessessessesnessessesenns 58

TG I 1 o o T o] g1 60
5.3.1 Debug EXCEPRLION PrIOMTIES ...ocociiiiiiiseie e e e st eee e ste s s ettt st sae e e e e e e e e e s sesnessessesaesseseesnens 60
5.3.2 Debug EXCEPLION VECIOr LOCALIONceiveieeieeiesieseeeeieseeeeresesesresteseeseestesaeseesesseseeneesessessessessessessessessessens 61
5.3.3 General Debug EXCEPLION PrOCESSINGvvieiverieriereerieieeseeeesesesessessessessessessessessessesssssesessessessessessessessessessens 61
5.3.4 Debug Breakpoint EXCEPLIONccviiiiiiieiisese st eeeeeseeesses s et te s see e tesee e sae e eeeseesessessessessnsnnssessnssnns 62
5.3.5 Debug Instruction Break EXCEPLIONcciciieiiiereieeeieeeces st st ste st s ee e e e snesse e snestesresnens 63
5.3.6 Debug Data Break Load/Store EXCEPLIONcccccevcieeeeiececeee s st e e snesse e sne st snesnens 63
5.3.7 Debug Data Break Load/Store ImpreciSe EXCEPLIONccccvveeeeeriiesese e seeteseesesseeeses e ssessessesnessesseseens 63
5.3.8 Debug SINGIE SEEP EXCEPLION ocveieiiiesieiie e eseseete e eses s ettt s e st se e e e e e e esee e e e ssessessesaesseseesnens 64
SRCHC DTS o 8ol a1 (= g (0] o1 (= o1 o o IS 67

BT o 8o 1Y Koo [o= o)1 o] 68
5.4.1 Exceptions Taken in DEDUG MOOEccviiiiiieieriee ettt ene s e snestesrennens 68
5.4.2 EXCEPiONS ON IMPrECISE EITOISvviviiiiiieite i esieseetete e eeeseses e srestesaesteste e seesse e e eneenaeseesessessessesnessesenssnns 69
5.4.3 Debug Mode EXCEPLION PrOCESSINGvvceieereerieriereerieseeseeessesesessessessessessesssssessessesssssessssesssssessessessessessessens 69

IR 1 =070t o A1/ 70
L3 g1 oSSR 70
LTSI N1 ST STS 71

5.6 Reset and Soft RESEL Of PrOCESSONc.oiveuiiieiiieirieisie ettt sttt st s b st st e se b e seenenteneas 71
5.6.L ETTAGBOOT FEAUMNEcuiiiieiriiietiietineeteseete sttt st ettt b e bbb e s bt e s st e st e ne st e et ene b e e ebe s enensenas 71
5.6.2 RESEL FTOM PIODE ...ttt bbbttt be bbb e b et b et enas 71
5.6.3 Processor Reset by Probe through Test ACCESS POtceecueiicece et 71
5.6.4 Reset Occurred Indication through TeSt ACCESS POITocuveiiiiicisc e 72
5.6.5 SOft RESEL ENADIE ...ttt bbbttt bbbt et b et ens 72
5.6.6 Reset Of Other DEBUQG FEALUIESoiuiiiiiiiei ettt e e esaesresresnestesresnens 72

B.7 EITAG INSITUCLIONS ...vouiitiietieete st sttt ettt sttt st st se et see b seebesa st b e st st e ne st et s b et et e seebeseebenaebeseebeseenenteneas 72
B.7.LDERET INSIIUCTION ..ottt sttt ettt b et b et e et e et e e b e et e s ne st enis 74

ii EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG COPrOCESSON O REJISIEIS ...oviiuiitiiteterierteeeste et et st e ittt st siesbe st e bese et et se e e e se e e e e se e st et saeebesbesaesbesbeseeseenas 75

5.8.1 Debug Register (CPO Register 23, SEECt 0)ocvcciiiieiiceece ettt e nesneas 75
5.8.2 Debug Exception Program Counter Register (CPO Register 24, SEleCt 0)ocooeveeieeeeirienereneeesenens 83
5.8.3 Debug Exception Save Register (CPO Register 31, SEleCt 0)oocvveiiiineie e 83
Chapter 6 EJTAG TESE ACCESS POIT ...ttt sttt sttt sttt b e e b e e b e e bt s e bt e e bt s b st b et s bt b et et e e b e 85
L N S @Y 4 1= T T 85
B.2 TAP SIGNAIS ..tttk e ettt b et bt b e b e s e bt se bt s e b e s e e b e AR R £ R R e SR e e R e R e R e e R e ne b e ne b e ne bt neene e e e nrene s 86
6.2.1 TSt CIOCK INPUE (TICKY) .ttt ettt b bbbt bbb eb s s nnenis 86
6.2.2 Test Mode SEECE INPUL (TIMS) ...ttt nn s 86
6.2.3 TSt DAA INPUE (TDI) ettt b et bbb b btk et b b b et e b b et se bt a et 87
6.2.4 Test Data OULPUL (TDO) .cueieeieeeererietereresteieesesestete e be b st st b et e e b e et b et se bk e e ee bt ese st se st et et sesbebane et 87
6.2.5 TeSt RESEL INPUL (TRST®) .ttt sttt sttt et b bbbttt e e et eb et se bt e e et 87

LGN I = @ 11 (o] = ST 87
6.3. 1 TESI-LOGIC-RESEL SEALEeieiieitiietieet ettt bbbt bbbt bbb b bt s e enis 88
6.3.2 CAPLUMNE-TR SEBLE ...ttt se s a e e et er bR en e renre e 88
B.3.3 SNIFE-TR SEALE ...ttt bbbt b et b bt e b ket b b b et et b et e bt et et 88
B.3.4 UPUALE- TR SEBLEouiiiietiiiieeteie sttt stttk b et e b bt s e b ket e b ket et b b e b et se b e b et re et et ene et 89
6.3.5 CAPLUIE-DR SEALE ...t e e s et r e nre 89
5.3.6 SNIFt-DIR SEALEecviiirietieririet ettt bbbt e b e e e bk e e e bk e et b b e b et se b e b et se bt a st et 89
B.3.7 UPUALE-DR SEALEeeiteuiuiiieteiererisie et sttt ettt sttt b et e bbbt s e b b et e bk e e ee bt e b et s et eb et renbebene et 89

6.4 Instruction Register and SPeCial INSITUCTIONScoviiiiirieereereet et sb e eb e eb e s srene 89
L AN I [1 T o PR 91
6.4.2 EJTAGBOOT and NORMALBOOT INSITUCHIONScucviirerieieenerinieenesesieie s te e ssssssesesesassenesesnns 91
6.4.3 FASTDATA INSIIUCLION .ueiitittirieteteeseste ettt ettt b et b et skttt e et et eb et se bt ane et 91

6.5 TAP DA REJISIEIScueitiietirieteriet sttt ettt sttt sttt b e e b s e e bt s e eb e se e bt s e e st s b e e e b e e e b e e e b e st eb e seebeneebeseebesrenenrenea 92
6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)cocciveirieincnereeseesessesee e 93
6.5.2 Implementation Register (TAP Instruction IMPCODE) coiiiiiiieieereeseeeseeseeese e 94
6.5.3 Data Register (TAP Instruction DATA, ALL, Or FASTDATA) oot 96
6.5.4 Address Register (TAP Instruction ADDRESS OF ALL) ..cvoiiiiiiireiieeeerie e 99
6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL 0OF ALL) .oeciiieiiiiriiereereeeeeseieeeees 99
6.5.6 Fastdata Register (TAP INSruction FASTDATA) .ottt 105
6.5.7 PCsample Register (PCSAMPLE INSIIUCHION) ...ovcviiieiiiieicrieeseenes ettt 106
6.5.8 Bypass Register (TAP Instruction BY PASS, (EJTAG/NORMAL)BOOT, or Unused)ccccceeveerienene 107

6.6 EXAMPIES OF USE ..ottt bbb e b s e h e bbbt bt bt bt b e b e b e 107
B.6.1 TAP OPEIGLHON ...oeeitiietiieetisieie ettt ettt b e b e e bt e bt se st b e st e b et e b et e b e e eb e se e b e seeb e seeb e seebeseenesbenesreneabeneas 108

LS Y = U I =R 108
B.6.3 ROCC BIt USBTE ...eecuiietirieiirieieit ettt ettt sttt ettt b et b et b et b et b e se bt se bt se e bt seenesb e st sb et ebe e 108
6.6.4 EJTAG Memory Access Through PrOCESSOI ACCESScerueerieerrerestenesreseetesesseseeseseesessesessesessesesseessenens 109
Chapter 7 ON-Chip INLEITECESicveieeeeieeee e et saesaestesbesee st e sesee e eneeseeneeneesensessesaenresannrens 113
7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt SIgnalsoocvcvveveveveereeseceeese e 113
720 o L0 7= I I =S IS T o T 113
7.3 Input Buffers with Pull-Up/Down and Output Driversfor Chip PiNScccvovviviviinesie e 113
7.4 Connecting Multi-Core Test Access Port (TAP) CONTOHENS ...o.ecuveeeeeeeeece e 114
Chapter 8 Off-Chip and Probe INTEITACESooiiiii et sbe b e sae 115
S 00 I oo o= o = U 115
8.1.1 TeSt ACCESS POI SIGNEAIS ..c.veceiieicie ettt e see e e s te s ae e s tesaa e teesa e beeneenteennenneenns 116
8.1.2 DebUQ INLEITUPL SIGNAI ...ttt b et b e b e bt e e et e e e besb e e ebeeb e b e 117
8.1.3 SYSIEM RESEL SIgNAl ...oviieeiiieeie ettt ettt e et e et e et e se et e seebe st eneneenestenente e 117
8.1.4Voltage SENSE fOr 1/O SIGNalocee et et st re e r e e ne s 117

S Y O M 0010 O 7= = ot (PSS 118
8.2.1 Test ACCESS POI TIMING ..ecveeeiieieieieesie et e s et e et e e sae e e s aeestesaeestesaeestesaaetesnaenseeneenteennenseenns 118
8.2.2 DebUQ INLEITUPE TIHMING .eueiiiieetieteie ettt sttt ettt b e bbb e b e b se e b e b e se e e e e e aeeaeebeebesaesbesbenbenes 119
e IS VA (= Al (=== S T 21 120

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.2.4 Voltage Sense for 1/O (V1O) TIMING ...cieeieiieieseese ettt rae et s ste e te e e beenaesbeesaenseeneenneenns 120

8.3 DC EIECtriCal Chalr@CLENISIICSoivovereerireeiirieiiseee sttt sttt sttt r et b e n e 121

8.4 MECNANICAl COMNECION ...ttt sttt sttt sttt sttt b e se bt e bt e st e et R et e R et Rt Rt r et b e b e e nenn s 122

8.5 Target SYStEM PCB DESIGN ...ccveciiiiieieiiesie et see et e st e et et e e teesaesaeeste s e e stesaeesbesaeesteensesteesseaseensesneensesneesaeaneas 122

8.5. L EIECtriCal CONMMECTIONoveiiieiiireiiiteest sttt r et r et r e se b s b se bt ne bt nrenennesenne e ere e 123

LRI I (Yo 0| A @0 g1 o == 4 e P 124

8.6 Probe Requirements and RECOMMENELIONScoiiiriiririirierie ettt b e s sbe e e 124

8.6.1 Target System Power-Up with Prabe Attached ..o 124

8.6.2 HOL PIUQ IN Of PrODE ..ottt st et et e s e s te s e e e ene et e enaenteennenreenns 125

8.6.3 TDO LEVE WHEN 3-SEAEAceeuiieeieiiiisieieerer ettt bbbt 125

8.6.4 RST* Drive Dy Open COIECLONccoiiiiiiiitese ettt et sb e bbb e 125

8.6.5 Changing TMS @N0 TDI ..ottt ettt b et 125

8.6.6 MeChaniCal CONMECIONciveiiieiireiir ettt r e r e s b e bt ne b e s nn e sn e er e 125

Appendix A Differencesfor R3K Privileged ENVIFONMENLSccooiiiiiiiinenenerene sttt 127

AL EJTAG ProcesSor COre EXIENSIONScccieiuiiirierieieisieeseeseeeeeeseesessessessestestessessesteseessensessessenessessessessessessessesses 127

N I B3 N (O 1 =i 1T (o o TR 127

A.1.2 Debug EXCEption VECIOr LOCALIONcciviuereiiriiieiiieies ettt bbb 127

A. L3 SYNC INSLIUCHION SUDSHTULE ..ottt st st sre e 127

A.1.4 CPO Register Numbers for Debug and DEPC REQISIENSc.coveiiiririiiriieeees et 127

A2 HardWare BrEaKPOINESceiuiiriieeterietese ettt b e eb s b e bbbt b bt s e s e e b e e b et bt s eb e e st nnenes 128

A.2.1 Instruction Breakpoint REJISIENSc.iiiiiiriiiriii ettt bbbt bbb 128

A.2.2 Conditions for Matching Instruction BreakpointsSoccieorerninneneeeesees e 128

A.23ASID Field iN IBCN REJISIEN ...c.oieiiiiiitiisies ettt ettt bbb 128

A.2.4 Data Breakpoint REGISIEISciieirieiriiirieesi ettt bbbttt bbbt 128

A.2.5 Conditions for Matching Data BreaKpointScccoeirieireinieirieesieeseses e 129

A.2.6 ASID Field in DBCN REJISIEooveiieiiiiiiitiieiii ettt bbbt 129

A.ZETTAG TESE ACCESS POITcueitiueitiieteiet sttt ettt b et b b e bt e bt e bbbt s e e st s e e s et b e e e b e b eb e s eb e e st nnenes 129

PN 0= a0 Dtq = T Y= 1 121 To o 1Y 131

Appendix C Functional Clarifications from Old EJTAG 2.5 ...ttt s 133

Appendix D Multithreaded and MUIti-Core DEDUGcoirerieerieerieirieeriee sttt ere s b b s se b e resesn e ereneas 135

[0 R = o 0o o OSSP 136

APPENAIX E REVISION HISIOMY ..ocviitiiiisiiie e ettt sttt st a s e sesae s aeseesteseeseeneense e eneenenneenensensennenrentes 141
iv EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1-1: Setup of Debug System WithOUt EJTAG ..ottt e et 2
Figure 1-2: Setup of Debug SyStEM With EJTAGc.ooiiiiiiiie ettt sttt st b nbe e 3
Figure 1-3: Test Access Port (TAP) to interNal CONNECLIONS..........cccueiiiieiieie ettt et s sae st etesre e e eneenes 3
Figure 1-4: Simplified Block Diagram of EJTAG COMPONENTS.......ccertirierieriereeieereriesresieseessesseseeseessesseseessesssesessessesseses 6
Figure 2-1: DCR REQISIEr FOIMMALccceiieiieiieitesiesteeees e et e ste et e steeaesreesae s e e stesae e tesseestessaenteeseenseessasesnsesseensesaeeneessennsess 16
Figure 3-1: Instruction BreaKpoiNt OVEINVIEWWcoceoiriiiiireie ettt sttt r e bbb b e b et e e e e e e e e e eneenenas 20
Figure 3-2: Data BreaKpOiNt OVEINVIEIVccooiiiiieeeeitieieee sttt sttt ettt h e b e s bt sbesbe b see s b et e se e e e e e e et eneenennes 20
Figure 3-3: IBSREQISIEr FOMMELcooiieeie ettt e et e st e e s se e e esaenbeeseenteeaeesesasesseensesaeeneessennsens 32
Figure 3-4: IBAN REJISEN FOMMELcceieeiieieeitesiec e eees et te e st sae e e stesae e tesse e tessaenbeesaenseeseesseeasesseensesneeneessennsens 33
Figure 3-5: IBMN REQISIEr FOMMEL.........c.cieeiiiiecieeieste ettt ettt sttt e s te st e e ssae e e seenteeaeesseensesseensesneeneesseensens 34
Figure 3-6: IBASIDN REGISLEr FOMMIEL........cceiieieiiesiecees e ete sttt e st eee e e st e st e e s ae e e ssae e e sa e tesaeessesnsesseensesaeeneesseennens 35
Figure 3-7: IBCN REGISLEr FOIMEL........cceieeiieieeiteeteesteeees et este et e steeeesaeesee s e e stesae e tessaesteesaenteeseenseesseseensesseensesaeenaessennsess 35
Figure 3-8: DBS REJISIEN FOMME@L.........ccceiieieiiesiesiesteeees e eee et este et e e e ste e e stesae e e ssaestessaenbeeseenseeseaaseensesseensesaeeneesseensess 37
Figure 3-9: DBAN REQISIEr FOIMMAL........c.cieeieieieiieiiestecees et e sttt e teete e e ste s e e stesae e e sseestessaenbeessanseeseeaseeasesseensesaeeneessennsens 39
Figure 3-10: DBMN REQISIEr FOIMMIBLcoiiiiiieieeiteeeeste e ste et e steetesee e te s e e stesae e e ssa e bessaesbeeseansesaeesseensesseensesaeeneesseensens 40
Figure 3-11: DBASIDN REGISIEr FOIMMALoceeiiieiieitieiesie et e steeeesteesae s e stesae e e sae e e ssae e esa e seessassesnsesseensesaeeneesseensens 40
Figure 3-12: DBCN REJISIEN FOIMMEALc.eeiiiieeiieeiesie ettt e st ste st e ae s e et e sae e e saa e e ssaesbeesaeseeseaseensesseensesaeeneessennsess 41
Figure 3-13: DBV N REQISIEr FOMMIEL..........coiiiiieiiiiieiiecies ettt ee st ste s te s ae e e st e e ssae e e seeteeasesseeaeesreeneesneeneesseennens 44
Figure 3-14: Data Break 0n Store With Value COMPAIEeiiiiriirierie ettt sbe s st se e e 47
Figure 3-15: Data Break on Store With Valug COMPEAIEeiiiiriirierie ettt sbe s st se e e 47
Figure 4-1: TAP Register PCSAMPIE FOMMEL........c.cooiiiririeiieiisie sttt sttt st sb e bbb se e e e et ene s 49
Figure 5-1: Virtual Address Spaces with Debug Mode SEgMENTS.......ccoviiiiereeeeeeeerere e e 53
Figure 5-2: Example 1. Single-stepping one thread TCO with non-single-stepping thread TCL..........cccoveviicieneeeenne. 66
Figure 5-3: Example 2: Single-stepping two threadS TCO @and TCLooueiiiieiieieeieeeeeeeere e e 66
Figure 5-4: Example 3: Single-stepping two threads TCO and TC1 with other threads TC2 and TC3..........cccoceverereenen. 66
Figure 5-5: DEDUQ REQISIEr FOMMEL.........cceeiiiieeceseee e sttt e st e e s aa e e e se e teeaeesaeeneesreeneesaeeneesseennens 76
Figure 5-6: DEPC REQISLEr FOMMIELc.cieeiieiiieieiiesie ettt ste e te e ste et e st e e sse e e ssaesbeeseenteeseensesasesseensesneeneessennsens 83
Figure 5-7: DESAVE REQISIEr FOMMELcc.oieiiiiiieiiecete ettt ettt e s e e s e besaeesseeneesreeneesaeeneesreennens 83
Figure 6-1: Test ACCESS POt (TAP) OVEIVIEWocueeiiieieiiciesteete st ete st e steseestesae e tessa e tessaebeesaasesssassesnsesseensesaeesesseansens 86
Figure 6-2: TAP Controller State DIBOIaIMccveiieiiicieeie e este st rte e ste et e e saa e e se e beeseasseeaeesreeneesaeenaesseensens 88
Figure 6-3: TDI to TDO Path When in Shift-IR SEaLcceiiieeiieee e ne 89
Figure 6-4: TDI to TDO Path for Selected Data Register(s) when in Shift-DR Statecccovevveveeceneccicece e 89
Figure 6-5: TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected...........ccocovevveeevvneecs e 91
Figure 6-6: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selectedcccoceevviieeveieennen, 91
Figure 6-7: Device ID REQISIEr FOMMELcccveiiiieieeieste ettt st st e s s e e e se e beeaeesseeaeesreeneesaeeneesreennens 93
Figure 6-8: Implementation REQISIEr FOMMELcccoiriiiririieie ettt bbb bbb e e e e ne s 94
Figure 6-9: Data REQISIEr FOIMMELccoeiieiieieecieeies ettt te e s re e ae s e e tesae e e ssa e tessaenbeeseenseessaseeneesseensesaeeneesseensens 96
Figure 6-10: Address REQISIEr FOMMELccccveiiiieiicese et s e et e e et e e sa e e e e se e beeaeesseeaeesreeneesaeeneesseennens 99
Figure 6-11: EJTAG Control REGISLEr FOMMELcc.ecieiiieeeie et st st te sttt s e e eaeesreeaesaeeaesaeensesneensesnaensenns 100
Figure 6-12: Fastdata RegiSter FOMMIEL..........cccciiieiieieie et sttt sttt e e e s aeeaeesseeeesaeeeesaeensesseentesnnensenns 105
Figure 6-13: PCsample REQISIEr FOMMELccoiiiiririeiiriese ettt sttt s e et et be b bt bt sbe b seesaenbeneens 107
Figure 6-14: BYPass REQISIEN FOMMAL.........ccceiiriiiiieterie sttt b s bt et et e e e e e et et eaeebesbesbesbesbeseesaebeneans 107
Figure 6-15: TAP Operation EXBMPIEcoci ittt sttt s se e et ebe b e bt bt sbesbeseesbebeneens 108
Figure 6-16: Write ProCcessor ACCESS EXAMPIE.......co.iiiiiiiiie ettt et sbe b b e sae b e 110
Figure 6-17: Read Processor ACCESS EXAMPIE.......coi ittt b e et 111
Figure 7-1: Daisy-chaining of multi-core EJTAG TAP CONLrOIErS.......ccoviieieiieieeese e see et snaenne e 114
Figure 8-1: Signal Flow between Chip, Target System PCB, and Probe...........cccoiiirinenineeeeeeeese e 116
Figure 8-2: Test ACCESS POrt SIgNAIS TIMING.....ccveiuieieirieeeieeee st eree st e ste st ete st e e sre e tesaeesseeseesseeaesaeesesaeensesseensennaansenns 118
Figure 8-3: Debug INterrupt SIgNal TIMING......cc.ciiiiiere ettt et s se e e e b b aesbesbesbeseesbenbeneans 119
Figure 8-4: System ReSet SigNal TiMING......c.eeiuieieiieieieeeeseeee st eree st e ste s e e tesre e e sse e teeseesseeaeesseeaesseesesaeensessennsesseansenns 120

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

vi

Figure 8-5: Voltage Sense for 1/O SigNal TiIMINGccveiiiieieiee e s st ettt e e s e s e sreesaesaeenaesaeestesneensesnaensenns 120

Figure 8-6: EJTAG Connector MechaniCal DIMENSIONS...........ccieiieiieiieieesiesteeseseesteesesseeeesseesaesaeessesaeessesseessesseensenns 122
Figure 8-7: Target System Electrical EJTAG CONNECLIONc.ccoiiiiie ettt ettt sae et st e e snaenne e 123
Figure 8-8: Target System Layout for EJTAG CONNECLIONcceeieeiieiieiieiesteeseeteesteeeesteeeesreesaesaeesaesaeessesseensesnaensenns 124
Figure 8-9: Debug_INt_i REQISIEr FOMMELc.ocieiiiiee ettt e e s re e aesreeaesaeentesaeenseenaensenns 136
Figure 8-10: RESEt REJISIEr FOIMMBLcccveiiieiieieesie et e ettt ee st e te st e e st e e ere e tesaeesseeaeesseeneesaeeneesaeensesseentenneansenns 137
Figure 8-11: Cold RESEL REGISLEr FOIMMELccviivieiieeieieeiese e st ete st et st e te st e te st et esaeesseeaeesseeeesseesesaeensesseensesnaensenns 137
Figure 8-12: NIMI REGISLEr FOIMMIALcc.eeieitieieeteeiteeiesie et e st e e st e ae st e teste e tesse e tesse e teeaeesseeasesseeneesaeensesaeensesseentennaansenn 138
Figure 8-13: Debug INterrupt REQISIEr FOIMELooiiiiiiiiereeeee ettt st sbe b e sae b e 138
Figure D-1: An EXample IMPIEMENTALTIONccoiiiiiie ettt sb e s b saesae b e 139

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: EJTAG TAP INSITUCHIONS.ccueitiititee ettt sttt sttt st e et et se st ebesbesbesh et et se e s et e e et eneesennenaeas 3
Table 1-2: Overview of Coprocessor 0 RegiStErS fOr EJTAG . ..ottt s e sae s 8
Table 1-3: Overview of Debug Control Register as Memory-Mapped Register for EJTAG.........ocvieiineieneieeeeeneee 8
Table 1-4: Overview of Instruction Hardware Breakpoint REQISIENS........coii i e 8
Table 1-5: Overview of Data Hardware Breakpoint REQISIEIS........couiiiirirerieeceeeeeeees st st e sne s 9
Table 1-6: Overview Of Test ACCESS POI REQISLEIS........cciiieiee et st ee e e e e st re e saesre e sae e e tesae e tessaereeneenes 10
Table 1-7: RegiSter FIEId NOGLIONSc.ccieiicieicceese sttt e e e be e e s reeaesaeeneesaeestesaeentesanentenneenes 13
Table 2-1: DCR RegiSter Field DESCIIPLIONS.c.oiviieieieieieeieee ettt sttt sttt ae bbbt bt se s b e e e e ene e ene 16
Table 3-1: Instruction Breakpoint REGISLEr SUMIMAIYccuriiiiiiiriiesese ettt e 21
Table 3-2: Data Breakpoint REQISIEr SUMIMAIYcc.oiiiiiiiiire ettt b st se e s bbb e 21
Table 3-3: Instruction Breakpoint Condition Par@MELErS............ccoiiiriiirere et s 22
Table 3-4: Data Breakpoint Condition ParamELEN'Scccciriririrerenese et sb st sa s b b e s se e e 24
Table 3-5: BY TELANE at Unaligned Address for 32-bit PrOCESSOISccvveeiiirienicese e 27
Table 3-6: BY TELANE at Unaligned Address for 64-hit PrOCESSOIScccevveiiiiiesiicese et 27
Table 3-7: Behavior on Precise Exceptions from Data Breakpoints..........coevieeierieinineeesiene e 29
Table 3-8: Rules for Update of BS Bits on Precise Exceptions from Data Breakpoints............ccoceveeereneneneneneesienenenne 29
Table 3-9: Rules for Update of BS Bits 0N Data TriggerPOINLScccieiererierierieiesee e sresie et see s e 31
Table 3-10: Instruction Breakpoint REQISLEr MaDPING.ccccererirerereriresie et sb st sre b b e s b see e ese e ene 32
Table 3-11: IBS RegiSter Field DESCIIPLIONS.cueiviieieeeieieeieee ettt sttt st ettt ae bbb bt e e b e e e e e e e ene 32
Table 3-12: IBAN RegiSter Field DESCIIPLIONS.couieeieeeieiieieee ettt sttt b bbbt e b e e e e 34
Table 3-13: IBMN Register Field DESCIIPLIONScciieeeieieeiire ettt sttt b et sb e s bt e b ne e e se e 34
Table 3-14: IBASIDN Register Field DESCIIPLIONSc.cooveieirierieieeiesie ettt b st sa s e ne e e 35
Table 3-15: IBCN Register FIeld DESCIPLIONScoueieieieieeieee ettt sttt b et sa e b e s e e e 36
Table 3-16: Data Breakpoint REQISIEr MaDPINGcoveveeeeeieriereeteetesie sttt e s see et eae b aesae b et see s e se e e e eseeseeneene 37
Table 3-17: DBS RegiSter Field DESCIIPLIONS.......civieeieeeieieeiere ettt sttt sb bbbt e s b ne e e e e e ene 38
Table 3-18: DBAN RegiSter Field DESCIIPIIONSceeieeeieieeiire ettt sttt bbbt e s se e e se e 39
Table 3-19: DBMN Register Field DESCIIPLIONS..... ..ottt sttt b et sae bt e b ne e e e 40
Table 3-20: DBASIDN Register Field DESCIIPLIONS.ccuiiieiririeieeterie et sb et se s e b e 41
Table 3-21: DBChn Register FIeld DESCIIILIONS........ccucieeeieiirieee ettt sttt sb st sa e s b et e b se e e e 42
Table 3-22: DBVN Register Field DESCIIPLIONSooeeieieieiieiirie ettt sttt b et sa e st e b ne e e 44
Table 5-1: Presence Of the dSEg SEOMENT ..o e et e e e e s ae e sae s ae e tesae e tesneenteeneenes 53
Table 5-2: Physical Address and Cache Attribute for dseg, dmseg and drseg.......ccceceeveeeciceece e 54
Table 5-3: Accessto dmseg Segment AdAreSS RANGEccvevuiiieie et sae e et e e tesra e reennenes 54
Table 5-4: Accessto drseg Segment AQArESS RANGE.........ocieviiiieie et e et ae e e sae e e tesae e tesaeeteeneenes 55
Table 5-5: SYNC INSrUCON REFEIENCES........oouiieeieee ettt b et et b et e b ne e e e 57
Tabhle 5-6: EXECULION HAZAITScoueiuiiiiiterie sttt ettt h et h e b e bt sa e b et se e b et e e e e eneeneeaeene 58
Table5-7: Hazard Clearing INSITUCHIONScuiiieiicieee ettt sttt e et e a e aeeaesaeenaesaeestesaeentesanensenneenes 59
Table 5-8: Priority of Non-Debug and Debug EXCEPLIONS..........ccoiiiiiiinie et 60
Table 5-9: Debug EXCEPLION VECLOr LOCALION.......cvieeieieeeieeiieie ettt sttt se ettt eae bbb bt se b e e e e e e e ne e e 61
Table 5-10: Exception Handling in DEDUG IMOTEoeiiiiieere et e 68
Table 5-11: Coprocessor 0 REQISIEISTOr ETTAGottt sttt b et sa s bt e s ne e e 75
Table 5-12: Debug Register Field DESCIIPLIONS.........couiieieeriiee ettt ettt b et sbe bt e b e e e se e 76
Table 5-13: DEPC Register FIeld DESCIIILIONc.ieeieeeieieeicee sttt ettt se e e s 83
Table 5-14: DESAVE Register Field DESCITPLIONScoueieirireeieete sttt ettt b et se s bbb 84
Table 6-1: TAP INSITUCHION OVEIVIEWWc.viitiieiieieseereeie ettt sttt st e s e e e s et eheeb e s bt sa e e b et se e s e be e e e eneeneeaeene 90
Table 6-2: EJTAG TAP DA REJISIEISc.eiviiiiiieitiestee sttt e e s n e nn e nn s 92
Table 6-3: Device ID Register Field DESCIIPLIONScc.oiviieirireeieete sttt sttt b et sa s b e e e e e 93
Table 6-4: Implementation Register Field DESCIIPLIONSccuiiriririiirese e e 95
Table 6-5: Data Register Field DESCIIPIIONScoueriieeieeeieeeieee ettt ettt ae b bt se e bt e b e b e e e e e se e 96
Table 6-6: Data Register Contents for 32-bit PrOCESSOIS.......cciiieiiiieie et s eaee s 97
EJTAG Specification, Revision 3.10 vii

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

viii

Table 6-7: Data Register Contents for 64-hit PrOCESSOIS.......cciiieie et se e te s e reenee s 98

Table 6-8: Address Register Field DESCIIPLIONS.........couiieeirire ettt ettt b et sb e b b e b b se e e e e 99
Table 6-9: EJTAG Control Register Field DESCIIPLIONSccviiriririrt ettt et s s s sn e 100
Table 6-10: Combinations of ProbTrap and ProbEN............o e e 105
Table 6-11: Fastdata Register Field DESCIIPLIONcoueieieeieeiee ettt ettt b e bbb e e e 105
Table 6-12: Operation Of the FASTDATA BCCESScciierieieieeee ettt sttt sttt st e se et et se et et ebesbesbesaesbesbeseeseeeenes 106
Table 6-13: PCsample Register Field DESCIiLIONS........coueiiieieeeeetiriere sttt ettt s sb et e e s 107
Table 6-14: Bypass Register Field DESCIIPIION.........couiieieieeieeeeeet ettt ettt b e b bbb e e e s 107
Table 6-15: ManuflD Field Value EXMPIES ..ottt sttt et b e b e bt e nes 108
Table 6-16: Information Provided to Probe at ProCESSOr ACCESS........cciirireririiriesie ettt s es 109
Table 8-1: Test ACCESS POrt SIgNAlS OVEIVIEWcc.eeiuieieie et eee st eee st e sae st e e st e st e e s re e besaeessesaeessesaeesaeenaeseesnsessenn 116
Table 8-2: Debug INLErrupt SIGNal OVEINVIEIWc..oiuieiieieeeeeeeee ettt et e ettt be b bt saesbe st se e e e e s 117
Table 8-3: System RESEL SIgNAl OVEIVIEWocueiieeiecieceeste et s e ee st sae s e te e e e ste e tesseebeeaeensesaeessesneesaesneesresnsessenn 117
Table 8-4: Voltage Sense for 1/0O SIgNal OVEIVIEW.........cceiiii ettt sttt e e e e st e e sreseesreenaesaeennesrean 117
Table 8-5: Test Access Port SIgnalS TIMING VEIUES.........coov ettt sttt te et saeesne e e snesnaesresnnesnean 118
Table 8-6: Debug Interrupt Signal TIMING VAIUES.oouiiiiieeeeee et s et s 119
Table 8-7: System Reset Signal TIMING VaAlUEccueeiiiieie ettt et st s e e re e snesaesreenaesnean 120
Table 8-8: Voltage Sense for 1/0O Signal TIMING VAIUE.........cc.coii ittt ste e e ae e enesnean 120
Table 8-9: DC EIeCtriCal CRaraCteriStICS.c.ueeuirieriereeieie ettt sttt et e et be b b saesb et e e e s 121
Table 8-10: EJTAG CONNECLOT PINOULcoutitiitiiterte sttt sttt sttt be et b e s e e e et e se e e e st ebeebesbesaesbesbeseenneneenes 122
Table A-1: Debug Exception Vector Location for R3k Privileged Environment ProCESSOrS........cccceerererenenenienieniens 127
Table A-2: Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors..........ccocevevveeene. 128
Table A-3: ASID Field iN IBCN REJISIENcc.oiiiteiierieieie ettt sttt et e se e e ettt be bt s b e s besaesbe st see s enee s 128
Table A-4: Offsets for Data Breakpoint Registers for R3k Privileged Environment Processorsccocevvevenereenieniene 128
Table A-5: ASID Field iN DBCN REJISIESooiiiiieriiieie ettt sttt sttt e e ettt be b b sae et et se e e e e s 129
Table D-1: SMCBU REGISIEr MEMOIY MaDeiuiiiiriiieieseeeeiee ettt sttt se et e s e e et ae b e besaesbe st see e et s 135
Table D-2: MCBU Debug_Int Register MemMOry Maccciiiiiiinire sttt st st s 135
Table 8-11: Debug_Int_i Register Field DESCIIPLIONS.......ccccoveirereeiiriere sttt ettt s sb e s 136
Table 8-12: Reset Register Field DESCIIPLIONS.coui ittt sttt et et be b bt e b b e e e s 137
Table 8-13: Cold Reset Register Field DESCIPLIONS......c..oiviieieieeeierierie sttt ettt s sb et e 137
Table 8-14: NMI Register Field DESCIIPLIONS.......ciuiiiiieierieeeeeee ettt sttt sttt et be b b sae b b se e e s 138
Table 8-15: Debug Interrupt Register Field DESCIiPLIONS..........coiiririii ettt s s 138
LI o (] = R (Y1 o] I o T (] Y/ S 141
EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

The EJTAG System

This specification describes the behavior and organization of on-chip EJTAG hardware resources as seen by software
and by external agents. Software and firmware components of an EJTAG-based debugging environment are outside the
scope of this document, asis the underlying physical implementation of EJTAG features.

This chapter contains the following sections:

» Section 1.1, "Introduction to EJTAG"

* Section 1.2, "Historical Perspective"

* Section 1.3, "EJTAG Capabilities'

 Section 1.4, "EJTAG Components and Options'

 Section 1.5, "EJTAG-Specific Coprocessor 0 Registers'

» Section 1.6, "Memory-Mapped EJTAG Registers'

* Section 1.7, "Memory-Mapped EJTAG Memory Segment"

» Section 1.8, "EJTAG Test Access Port Registers'

 Section 1.9, "The Implications of Multiprocessing and Multithreading for EJTAG"

* Section 1.10, "Related Documents"

* Section 1.11, "Notations and Conventions"

Comments or questions on the EJTAG Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.

1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

1.1 Introduction to EJTAG

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance tuning capabilities
to MIPS® microprocessors and to system-on-a-chip components having MIPS processor cores. It exploits the
infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external interface, and
extends the MIPS instruction set and privileged resource architectures to provide a standard software architecture for
integrated system debugging.

1.2 Historical Perspective

Emulating and debugging embedded hardware and software in a real-world environment remains one of the most
difficult tasksfacing designers of embedded systemstoday. Embedded microprocessor cores are growing more complex,
have increasingly higher performance, and use larger software programs than ever before. To meet the challenge,

EJTAG Specification, Revision 3.10 1

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

embedded systems engineers and programmers must have advanced tools to perform the required levels of in-circuit
emulation and debugging.

The MIPS architecture has historically provided a set of primitivesfor debugging software and systemsthat is consistent
with the“RISC” philosophy of integrated hardware/software architecture, providing functionality at a minimum costin
silicon. The base philosophy of integrated M1PS32®/M1PS64® Instruction Set Architecture (ISA) and MIPS16e™
Application Specific Extension (ASE), includes:

* A breakpoint instruction, BREAK, whose execution causes a specific exception.

» A set of trap instructions, whose execution causes a specific exception when certain register value criteria are
setisfied.

» A pair of optional Watch registers that can be programmed to cause a specific exception on aload, store, or
instruction fetch access to a specific 64-bit doubleword in virtual memory.

» Anoptional TLB-based MMU that can be programmed to trap on any access, or more specifically, on any storeto a
page of memory.

All of these mechanisms assume software support in the form of an operating system, or at |east a software monitor, that
can modify program memory to insert breakpoints, manipulate the system coprocessor to set watchpoints and change
virtual memory page protection, handle the exceptions produced, and communicate with a user. Additional external
hardware tools can supplement these basic mechanisms, such as logic analyzers and in-circuit emulators (1CEs) for
additional control and information about program execution. Figure 1-1 shows a possible setup for the debug of an

embedded system.
CPU Pinout or System Prototype
System Bus
CPU
I |
ESHZSZ > Deb Program
thernet . ugger
Pe”pher.a' ROM RAM or
%\%6 1/0 Device FLASH

Debug Host

Figure 1-1 Setup of Debug System without EJTAG
While this model of debug works well for many sorts of system, it has the following shortcomings when the system to
be debugged is a highly-integrated design:

e System-On-a-Chip (SOC) component design no longer provides an external interface to the processor pin-out or
system bus, making the use of logic analyzers and | CEs difficult to impossible.

 Debugging based on software breakpoints or the insertion of trap-on-condition instructions assumes that programs
residein RAM. Itisimpractical for fully ROM-based systems and assumes support in the O/S for these techniques.

» For consumer electronic applications, acommunication port like Ethernet or RS-232 serves no purpose beyond
software debug and adds disproportionately to the cost and size of the design.

» Similarly, the ROM necessary to support a debug software monitor on a consumer electronic application could add
unacceptable costs.

One adternative to ICE is a specially-packaged device that is a bond-out of the chip. But this solution has the
disadvantage of adding to overall product development cost. It also adds the extra requirement of a specially-designed
PCB that is needed to access the signals available only on the development chip.

2 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.2 Historical Perspective

On-Chip Debug (OCD) providesasolution for al these issues, and the EJTAG Debug Sol ution defines an advanced and
scalable feature-set for OCD that allows debugging while executing CPU code at full speed.

One could say that OCD putsthe | CE functionality on the chip. Although OCD doesadd alittle extradie areafor features
that are only required during devel opment, the die areais minimal. Moreimportantly, with devel opment time and overall
time-to-market becoming increasingly critical, the trade-off between die area and time seems reasonable.

Having the debug solution on-chip also makes it possible to use it for software upgrades, and field testing, and for
diagnosticsin the final product.

EJTAG supplements the MIPS Architecture in dealing with these problems. A processor or system-on-a-chip
implementing EJTAG can betied into a JTAG scan chain and comprehensively debugged using an external EJTAG
probe connected to the system’s JTAG TAP interface, as shown in Figure 1-2.

System Prototype

Debug host gipernet Other
- RS232 EJTAG probe JTAG TAP System ool
C.

et interface Logic | | with
——»| TAPaccess |« > 9 EJTAG
JTAG scan SOC ASIC/ASSP

%ﬁ’ chain

Figure 1-2 Setup of Debug System with EJTAG

EJTAG uses the five-pin interface defined in |EEE 1149.1 JTAG, which forms the Test Access Port (TAP). The five
pins (TRST, TCK, TMS, TDI, and TDO) can be reused to limit pin count if the TAP is on-chip for some other purpose.

TRST __
TMS__| TAP Controller (@)

TCK_E: _________________________

DO <
e =||||||||||||||||I||>
TAP Instruction, data &
PORT control registers

Figure 1-3 Test Access Port (TAP) to internal connections.
ThisEJTAG interface through the TAP isaserial communications channel with frequenciesup to 40 MHz on TCK. The
TAP Controller uses the TMS pin, which determines if instruction or data registers should be accessed in the shift path
between TDI and TDO. The TRST signal is used for reset of the TAP.

A number of TAP instructions are defined in EJTAG that allow access to corresponding EJTAG registers, aslisted in

Table 1-1.
Table 1-1 EJTAG TAP Instructions
EJTAG Instructions Description of register usage
IDCODE Device Identification Register with manufacturer, part number, and version
ID for the specific chip.
IMPCODE Isrp?ee:ll?lrrc]?:rg%mn Register indicating implemented EJTAG featuresin this
ADDRESS EJTAG Address Register used to access the on-chip address bus.
EJTAG Specification, Revision 3.10 3

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

Table 1-1 EJTAG TAP Instructions

EJTAG Instructions Description of register usage

DATA EJTAG Data Register used to access the on-chip data bus.

CONTROL EJTAG Control Register used for setup and status information.

ALL Accessto EJTAG Address, Data and Control registersin one chain.
EJTAGBOOT Causes processor reset followed by a debug exception.
NORMALBOOT Causes processor reset followed by execution of the reset handler.
FASTDATA Accessto the Data and FastData registers.

TCBCONTROLA ,(D_\I_Cégs)s to the control register TCBControl A in the Trace Control Block
TCBCONTROLB Access to the other control register TCBControlB in the TCB.
TCBDATA Provides access to the registers specified by the TCBCONTROL Bggg field.
TCBCONTROLC Accessto the another control register TCBControlC in the TCB.
PCSAMPLE Access the PCsample register.

BYPASS One-hit register with no operation.

The size of the EJTAG Address and Data Regi sters depends on the specific implementation, but usually they are at least
32 bits. The size of the Device ID, Implementation, and EJTAG Control Registersis 32 bits; these registers allow the
user to do debug setup and provide important status information during the debug session. For exact descriptions and
size of these registers see Section 6.4 “Instruction Register and Specia Instructions’ on page 89.

1.3 EJTAG Capabilities

1.3.1 Debug Exception and Debug M ode

To allow inspection of the CPU state at any time in the execution flow, a debug exception with priority over al other
exceptionsis introduced.

When a debug exception occurs, the CPU goesinto Debug Mode, a special mode with no restrictions on access to
coprocessors, memory areas, etc., and where usual exceptions like address error and interrupt are masked.

The debug exception handler is executed in Debug M ode and provided by the debug system. It can be executed from the
probe through a processor access, or may also residein the application code if the devel oper chooses to use a debug task
in the application.

An overall requirement is that debugging be non-intrusive to the application so execution of the application can be
continued after the needed debug operations. However, |oss of rea-time operation is inevitable when the debug
exception handler is executed. The system designer may chose to indicate debug mode by a signal to certain hardware
modules to freeze them when executing the debug exception handler.

EJTAG provides a standard debug 1/0 interface, enabling the use of traditional MIPS debug facilities on
system-on-a-chip components. In addition, EJTAG provides the following new capabilities for software and system
debug.

4 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.3 EJTAG Capabilities

1.3.2 Off-board EJTAG Memory

EJTAG alows a MIPS processor in Debug Mode to reference instructions or data that are not resident on the system
under test. This EJTAG memory is mapped to the processor asif it were virtual memory in the kseg3 segment, and
references to it are converted into transactions on the TAP interface. Both instructions and data can be accessed in
EJTAG memory, which allows debugging of systems without requiring the presence of a ROM monitor or debugger
scratchpad RAM. It also provides a communications channel between debug software executing on the processor and
an external debugging agent.

The EJTAG probe polls the EJTAG Control Register through the TAP, and a bit in this register indicates when a
processor access is pending. The physical address of the transaction is then available in the EJTAG Address Register,
and the transaction size and read/write indication are available in the EJTAG Control Register. The EJTAG Data
Register isthen accessed either to get datafrom awrite or to provide datafor aread. Finally the EJTAG Control Register
is updated to indicate that the processor accessis done.

Going through this sequence requires on order of 200 TCK periods for accessto 32-bit address and data registers. With
a40 MHz TCK, the accesstimeisin therange of 5 us, resulting in abandwidth in the range of 800 KB/sfor instruction
or data transfers. However, the servicing may be optimized for instruction stuffing since the address depends on the
provided instructions and could thus be predicted to some extent. In addition, the FASTDATA feature of the TAP
controller permits fast download or upload of data between target memory and debug memory.

1.3.3 Debug Breakpoint I nstruction

EJTAG introduces a new breakpoint instruction, SDBBP, which differs from the MI1PS32 and MIPS64 BREAK
instruction in that the resulting exception, like the single-step and hardware breakpoint debug exceptions described
below, places the processor in Debug Mode and can fetch its associated handler code from EJTAG memory.

1.3.4 Hardware Breakpoints

EJTAG defines various types of hardware breakpointsfor interrupting the CPU at certain transactions on the CPU buses.
The debug exception happens before the bus transaction causing the exception alters any memory or CPU state, e.g., a
fetched instruction with abreak is not executed, or a data load/store transaction is not allowed to change the register file
or the memory.

Hardware breaks on instructions have the advantage over software debug breaksin that it is possible to set them in any

addressarea. Furthermore, if memory cannot be altered by inserting SDBBP codes, the hardware breaks can still be used.

Hardware data breakpoints allow breaks on load/store operations.

EJTAG implements two kinds of breaks;

* Instruction breaks, in which abreak may be set on an instruction fetch from a specific virtual address

 Databreaks, in which abreak may be set on aload/store reference from a specific virtual address, which additionally
can be qualified by adata value.

There may be up to 15 break channels of each type implemented, and each break channel may be programmed with
address, address mask, ASID, and reference type.
1.3.5 Single-Step Execution

EJTAG provides support for single-step execution of programs and operating systems, without requiring that the code
residein RAM.

EJTAG Specification, Revision 3.10 5
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

1.4 EJTAG Components and Options

EJTAG hardware support consists of several distinct components. extensions to the MIPS processor core, the EJTAG
Test Access Port, the Debug Control Register, and the Hardware Breakpoint Unit. Figure 1-4 shows the relationship
between these componentsin an EJTAG implementation. Some components and features are optional, and are

implemented based on the needs of an implementation.

Figure 1-4 Simplified Block Diagram of EJTAG Components

Memory
MMU <> Bus Interface —3 stem
(TLB) ‘ > Unit (BIU) Iﬁ}/erface
Cache
Processor - Controller
and
Coprocessor 0 []
PC drseg dmseg
ADDR access access
ASID bus bus
TYPE
BYTELANE
A A ! ! DATA
Debug 1 —
i Hardware b N
exception I
l Breakpoint :4 I E%TAAI\:G |— TAP
L _Unit Lo -
Interruptand NMI T — — 7 71
control etc. | Debug Control -
[Register (DCR)|< Probe enable indication
b= — — Debug exception control, debug interrupt request etc.
Debug interrupt request DINT

[] Non-EJTAG features

1.4.1 EJTAG Processor Core Extensions

[] Required EJTAG features

[_j Optional EJTAG features

A MIPS processor or core supporting EJTAG must support EJTAG-specific instructions, additional system coprocessor
(CPO) registers and vectoring to Debug Exceptions, which puts the processor in a special Debug Mode of execution, as

described in Chapter 5 on page 51.

EJTAG processor core extensions are required in any EJTAG implementation, with the following

implementati on-dependent options:

» Thesingle-step execution featureis optional. The presence or absence of single step execution capability isindicated

to debug software via the CPO Debug register.

» The debug interrupt request from the TAP viathe DINT probe signal or through an implementati on-dependent

internal signal isoptional.
» The Test Access Port (TAP) isoptional.
» The Hardware Breakpoint Unit (HBU) is optional.

» The Debug Control Register (DCR) is optional. Note that it is required if either the TAP or the HBU isimplemented.

» The PC Sampling feature of EJTAG is optional.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.5 EJTAG-Specific Coprocessor 0 Registers

1.4.2 EJTAG Test Access Port

The EJTAG Test Access Port (TAP) provides a standard TAP interface to the EJTAG system. It is necessary for all
TAP-based EJTAG capabilities for host-based debugging and processor access to external debug memory.

The TAP is optional. Implementation without a TAP implicitly disallows the EJTAG memory and TAP system access
capabilities, but provides the remaining EJTAG services (Debug Mode, single-step, software and hardware breakpoints)
while executing from RAM or ROM. Refer to Chapter 6 on page 85 for more information on the TAP.

Implementation without a TAP also disallows the PC Sampling feature.

The presence or absence of off-board EJTAG memory isindicated to debug software via the Debug Control Register.

1.4.3 Debug Control Register

The Debug Control Register (DCR) isamemory-mapped register that can beimplemented as part of either the processor
core or an external logic block. It indicates the availability and status of EJTAG features. The memory-mapped region
containing the DCR is available to software only in Debug Mode.

Implementation of the DCR is optional, but the DCR must beimplemented if either the EJTAG TAP or EJTAG hardware
breakpoints are implemented. The presence or absence of the DCR isindicated in the CPO Debug register. Refer to
Chapter 2 on page 15 for more information on the DCR.

1.4.4 Hardware Breakpoint Unit

The Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and data hardware
breakpoints. The memory-mapped region containing the hardware breakpoint registersis accessible to software only in
Debug Mode.

EJTAG hardware breakpoint support, as described in Chapter 3 on page 19, is optional, and can be implemented with
the following functionality:

» From zero to 15 independent instruction hardware breakpoints
» From zero to 15 independent data hardware breakpoints

* Breakpoint address comparisons for instruction and data hardware breakpoints optionally qualified with a
comparison of the MMU ASID

 Data hardware breakpoints optionally qualified with a data value comparison
The presence or absence of hardware breakpoint capability isindicated to debug software in the DCR.

The number of breakpoints and the availability of optional qualifiersisindicated to debug softwarein the instruction and
data breakpoint status registers.
1.5 EJTAG-Specific Coprocessor 0 Registers

This section summarizes the registers and special memory that are used for the EJTAG debug solution. More detailed
information regarding mandatory and optional registers and memory locations is described in the relevant chapter.

EJTAG Specification, Revision 3.10 7

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

Table 1-2 summarizes the Coprocessor O (CPO) registers. These registers are accessible by the debug software executed
on the processor; they provide debug control and status information. General information about the debug CPO registers
isfound in Section 5.8, "EJTAG Coprocessor 0 Registers' on page 75.

Table 1-2 Overview of Coprocessor 0 Registersfor EJTAG

Register
Register Name Mnemonic Functional Description Reference
Debu Debu Debug indicationsand control sfor the processor, including | See Section
9 9 information about recent debug exception. 5.8.1 onpage 75
Debug Exception DEPC Program counter at last debug exception or exceptionin See Section
Program Counter Debug Mode. 5.8.2 on page 83
.) } See Section
Debug Exception Save DESAVE Scratchpad register available for the debug handler. 5.8.3 on page 83

1.6 Memory-Mapped EJTAG Registers

The memory-mapped EJTAG registers are located in the debug register segment (drseg), which is a sub-segment of the
debug segment (dseg). They are accessi ble by the debug software when the processor is executing in Debug Mode. These
registers provide both miscellaneous debug control and control of hardware breakpoints. General information about the
debug segment and registersis found in Section 5.2.2 on page 52 and Section 5.2.2.2 on page 55.

1.6.1 Debug Control Register

Table 1-3 summarizes the Debug Control Register (DCR), which provides miscellaneous debug control.

Table 1-3 Overview of Debug Control Register as M emory-Mapped Register for EJTAG

Register
Register Name Mnemonic Functional Description Reference

Indicates available EJTAG memory, and controlsenabling | See Chapter 2 on

Debug Control Register DCR and disabling of interrupts and NMI in Non-Debug Mode. | page 15

1.6.2 Instruction Hardware Breakpoint Registers

Table 1-4 summarizes the instruction hardware breakpoint registers, which are controlled through a number of
memory-mapped registers. Certain registers are provided for each implemented instruction hardware breakpoint, as
indicated with an “n”. General information about the instruction hardware breakpoint registersis found in Section

3.6 on page 31.
Table 1-4 Overview of Instruction Har dware Breakpoint Registers
Register
Register Name Mnemonic Functional Description Reference
Instruction Breskpoint IBS Indicates number of instruction hardware breskpointsand | See Section
Status status on a previous match. 3.6.1 on page 32
Instruction Breakpoint . See Section
Address (n) IBANn Address to compare for breakpoint n. 362 on page 33
8 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.7 Memory-Mapped EJTAG Memory Segment

Table 1-4 Overview of Instruction Har dware Breakpoint Registers (Continued)

Register
Register Name Mnemonic Functional Description Reference
Instruction Breakpoint : ; See Section
Address Mask (n) IBMn Mask for address comparison for breakpoint n. 3.6.3 on page 34
Instruction Breakpoint] See Section
ASID (n) IBASIDn ASID value to compare for breakpoint n. 3.6.4 on page 34
Instruction Breakpoint IBCn Control of breakpoint n: comparison of ASID and gener- See Section
Control (n) ated event on match. 3.6.5 on page 35

1.6.3 Data Hardware Breakpoint Registers

Table 1-5 summarizes the data hardware breakpoint registers, which are controlled as a number of memory-mapped
registers. Certain registers are provided for each implemented data hardware breakpoint, asindicated with an “n”.
General information about the data hardware breakpoint registersis found in Section 3.7 on page 37.

Table 1-5 Overview of Data Har dware Breakpoint Registers

Register
Register Name Mnemonic Functional Description Reference
Data Breakpoint Status DBS Lr:]d;csﬁsigld?&e; ((:)l]; -data hardware breakpoints and status §e7e 1Sec?rt]i ng 037
(Dn:;\ta Breakpoint Address DBAnN Address to compare for breakpoint n. ge;zzSe(;:rt]l ?)gg ©39
'\D/Iegg(B&rn?akpoi nt Address DBMn Mask for address comparison for breakpoint n. ?;ssegg ggg 39
Eastl%B(rne)akpoi nt DBASIDn ASID value to compare for breakpoint n. §e7e fegrt]i gr:\g e 40
oo | ony | SSEmE le te, | secen
event on match.
\IZ/)éIaISeB(Le)akpoi nt DBVn Data value to match for breakpoint n. 3597‘3656%' ggg 043

1.7 Memory-Mapped EJTAG Memory Segment

The processor’s memory-mapped EJTAG memory islocated in the debug memory segment (dmseg), whichisa
sub-segment of the debug segment (dseg). It is accessible by debug software when the processor is executing in Debug
Mode. The EJTAG probe handles all accesses to this segment through the Test Access Port (TAP), whereby the
processor has access to dedicated debug memory even if no debug memory was originally located in the system. General
information about the debug segment and memory isfound in Section 5.2.2 on page 52 and Section 5.2.2.1 on page 54.

EJTAG Specification, Revision 3.10 9

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

1.8 EJTAG Test Access Port Registers

1.9

10

The probe accesses EJTAG Test Access Port (TAP) registers (shown in Table 1-6) through the TAP, so the processor can

not access these registers. These registers allow specific control of the target processor through the TAP. General
information about the TAP registersis found in Section 6.5 on page 92.

Table 1-6 Overview of Test Access Port Registers

Register
Register Name Mnemonic Functional Description Reference
) e . ey | . See Section
Device ID (none) | dentifies device and accessed processor in the device. 6.5.1 on page 93
. | dentifies main debug featuresimplemented and accessible | See Section
Implementation (none) through the TAP. 6.5.2 on page 94
Data (none) Data register for processor accesses used to support the See Section
EJTAG memory. 6.5.3 on page 96
Address register for processor access used to support the See Section
Address (none) EJTAG memory. 6.5.4 on page 99
Control register for most EJTAG features used through the | See Section
EJTAG Control ECR TAP 6.55 on page 99
. — See Section
Bypass (none) Provides a one-bit shift path through the TAP. 6.5.8 on page 107
Fastdata (none) Providesaone-bit tagin front of the dataregister to capture | See Section
the processor access pending hit for fast data transfer. 6.5.8 on page 107
; SeethePDtraceand
TCBContolA (none) #:gﬁ] by the Trace Control Block to hold control bits for TCB specification
9- document
: Seethe PDtraceand
TCBControlB (none) #:g::] by the Trace Control Block to hold control bits for TCB specification
9- document
SeethePDtraceand
Used by the Trace Control Block to access data from frepipe
TCBData (none) on-chip trace memory if present g&irﬁ;ﬁ' fication
; SeethePDtraceand
TCBControlC (none) #;;(3] by the Trace Control Block to hold control bits for TCB specification
9 document
See Section
; . . 6.5.7 on page 106
Used by the PC Sampling logic to write out the PC sample p
PCsample (none) and associated information and Chapter 4, *PC

Sampling,” on page
49,

The Implications of Multiprocessing and Multithreading for EJTAG

The MIPS® MT ASE allows a processor to implement multiple VPEs (Virtual Processing Elements). Theoretically, as

far as applications are concerned, this view of the hardware (which must be supported by system software), is no

different from that where there are multiple physical processors present. MIPS MT also allows multiple thread contexts

within a VPE. Seethe MIPS MT specification for details.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.10 Related Documents

EJTAG visibility is on aper-VPE or per-processor basis. That is, each debug unit implemented in the system exposes a
TAP controller to the external probe hardware. The probe software must be aware of the number of daisy-chained debug
units and their order so that it can communicate correctly to the right debug unit.

Note that by the MIPS MT ASE specification, an implementation with multiple VPEs and hence multiple debug units,
most of the EJTAG hardware is physically not shared between the VPES. For example, each VPE hasits own copy of
the Debug Register, Debug Control Register, TAP controller, and TAP registers. But the hardware breakpoint registers
may either be shared or not shared by the VPEs. The TAP controllers are dai sy-chained.

The other sections in this document that describe changes for the MIPSMT ASE are:

» Debug Exception in the presence of MIPS MT (see Section 5.2 on page 51).

» Single-Step control bit in the Debug register (see Section 5.8 on page 75 and Section 5.3.8 on page 64).

» Modifications to the Instruction and Data breakpoints matching conditions (see Section 3.3 on page 22).

» Modifications to the Instruction and Data Hardware Breakpoint registers for MIPS MT (see Section 3.6.5 on page
35, Section 3.7.4 on page 40, and Section 3.7.5 on page 41).

» Modification to indicate whether the Instruction and Data Hardware Breakpoints are shared or not shared across the
VPES (see Section 3.6.1 on page 32 and Section 3.7.1 on page 37).

A bit added to the DCR (VPED), to indicate whether the current VPE is disabled or enabled.

* A bit added to the Debug register to allow MIPS MT thread contexts (TCs) to be taken off-line during debug (see
Section 5.8.1 on page 75).

1.10 Related Documents

The following documents are useful in understanding this specification.
* |EEE Std. 1149.1-1990, |EEE Standard Test Access Port and Boundary-Scan Architecture

MIPS32® Architecture for Programmers, Volumes |-1V

MIPSB64® Architecture for Programmers, Volumes |-1V
The PDtrace™ Interface and Trace Control Block Specification (MD00439)

MIPS32® Architecture for Programmers Volume IV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture (MDOO0378)

1.11 Notations and Conventions

This section defines notations and conventions that are used throughout this document.

1.11.1 Compliance

Throughout this document, compliance levels are indicated for specific features. Features are defined as Required,
Optional, or Recommended.

Features defined as required are required of all processors claiming compatibility with the EJTAG architecture.
Features defined as optional provide a standardization that might or might not be appropriate for a particular EJTAG

implementation. If such afeature isimplemented, it must be implemented as described in this document for a processor
to claim compatibility with the EJTAG architecture.

EJTAG Specification, Revision 3.10 11

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
optional field within arequired register, the register must beimplemented, but the field does not have to be implemented,
depending on the needs of the implementation. Similarly, if thereis arequired field within an optional register, if the
register isimplemented, it must have the specified field.

Features defined as recommended should be implemented unless there is an overriding need not to do so.

1.11.2 UNPREDICTABLE and UNDEFINED Operations

These definitions of UNPREDICTABLE and UNDEFINED are similar to the descriptionsin the MIPS32 and MIPS64
specifications. They areincluded here for those readers who are not familiar with these documents.

Theterms UNPREDICTABLE and UNDEFINED describe the behavior of the processor in certain cases. UNDEFINED
behavior or operations can occur only as the result of executing instructionsin a privileged mode (in Kernel Mode or
Debug Mode, or with the CPO usable bit set in the Status register). Unprivileged software can never cause UNDEFINED
behavior or operations. Conversely, both privileged and unprivileged software can cause UNPREDICTABLE results or
operations.

1.11.2.1 UNPREDICTABLE

UNPREDICTABLE results can vary from implementation to implementation, instruction to instruction, or asafunction
of time in the same implementation or instruction. Software can never depend on results that are UNPREDICTABLE.
An UNPREDICTABLE operation might or might not cause aresult to be generated. If it does generate aresult, the result
isUNPREDICTABLE. UNPREDICTABLE operations can cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

» UNPREDICTABLE results must not depend on any data source (memory or internal state) that isinaccessiblein the
current processor mode.

» UNPREDICTABLE operations must not read, write, or modify the contents of memory or an internal state that is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in User Mode
must not access memory or internal state that is only accessible in Kernel Mode, Debug Mode, or in another process.

* UNPREDICTABLE operations must not halt or hang the processor.

1.11.2.2 UNDEFINED

UNDEFINED operations or behavior can vary from implementation to implementation, instruction to instruction, or as
afunction of time on the same implementation or instruction. UNDEFINED operations or behavior can vary from
nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior
can cause data loss.

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereisno
exit other than powering down the processor). The assertion of any reset signal must restore operation to adeterministic
State.

12 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.11 Notations and Conventions

1.11.3 Register Field Notations

Table 1-7 defines the notations used to describe the read/write properties of the registersin thisdocument. The notations
below are similar to those in the M1PS32 and MI1PS64 specifications, with addition of R/WO0 and R/W1.

Table 1-7 Register Field Notations

Read/Write
Notation Hardware I nterpretation Software I nterpretation
A field in which all bits are readable and writable by software and potentially by hardware.
Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by
RIW hardware reads.
If the Reset State of thisfield is“Undefined”, either software or hardware must initialize the value before the
first read will return a predictable value. This operation should not be confused with the formal definition of
UNDEFINED behavior.
R/WO Similar to the R/W interpretation, except a software write of value 1 to this bit isignored.
R/W1 Similar to the R/W interpretation, except a software write of value 0 to this bit isignored.
) - . A field to which the value written by softwareis
ﬁ‘ f'deld that is either static or updated only by ignored by hardware. Software can write any value
araware. to this field without affecting hardware behavior.
e fald e “py Software reads of thisfield return the last value
If the Reset State of thisfield is either “0” or
R “Preset”, hardware initializes this field to zero or to updated by hardware.
the appropriate state, respectively, on pOWer-Uup. | | the Reset State of this field is“Undefined”,
If the Reset State of this field is“Undefined”, software reads of thisfield result in an
e e L e
conditions specified in the description of the field. description of the field.,
A field to which the value written by software must
be zero. Software writes of non-zero valuesto this
field may result in UNDEFINED behavior of the
) . hardware. Software reads of thisfield return zero as
0 ﬁaﬁﬁlv\?atrgaf::nargﬂn%d: %T)O\t/gl%%?te‘ and for which long as all previous software writes are zeros.
If the Reset State of thisfield is“Undefined”,
software must write this field with zero beforeit is
guaranteed to read as zero.

1.11.4 Value Notations

The following conventions are used for numeric values in this document:
» Decimal values are written as standard base 10 numbers.

» Hexadecimal values are prefaced with “0x”.

* Binary numbers are appended with “,".

For example, the following numbers are equivalent: 13 = = OxD = = 1101,.

1.11.5 Address Notations

Except where addresses are obviously 32 bits by context (as for a R3k privileged environment), addressesin this
document are shown as 64 bits. For 32-bit implementations, ignore the upper 32 bits of the address.

Addresses (ADDR) are usually marked in hexadecimal notation as OXADDR.

EJTAG Specification, Revision 3.10 13

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

14 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Debug Control Register

Compliance Level: Optional, but requires EJITAG processor core extensions. If thisregister is not implemented then
other features that depend on bitsin this register behave asif these bits are present and have the reset value.

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the register is
32 bitsfor 32-bit processors, and 64 bits for 64-bit processors. The DCR islocated in the drseg segment at offset 0x0000.

The Debug Control Register (DCR) provides the following key features:
* Interrupt and NMI control when in Non-Debug Mode

* NMI pending indication

* Availability indicator of instruction and data hardware breakpoints

* Availability of the PC sample feature and the sample period

For EJTAG features, there are no difference between areset and a soft reset occurring to the processor; they behave
identically in both Debug M ode and Non-Debug Mode. Referencesto reset in the following therefore refersto both reset
(hard reset) and soft reset.

The DataBrk and InstBrk bits within the DCR indicate the types of hardware breakpointsimplemented. Debug software
isexpected to read hardware breakpoint registersfor additional information on the number of implemented breakpoints.
Refer to Chapter 3 on page 19 for descriptions of the hardware breakpoint registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit is a global
interrupt enable used along with several other interrupt enables that enabl e specific mechanisms. The NMI interrupt can
be disabled in Non-Debug Mode using the DCR’s NMIE bit; a pending NMI isindicated through the NMIpend bit.
Pending interrupts are indicated in the Cause register, and pending NMIs areindicated in the DCR register NMIpend bit,
even when disabled. Hardware and software interrupts and NMIs are always disabled in Debug Mode. See Section 5.5
on page 70 for more information.

The optional SRstE bit allows masking of soft resets. A soft reset can be applied to the system based on different events,
referred to as sources. It isimplementation dependent which soft reset sources in a system can be masked by the SRstE
bit. Soft reset masking can be applied to a soft reset source only if that source can be efficiently masked in the system.
Theresultisno reset at all for any part of the system, if masked. If only apartial soft reset is possible, then that soft reset
source is not to be masked, because a* half” soft reset might cause the system to fail or hang without warning. Thereis
no automatic indication of whether the SRstE bit is effective, so the user must consult system documentation.

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this bit, the probe
can indicate to the debug software running on the CPU if it expects to service dmseg segment accesses. See Section
6.5.5 on page 99 for more information.

EJTAG Specification, Revision 3.10 15

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Debug Control Register

Figure 2-1 shows the format of the DCR register; Table 2-1 describes the DCR register fields. The reset valuesin Table
2-1 take effect on both hard resets and soft resets.

Figure 2-1 DCR Register Format

31 30 29 28 18 17 16 15 100 9 8 6 5 4 3 2 1 O
32-bit Processor 0 EN 0 Dataf Inst 0 PCS| PCR 0 |IntE|[NMI|{NMI|SRs| Pro
M Brk | Brk E |pend tE | b
En
63 30 29 28 18 17 16 15 10 9 8 6 5 4 3 2 1 0
64-bit Processor 0 EN 0 Data| Inst 0 PCS| PCR 0 |IntE[NMI|{NMI|SRs| Pro
M Brk [Brk E |pend| tE | b
En
Table 2-1 DCR Register Field Descriptions
Fields
Read/ | Reset
Name Bits Description Write | State | Compliance
Endianessin which the processor isrunning in kernel and
Debug Mode:
ENM 29 Encoding Meaning R Preset Required
0 Little endian
1 Big endian
Indicates if data hardware breakpoint isimplemented:
Encoding Meaning
0 No data hardware breakpoint)
DataBrk 17 implemented R Preset Required
1 Data hardware breakpoint implemented|
Indicates if instruction hardware breakpoint is
implemented:
Encoding Meaning
InstBrk 16 o |Noinstruction hardware breakpoint R Preset Required
implemented
1 Instruction hardware breakpoint
implemented
Indicates if the PC Sampling feature isimplemented.
Encodin Meanin
PCS 9 coding caning R Preset Required
0 No PC Sampling implemented
1 PC Sampling implemented
PC Sampling rate. Values 0 to 7 map to values 2° to 212
cycles, respectively. That is, a PC sample iswritten out Required if
PCR 8:6 every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles R/W 0 Sgs is1
respectively. The external probe or softwareisalowed to
set this value to the desired sample rate.

16

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table 2-1 DCR Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write | State | Compliance
Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:
Encoding Meaning .
IntE 4 - R/W 1 Required
0 Interrupt disabled
1 Interrupt enabled depending on other
enabling mechanisms
Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:
NMIE 3 Encoding Meaning RIW 1 Required
0 NMI disabled
1 NMI enabled
Indication for pending NMI:
Encoding Meaning .
NMIpend 2 - R 0 Required
0 No NMI pending
1 NMI pending
Controls soft reset enable:
Encoding Meaning
Soft reset masked for soft reset sources .
SRstE 1 0 |dependent on implementation RIW 1 Optional
1 Soft reset is fully enabled
Bit isread-only (R) and reads as zero if not implemented.
Indicates value of the ProbEn value in the ECR register:
Encoding M eaning o
Sam Required if
0 No access should occur to the dmseg b e EJTAGTAPis
ProbEn 0 segment R vaue as present,
Probe services accesses to the dmseg m%)cEg otherwise not
1 segment implemented
Bit isread-only (R) and reads as zero if not implemented.
MSB:30,
0 28:18, Must be written as zeros; return zeros on reads. 0 0 Reserved
15:10,5

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Debug Control Register

18 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

Hardware Breakpoints

This chapter describes the optional instruction and data hardware breakpoints. It contains the following sections:
* Section 3.1, "Introduction”

 Section 3.2, "Overview of Instruction and Data Breakpoint Registers"

* Section 3.3, "Conditions for Matching Breakpoints"

* Section 3.4, "Debug Exceptions from Breakpoints"

* Section 3.5, "Breakpoints Used as Triggerpoints'

* Section 3.6, "Instruction Breakpoint Registers”

» Section 3.7, "Data Breakpoint Registers'

* Section 3.8, "Recommendations for Implementing Hardware Breakpoints'

 Section 3.9, "Breakpoint Examples’

The general description in this chapter covers processors with R4k privileged environments. Differences for processors
with R3k privileged environments are described in Appendix A on page 127.

3.1 Introduction

Hardware breakpoints compare addresses and data of executed instructions, including data | oad/store accesses.

I nstruction breakpoints can be set even on addressesin ROM areas, and data breakpoints can cause debug exceptions on
specific data accesses. I nstruction and data hardware breakpoints are alike in many aspects, and are described in parallel
in the following sections. When the term “breakpoint” is used in this chapter, then the reference isto a “ hardware
breakpoint”, unless otherwise explicitly noted.

The breakpoints provide the following key features:

» From zero to 15 instruction breakpoints can be implemented to cause debug exceptions on executed instructions,
both in ROM and RAM. Bit masking is provided for virtual address compares, and masking of compares with ASID
(optional) is also provided.

» From zero to 15 data breakpoints can be implemented to cause debug exceptions on data accesses. Bit masking is
provided for virtual address compares, masking of compares with ASID (optional) is provided, optional data value
compares allows masking at byte level, and qualification on byte access and access type is possible.

» Registersfor setup and control are memory mapped in the drseg segment, accessible in Debug Mode only.

 Breakpoints have several implementation options to ease integration with various microarchitectures.

Hardware breakpoints require the implementation of the Debug Control Register (DCR).

Several additional options are possible for breakpoints, as described in the following subsections.

For EJTAG features, there are no difference between areset and a soft reset occurring to the processor; they behave

identically in both Debug M ode and Non-Debug Mode. Referencesto reset in the following therefore refersto both reset
(hard reset) and soft reset.

EJTAG Specification, Revision 3.10 19

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

3.1.1 Instruction Breakpoint Features

Figure 3-2 shows an overview of the instruction breakpoint feature. The feature compares the virtual address (PC) and
the ASID of the executed instructions with each instruction breakpoint, applying masking on address and ASID. When
an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or atrigger is generated, and an
internal bit in an instruction breakpoint register is set to indicate that a match occurred. If the processor implements the
MIPS MT ASE, then amatch for the TC (Thread Context 1d) may also be enabled and required.

Figure 3-1 Instruction Breakpoint Overview

PC
LA SEE— .
ASID Instruction Debug Exception -
> ;r;:aiwc?{r?t Trigger Indication >
TC (for MIPSMT), P

3.1.2 Data Breakpoint Features

Figure 3-2 shows an overview of the data breakpoint feature. The feature comparestheload or store accesstype (TY PE),
the virtual address of the access (ADDR), the ASID, the accessed bytes (BY TELANE), and data value (DATA) with
each data breakpoint, applying masks and/or qualifications on the access properties. If the processor implements the
MIPS MT ASE, then amatch for the TC (Thread Context 1d) may also be enabled and required.

Figure 3-2 Data Breakpoint Overview

TYPE)

ADDR

A\ . .
Debug Exception
ASID

D
e ata . N
Trigger Indication
BYTELANE Hardware -
———— P> Breakpoint

DATA)

TC (for MIPSMT),

When an enabled data breakpoint matches, a debug exception and/or atrigger is generated, and an internal bit in adata
breakpoint register is set to indicate that a match occurred. The match is either precise (the debug exception or trigger
occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or trigger occurs later
in the program flow).

3.2 Overview of Instruction and Data Breakpoint Registers

20

From zero to 15 instruction and data breakpoints can be implemented independently. |mplementation of any breakpoint
implies that the Debug Control Register (DCR) isimplemented.

The InstBrk and DataBrk bits in the DCR register indicate whether there are zero or 1 to 15 implementations of a
breakpoint type. If no breakpoints of a specific type are implemented, then none of the registers associated with this
breakpoint type are implemented.

If any (1 to 15) breakpoints of a specific type are implemented, then the breakpoint status register associated with that
breakpoint type isimplemented. The instruction and data break status registers indicate the number of breakpoints for
each corresponding type. The number of additional registers depends on the number of implemented breakpointsfor the
respective breakpoint type.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.2 Overview of Instruction and Data Breakpoint Registers

Registersfor ASID compares are only implemented if indicated in the corresponding breakpoint status register.

Section 3.2.1, "Overview of Instruction Breakpoint Registers’ and Section 3.2.2, "Overview of Data Breakpoint
Registers' provide overviews of the instruction and data breakpoint registers, respectively. All registers are memory
mapped in the drseg segment. All registers are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

3.2.1 Overview of Instruction Breakpoint Registers

Table 3-1 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides implementation
indication and status for instruction breakpointsin general. The 1 to 15 implemented breakpoints are numbered 0 to 14,
respectively, for registers and breakpoints. The specific breakpoint number isindicated by “n”.

Table 3-1 Instruction Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance L evel
: Required if any instruction
IBS Instruction Breakpoint Status SSegfe(;t: on ©32 breakpoints are implemented,
e pag optional otherwise.
. . See Section
IBAN Instruction Breakpoint Addressn
362 onpage33 Required with instruction breakpoint
. n, optional otherwise.
. . See Section
IBMn Instruction Breakpoint Address Mask n 3.6.3 on page 34
Required with instruction breakpoint
: . See Section n, optional otherwise. Not
IBASIDn Instruction Breskpoint ASID n 3.6.4 on page 34 implemented if ASIDsup bitinIBSis
0 (zero).
:] See Section Required with instruction breakpoint
IBCn Instruction Breakpoint Control n 365 on page 35 n, optional otherwise.

Register addresses are shown in Section 3.6 on page 31.

3.2.2 Overview of Data Breakpoint Registers

Table 3-2 lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indication
and status for data breakpointsin general. The 1 to 15 implemented breakpoints are numbered 0 to 14, respectively, for
registers and breakpoints. The specific breakpoint number isindicated by “n”. The registersfor data value compares are
only implemented if the value compares for the data breakpoints are implemented, which occurs when either the
NoLVmatch bit or the NoSV match bit in the DBSis 0.

Table 3-2 Data Breakpoint Register Summary

Register

Mnemonic Register Name and Description Reference Compliance L evel

. See Section Required if any data breakpoints are
DBS Data Breskpoint Status 3.7.1 onpage 37 implemented, optional otherwise.

; See Section
DBAnN Data Breakpoint Address n

3.7.2 on page 39 Required with data breakpoint n,
. optional otherwise.

; See Section

DBMn Data Breskpoint Address Mask n 3.7.3 on page 39
EJTAG Specification, Revision 3.10 21

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Table 3-2 Data Breakpoint Register Summary (Continued)

Register
Mnemonic Register Name and Description Reference Compliance L evel

Required with data breakpoint n,
optional otherwise. Not implemented
if ASIDsup bitin DBSis0 (zero).

See Section

DBASIDn Data Breskpoint ASID n 3.7.4 on page 40

. See Section Required with data breakpoint n,
DBCn Data Breakpoint Control n 3.7.5 onpage 41 optional otherwise.
Required with data breakpoint n,
. See Section optional otherwise. Only
DBVn Data Breakpoint Value n 3.7.6 onpage 43 implemented with value compares,
shown in DBS.

Register addresses are shown in Section 3.7 on page 37.

3.3 Conditionsfor Matching Breakpoints

A number of conditions must be fulfilled in order for abreakpoint to match on an executed instruction or a data access.
These conditions are described in the following subsections. A breakpoint only matches for instructions executed in
Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates adebug exception as described in Section 3.4 on page 28 and/or atrigger
indication as described in Section 3.5 on page 31. The BE and/or TE bitsin the IBCn or DBCn registers enable the
breakpoints for breaks and triggers, respectively.

It isimplementation dependent whether or not abreakpoint stallsthe processor in order to eval uate the match expression;
for example, if required for timing reasons or in order to wait on a scheduled load to return for evaluation of a data
breakpoint with a data value compare. In some cases, stalling is avoided with imprecise data breakpoints, as described
in Section 3.4.2 on page 29.

3.3.1 Conditionsfor Matching I nstruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the instruction
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instruction
breakpoint is also evaluated on addresses usually causing an Address Error exception, a TLB exception, or other
exceptions. It isthereby possibleto cause a Debug I nstruction Break exception on the destination address of ajump, even
if ajump to that address would cause an Address Error exception. The breakpoint is not evaluated on instructions from
speculative fetches or execution.

A match of an instruction breakpoint depends on a number of parameters, shown in Table 3-3. Thefieldsin the
instruction breakpoint registers are in the form REGg g p.

Table 3-3 Instruction Breakpoint Condition Parameters

Parameter Description Width
ASID ASID field in EntryHi CPO register. 8 bits
22 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.3 Conditions for Matching Breakpoints

Table 3-3 Instruction Breakpoint Condition Parameters (Continued)

Parameter Description Width
Use ASID vaue in compare for instruction breakpoint n:
Encoding Meaning
IBCNASIDuse , 1 bit
0 Do not use ASID value in compare
1 Use ASID value in compare
IBASIDNnpgp Conditional Instruction breakpoint n ASID value for comparing. 8 bits
PC Virtual address of instruction boundary or target for jump/branch. 32/ 64 bits
Used only when MI1PS16e | SA support isimplemented. It indicates the ISA mode for
the executed instruction or the mode at the target of ajump/branch:
I1SAmode Encoding Meaning 1 bit
0 32-bit MIPS instruction
1 MIPS16e instruction
IBANga Instruction breakpoint n address for compare with conditions. 32/ 64 bits
Instruction breakpoint n address mask condition:
Encoding Meaning _
IBMngp - - 32/ 64 bits
0 Corresponding address bit compared
1 Corresponding address bit masked
Thread Context (TC) value used in compare for instruction breakpoint n:
Encoding M eaning)
IBchCUSG - 1 bit
0 Do not use TC value in compare
1 Use TC value in compare
IBCnyc TCidvaue 8 bits max

The PC, IBANga, and IBMn, gy, fields are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

The equation that determines the match is shown below with “ C” -like operators. In the equation, O meansall bitsare0's,
and ~0 means al bits are 1's. The widths are similar to the widths of the parameters. The match equation is 1B_match,
and is dependent on whether M1PS16e is supported or not.

If there is no support for MIPS16e then the IB_match equation is:

IB_match =

(1BChreye | (TC= = 1BCnrc)) &&
(| chnAS|DUSE " (AS'D == |BAS|DnAS|D)) &&
((IBMnigy |~ (PC"1BANgs)) ==-~0)

(EQ1)

If MIPS16e is supported then the IB_match equation is shown below, in which case the ISAmode bit is compared with
bit 0 of IBAN,g, instead of compare with bit 0 in PC:

IB_match =

(IBCNreyee ll (TC==1IBCnrc)) &&

EJTAG Specification, Revision 3.10

23

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

(! |BC”ASIDuse ” (ASl == |BAS|DnAS|D)) &&
((1BMnyay | ~ (((PCIMSB:1] << 1) + 1SAmode) A IBANngs)) = = ~0) (EQ2)

24

The IB_match equation al so appliesto 64-bit processors running in 32-bit addressing mode, in which case all 64 bitsare
compared between the PC and the IBAN g, register.

The match indication for instruction breakpoints is aways precise; that is, it isindicated on the instruction causing the
IB_match to be true.

It isimplementation dependent for an instruction breakpoint to match when the memory system does not ever respond
to the fetch or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
instruction breakpoint generating either a debug exception or atrigger.

3.3.2 Conditionsfor Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the access address of
every dataaccess due to load/store instructions (including loads/stores of coprocessor registers) and the address causing
address errors upon data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or CACHE
instructions. It isimplementation dependent whether an SC or SCD instruction causes adata breakpoint if al conditions
would cause a match, but the SC or SCD instruction would fail because the LLbit is 0.

The concept “databus’ is used in the following to denote the bytes accessed and the dataval ue transferred in aload/store
operation. In this notation data bus referees to the naturally-aligned memory word (for 32-bit processors) or doubleword
(for 64-hit processors) containing the accessed address referred to as ADDR. This notation is independent of the actual
width of the processor bus, e.g., the “data bus’” width of a 64-bit processor is 64, even if that processor has a 32-bit
processor bus.

A match of the data breakpoint depends on anumber of parameters, shown in Table 3-4. Thefieldsin the databreakpoint
registers are in the form REGg g p.

Table 3-4 Data Breakpoint Condition Parameters

Reference Description Width

TYPE Data access type is either load or store. (no width)

DBChiyoss 1 bit

Controls whether condition for data breakpoint is fulfilled on a store access:

Encoding M eaning

0 Condition can be fulfilled on store access

1 Condition is never fulfilled on store access

DBCnyoLe 1 bit

Controls whether condition for data breakpoint is fulfilled on aload access:

Encoding M eaning

0 Condition can be fulfilled on load access

1 Condition is never fulfilled on load access

ASID ASID field in EntryHi CPO register. 8 bits

EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.3 Conditions for Matching Breakpoints

Table 3-4 Data Breakpoint Condition Parameter s (Continued)

Reference

Description

Width

DBCNnasipuse

ASID value used in compare for data breakpoint n:

Encoding
0 Do not use ASID value in compare

M eaning

1 Use ASID value in compare

1 bit

DBAS'DnASD

Conditional Data breakpoint n ASID value for comparison.

8 bits

ADDR

With one exception, virtual address of data access, effective address. The exception is
the LUXC1 and SUXC1 instructions in which the lower three bits of the effective
addressareignored (forced to zero for the operation). Inthiscase, ADDR isthe effective
address with bits 2:0 forced to zero.

32/ 64 hits

DBANpga

Data breakpoint n address for compare with conditions.

32/ 64 bits

DBM Npem

Conditional Data breakpoint n address mask:

Encoding
0 Corresponding address hit compared
1 Corresponding address bit masked

M eaning

32/ 64 bits

BYTELANE

Byte lane access indication, where BY TELANE[Q] is 1 only if the byte at bits[7:0] of
the databusis accessed, BY TELANE[1] is 1 only if the byte at bits [15:8] of the data
bus is accessed, €tc.

4/ 8 hits

Determineswhether accessisignored to specific bytes. BAI[0] controlsignore of access
to the byte at bits[7:0] of the data bus, BAI[1] ignores access to byte at bits[15:8] of
the data bus, etc.:

Encoding
0 Condition depends on access to corresponding byte

M eaning

1 Access for corresponding byteisignored

4/ 8 hits

DATA

Data value from the data bus.

32/ 64 hits

DBVnpgy

Conditional Data breakpoint n data value for compare.

32/ 64 bits

DBanLM

Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks byte
at bits[7:0] of the data bus, BLM[1] masks byte at bits[15:8], etc.:

Encoding
0 Compare corresponding byte lane

M eaning

1 Mask corresponding byte lane

4/ 8 bits

DBC”TCuse

Thread Context (TC) value used in compare for data breakpoint n:

Encoding
0 Do not use TC value in compare

Meaning

1 Use TC value in compare

1 bit

DBchC

TCidvalue

8 bits max

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

25

Chapter 3 Hardware Breakpoints

The ADDR, DBANpga, DBMnpgy, DATA, and DBV npgy, fieldsare 32 bitswide for 32-bit processors and 64 bitswide
for 64-bit processors. The BY TELANE, DBCng| 1, and DBCngp, fields are four bits wide for 32-bit processors and
eight bits wide for 64-bit processors. The width isindicated as“N” in the equations bel ow.

The match equations are shown below with “ C”-like operators. In the equation, 0 means all bits are 0's, and ~0 means
al bitsare 1's. The bit widths are similar to the widths of the parameters.

DB_matchistheoverall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match equations
in the DB_match equation are defined below):

DB_match =
('DBCntcyee | (TC==DBCnyc)) &&

(((TYPE==load) && ! DBCnpg g) | ((TYPE==store) && ! DBCnposp)) &&
DB_addr_match && (DB_no_value_compare || DB_value match) (EQ3)

DB_addr_match is defined as:

DB_addr_match =
(! DBC”ASlDUSG ” (AS'D == DBASIDnASID)) &&

((DBMnDBM | ~ (ADDRA DBAnDBA)) == "'O) &&
((~DBCnga & BYTELANE) !=0) (EQ 4)

The DB_addr_match equation also applies to 64-hit processors running in 32-bit addressing mode, in which case all 64
bits are compared between the ADDR and the DBANpg, field. Please note the special case used for ADDR for the
LUXC1 and SUXC1 instructions as described in Table 3-4.

DB_no_value compare is defined as:

DB_no_value_compare =
((DBCng| y | DBCngp | ~BYTELANE) ==~0) (EQ5)

If adatavalue compare isindicated on abreakpoint, then DB_no_value_compare isfase, and if there is no datavalue
comparethen DB_no_value_compareistrue. Note that a data value compare is arun-time property of the breakpoint if
(DBCng_m | DBCngp)) is not ~0, because DB_no_value_compare then depends on BY TELANE provided by the
load/store instructions.

If adatavalue compareisrequired, then the data value from the data busis compared and masked with the registers for
the data breakpoint, as shown in the DB_value_match equation:

DB_vaue match =
((DATA[?O] == DBVnDBv[7:0]) ” ! BYTELANE[O] ” DBanLM[O] " DBanAI[O]) &&
((DATA[158] == DBVnDBv[ls:S]) ” ! BYTELANE[].] ” DBC”BLM[]_] ” DBC”BAI[]_]) &&
((DATA[8*N-1:8*N-8] = = DBVnppy(gN-1:8*N-g]) Il
| BY TELANE[N-1] || DBCngy yn-1) Il DBCNgajn.1;) (EQ6)

Data breakpoints depend on endianess, because values on the byte lanes are used in the equations. Thusit is required
that the debug software programs the breakpoints accordingly to endianess.

It isimplementation dependent for a data breakpoint to match when the memory system does not ever respond to the
data access or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
data breakpoint generating a debug exception or trigger.

3.3.2.1 Data Breakpointsin case of Unaligned Address

Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if an effective
address of 0x01 is used as source of aLoad Halfword (LH) instruction). The ADDR used in the comparison is the

26 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.3 Conditions for Matching Breakpoints

effective address. The BY TELANE value is defined according to Table 3-5 for a 32-bit processor and to Table 3-6 for a
64-bit processor.

Table 3-5 BYTELANE at Unaligned Address for 32-bit Processors

ADDR BYTELANE[3:0]
Size [21 | [1] | [O] | LittleEndian Big Endian
X 0 X 0011, 1100,
Halfword
X 1 X 1100, 0011,
Word X X X 1111,
‘X’ denotesdon’t care

Table 3-6 BY TELANE at Unaligned Address for 64-bit Processors

ADDR BYTELANE[7:Q]
Size [21 | [1] | [O] | LittleEndian Big Endian
0 0 X 00000011, 11000000,
0 1 X 00001100, 00110000,
Halfword
1 0 X 00110000, 00001100,
1 1 X 11000000, 00000011,
0 X X 00001111, 11110000,
Word
1 X X 11110000, 00001111,
Doubleword X X X 11111111,
‘X’ denotes don’t care

With the above well-defined values of BY TELANE, the behavior is well-defined for data breakpoints without value
compares on operations with unaligned addresses. The BLM field in the DBCn register can be used to avoid value
comparesif al BLM bitsare set to 1.

If the data breakpoint depends on a value compare, then loads will cause an Address Error exception, and for storesthe
datavalue (DATA) is UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint on a
store, but an implementation can choose never to indicate a match on data breakpoints depending on value compare if
having unaligned address.

If adebug exceptionistaken on the store then the debug handler can investigate the processor state and thereby determine
if the address was unaligned and UNPREDICTABLE store data for the memory access thereby caused the debug
exception. If adebug exception is not taken for the store, then an Address Error exception is taken. So, in both cases it
is possible for debug software to detect the bug. The BLM field in the DBCn register can be used to avoid compare on
UNPREDICTABLE data, in case al of the BLM bitsare set to 1.

If the data breakpoint is used as a triggerpoint (see Section 3.5 on page 31) then a BS hit might be set after a compare
with UNPREDICTABLE data; however, an Address Error exception occurs in this case thereby making it possible to
detect the bug.

EJTAG Specification, Revision 3.10 27

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

3.3.2.2 Match for Data Breakpoint with Value Compare on Busor CacheError

If adatavalue compare is required to evaluate a data breakpoint, the DB_no_value compare equation is false (see
Section 3.3.2 on page 24). However, if abus or cache error occurs on the load, then thereis no valid datato usein the
compare. This case has two possibilities:

* The match will fail.

» The match will compare on invalid data, and then indicate a pending bus or cache error through the DBuUsEP or
CacheEP bits in the Debug register, if adebug exception is taken. This occurrence might cause atrigger indication to
be set on the compare with invalid data.

A bus or cache error on a store does not affect the data breakpoint compare.

Refer to Section 3.8.3 on page 44 for recommendations on implementing data breakpoint compares on invalid data.

3.3.2.3 Precise Match for Data Breakpoints

A precise match for a data breakpoint occurs when the match equation can be fully evaluated at the time the |oad/store
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_match
equation to be true.

Matches on data breakpoints without data value compares are always precise. Accesses using data value compares are
either imprecise or precise depending on the implementation and specific access.

3.3.2.4 Imprecise Match for Data Breakpoints

An imprecise match for a data breakpoint occurs when the match eguation cannot be fully evaluated at the time the
load/store instruction is executed. This case occurs when the processor is not stalled on a scheduled load and a data
breakpoint must compare on the data val ue returned by the load. If the breakpoint matches, then the DB_match equation
istrue later in the execution flow rather than at the same time as load/store instruction that caused the load/store access
to match.

Only data breakpoints with value compares can be imprecise, in which case the breakpoints can be imprecise for all or
some of those accesses depending on the implementation.

3.4 Debug Exceptions from Breakpoints

28

This section describes how to set up instruction and data breakpoints to generate debug exceptions when the match
conditions are true.

3.4.1 Debug Exception Caused by Instruction Breakpoint

The BE bit in the IBCn register must be set for an instruction breakpoint to be enabled. A Debug I nstruction Break
exception occurs when the |B_match equation is true (see Section 3.3.1 on page 22). The corresponding BS bit in the
IBSregister is set when the breakpoint generates the debug exception. Note that the BE bit al one enables the break point
exception, irrespective of whether or not the TE bit is set (see Section 3.5, "Breakpoints Used as Triggerpoints").

The Debug I nstruction Break exception is precise, so the DEPC register and DBD bit in the Debug register (see Section
5.8 on page 75) point to the instruction that caused the IB_match equation to be true.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.4 Debug Exceptions from Breakpoints

Theinstruction receiving the debug exception only updates the debug related registers. That instruction will not cause
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an instruction
receives a Debug I nstruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby the
instruction is executed. Debug software must disable the breakpoint when returning to the instruction, otherwise the
Debug Instruction Break exception will reoccur. An alternative is for debug software to emulate the instruction(s) in
software and change the DEPC accordingly.

3.4.2 Debug Exception by Data Breakpoint

The BE bit in the DBCn register must be set for a data breakpoint to be enabled. A debug exception occurs when the
DB_match condition istrue (see Section 3.3.2 on page 24). A matching data breakpoint generates either aprecise or an
impreci se debug exception. Note that the BE bit alone enables the break point exception, irrespective of whether or not
the TE bit is set (see Section 3.5, "Breakpoints Used as Triggerpoints").

Refer to Section 3.8.4 on page 45 for additional information on precise and impreci se debug exceptions.

3.4.2.1 Debug Data Break L oad/Store Exception as a Precise Debug Exception

A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In this case, the
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match eguation
(see Section 3.3.2 on page 24) to betrue, and the corresponding BS bit inthe DBSregister is set. Details about behavior
of the instruction causing the debug exception is shown in Table 3-7.

Table 3-7 Behavior on Precise Exceptions from Data Breakpoints

Instruction and L oad/Store Destination
Data Breakpoint Instruction Execution Register External Memory System Access
Store wo/w value match Not updated® Store to memory is not committed
Load without value match Not completed Load from memory does not occur
Not updated?
Load with value match Load from memory does occur

1. This appliesto the Store Conditional Word/Doubleword (SC/SCD) instructions
2. Thisincludes side effects like for the Load Linked Word/Doubleword (LL/LLD) instructions

Thusin the case a data breakpoint with data value compare is set up on aload instruction, then the load does occur from
the external memory, since the data valueis required to evaluate the match condition, but the destination register is not
updated, so the loaded value is simply discarded.

The rules shown in Table 3-8 describe update of the BS bits when several data breakpoints match the same access and
generate a debug exception.

Table 3-8 Rules for Update of BS Bits on Precise Exceptions from Data Breakpoints

Breakpoints That Matches... Update of BS Bitsfor Matching Data Breakpoints

Without Value With Value
Instruction Compare Compare Without Value Compare With Value Compare
Load / Store One or more None BS hits set for all (No matching breakpoints)

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

29

Chapter 3 Hardware Breakpoints

30

Table 3-8 Rulesfor Update of BS Bits on Precise Exceptions from Data Breakpoints (Continued)

Breakpoints That Matches... Update of BS Bitsfor Matching Data Breakpoints
Without Value With Value
Instruction Compare Compare Without Value Compare With Value Compare
Unchanged BS bits since load
. of data value does not occur,
Load One or more One or more BS bits set for al S0 match of the breakpoint
cant be determined
Load None One or more (No matching breakpoints) BS bits set for all
Optiond to either set BS bits
Store One or more One or more BS bits set for all for al, or change none of the
BS bits
Store None One or more (No matching breakpoints) BS bits set for all

Any BS hit set prior to the match and debug exception is kept set, since only debug software can clear the BS hits.

The debug handler usually returns to the instruction that caused the Debug Data Break L oad/Store exception, whereby
the instruction is re-executed. This re-execution results in a repeated load from system memory after a data breakpoint
with adata value compare on aload, because the load occurred previously in order to allow evaluation of the breakpoint
as described above. Memory-mapped devices with side effects on loads must allow such reloads, or debug software
should aternatively avoid setting data breakpoints with data value compares on the address of such devices. Debug
software must disable breakpoints when returning to the instruction, otherwise the Debug Data Break L oad/Store
exception will reoccur. An alternative isfor debug software to emulate the instruction in software and change the DEPC
accordingly.

3.4.2.2 Debug Data Break L oad/Store Exception as an I mprecise Debug Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match. In
this case, the DEPC register and DBD hit in the Debug register point to an instruction later in the execution flow rather
than at the load/store instruction that caused the DB_match equation to be true.

Theload/storeinstruction causing the Debug Data Break L oad/Store |mprecise exception always updatesthe destination
register and completes the accessto the external memory system. Therefore thisload/store instruction is not re-executed
on return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding data
accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break L oad/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBL Impr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is aready in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first match
(for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is aready in Debug Mode.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed before the BS bits and DDBL Impr/DDBSImpr bits are accessed for read or write.
This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS bits.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.5 Breakpoints Used as Triggerpoints

3.5 Breakpoints Used as Trigger points

Software can set up both instruction and data breakpoints such that a matching breakpoint does not generate a debug
exception, but sends an indication through the BS bit only. But note that if the BE bit is set, then a debug exception will
be generated, even if the TE bit is set. The TE bit in the IBCn or DBCn register controls whether an instruction or data
breakpoint, respectively, is used as a triggerpoint. Triggerpoints are evaluated for matches under the same criteriaas
breakpoints.

The BShit in the IBS or DBS register is set for atriggerpoint when the respective IB_match condition (see Section
3.3.1 on page 22) or DB_match condition (see Section 3.3.2 on page 24) istrue.

For the BS bit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception must
occur on the instruction.

The BS hit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data Break

L oad/Store exception with address match only occurred on the load/store instruction. For exceptionswith equal or lower
priority than the Debug Data Break L oad/Store exception with address match only, the BS bitsare still set for amatching
triggerpoint. For example, the BS bit isset evenif aTLB or Bus Error exception occurred on the load/store instruction.
Data triggerpoints with value compares require the data value to be valid for the BS bit to be set, which is not the case
if, for example, aTLB or BusError exception occurs on aload instruction. However, for stores, the trigger may compare
on UNPREDICTABLE data as described in Section 3.3.2.1 on page 26.

Therules for update of the BS bits are shown in Table 3-9.
Table 3-9 Rulesfor Update of BS Bits on Data Trigger points

Instruction Without/With Value Compare BS Bits Update for Triggerpoint

BS bit set if no exception with higher priority than the Debug
Load / Store Without value compare Data Break Load/Store exception, with address match only,
occurred on the instruction.

BS hit set if no exception with higher priority than the Debug
Load With value compare Data Break Load exception, with address and data value match,
occurred on the instruction.

BShit is set if no exception occurred on theinstruction, and is
optional to beif an exception with equal or lower priority thanthe
Store With value compare Debug Data Break Store exception, with address match only,
occurred on the instruction, with the requirement that either all
the relevant BS hits are set, or none are changed.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

Note that trigger indications by BS may be set based on compare with UNPREDICTABLE data, as described in (see
Section 3.3.2.1 on page 26).

A triggerpoint match can be indicated on an optional internal signal or chip pin.

3.6 Instruction Breakpoint Registers

This section describesthe instruction breakpoint registersfor MIPS32 and M1PS64 processors, and other R4k privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the
instruction breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered 0 to

EJTAG Specification, Revision 3.10 31

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

14, respectively, for registersand breakpoints. The specific breakpoint number isindicated by “n”. Theregistersand their
respective addresses offsets are shown in Table 3-10.

Table 3-10 I nstruction Breakpoint Register Mapping

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + 0x100 * n IBAN Instruction Breakpoint Address n
0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n
0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n
0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n

3.6.1 Instruction Breakpoint Status (I1BS) Register
Compliance L evel: Required if any instruction breakpoints are implemented, optional otherwise.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. It islocated at drseg segment offset 0x1000. The ASIDsup bit appliesto all instruction breakpoints.

Figure 3-3 shows the format of the IBS register; Table 3-11 describes the IBS register fields.
Figure 3-3 IBS Register Format

31 30 29 28 27 24 23 16 15 14 0
32-hit Processor [0 J[ASI| O BCN 0 IBP BS[14:0]
Dsu shar
p e
63 31 30 29 28 27 24 23 16 15 14 0
64-bit Processor[0 |ASI| 0O BCN 0 IBP BY14:0]
Dsu Tsh
p are

Table 3-11 IBS Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State Compliance

Indicatesif ASID compareissupported ininstruction
breakpoints:

Encoding Meaning

0 No ASID compare

ASIDsup 30 1 |ASID compare (IBASIDn register R Preset Required
implemented)

ASID support indication does not guarantee a
TLB-type MMU, because the same breskpoint
implementation can be used with processors having
all different types of MMUs.

32 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Breakpoint Registers

Table 3-11 IBS Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance
Number of instruction breakpoints implemented:
Encoding Meaning _
BCN 27:24 R Preset Required
0 Reserved
1-15 |Number of instructions breakpoints|
Determines whether the Instruction breakpoints are
shared across the different V PEs of the processor, or N
are implemented per-V PE. Required in
_ : MIPSMT is
IBPshare 15 Encoding Meaning R Preset implemented.
Otherwise
1 Shared across VPES
Break Status (BS) bit for breakpoint nisat B[],
wherenisOto 14. A bit isset to 1 when the condition
for its corresponding breakpoint has matched.
The number of BS bits implemented corresponds to Re%lﬂ;eg for
the number of breakpoints indicated by the BCN) implemented
BS[14:0] 14:0 field. R/WO Undefined breakpoints,
Debug software is expected to clear the bits before _othelr bits ?eoé
use, because reset does not clear these bits. Impiemen
Bits not implemented are read-only (R) and read as
Zeros.
MSB:31,
0 29:28, Must be written as zeros; return zeros on read. 0 0 Reserved
23:16

3.6.2 Instruction Breakpoint Addressn (IBAn) Register

Compliance L evel: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Address n (IBAnN) register has the virtual address used in the condition for instruction

breakpoint n. It islocated at drseg segment offset 0x1100 + 0x100 * n.

Figure 3-4 shows the format of the IBAN register; Table 3-12 describes the IBAnN register field.

Figure 3-4 IBAn Register For mat

31 0
32-bit Processor | IBAN |

63 0
64-hit Processor| IBANn |
EJTAG Specification, Revision 3.10 33

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Table 3-12 IBAn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
IBA MSB:0 Instruction breakpoint virtual address for condition. R/W Undefined Required

3.6.3 Instruction Breakpoint Address Mask n (IBMn) Register
Compliance L evel: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition for
instruction breakpoint n. The address that is masked isin the IBAn register. The IBMn register islocated at drseg
segment offset 0x1108 + 0x100 * n.

Figure 3-5 shows the format of the IBMn register; Table 3-13 describes the IBMn register field.

Figure 3-51BMn Register Format

31 0
32-bit Processor | IBMn

63 0
64-hit Processor| IBMn

Table 3-13 IBMn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
Instruction breakpoint address mask for condition:
Encoding Meaning
IBM MSB:0 Correspondi ng address bhit R/W Undefined Ra:]ulred

0 compared
1 Corresponding address bit masked

3.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Required with instruction breakpoint n if the ASIDsup bit in the IBS register is 1, optional
otherwise.

The Instruction Breakpoint ASID n (IBASIDn) register hasthe ASID value used in the compare for instruction
breakpoint n. It islocated at drseg segment offset 0x1110 + 0x100 * n.

34 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.6 Instruction Breakpoint Registers

Figure 3-6 showsthe format of the IBASIDn register; Table 3-14 describesthe IBASIDn register fields. The width of the
ASID field for the compareis 8 bits. It isidentical to the width of the ASID field in the EntryHi register used with the

TLB-type MMU.
Figure 3-6 IBASIDn Register Format
31 12 11 8 0
32-bit Processor | 0 | VPE | ASID |
63 12 11 8 0
64-hit Processor| 0 | VPE | ASID |
Table 3-14 IBASIDn Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined Required
Thisfield indicates the value of the VPE id to use for
comparison and isused only if VPEusein IBCn
register is 1 and the breakpoints are shared across o
V/PEs. If the breakpoints are not shared, then these Required if
bits read zero, and writes are ignored.] MIPSMT is
VPE 11:8 - - R/W Undefined | implemented.
Encoding Meaning Otherwise
0 Do not use VPE value in compare Reserved.
1 Use VPE value in compare
0 MSB:12 Must be written as zeros; return zeros on read. 0 0 Reserved

3.6.5 Instruction Breakpoint Control n (IBCn) Register

Compliance L evel: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Control n (IBCn) register determineswhat constitutes instruction breakpoint n: triggerpoint,
breakpoint, ASID valueinclusion. Thisregister islocated at drseg segment offset 0x1118 + 0x100 * n.

Figure 3-7 shows the format of the IBCn register; Table 3-14 describes the IBCn register fields.

Figure 3-7 1BCn Register Format

31 24 23 22 21 4 3 2 1 0
32-bit Processor TC ASI[TC 0 VPE| TE| 0 [BE
D |use use
use
63 32 31 24 23 22 21 4 3 2 1 0
64-bit Processor| 0O TC ASI[TC 0 VPE| TE| 0 [BE
D |use use
use
EJTAG Specification, Revision 3.10 35

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

36

Table 3-15 IBCn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
The value of TC (thread context) to match in the Required if
comparison to determineif theinstruction break isto MIPSMT is
TC 31:24 be taken. This comparison is effective only if the R/W Undefined | implemented.
TCuse bit is set to 1. Otherwise this TC valueis Otherwise
ignored. Reserved.
Use ASID valuein compare for instruction
breakpoint n:
Encoding Meaning
; Required if
0 Do not use ASID value in compare ASIDsup in
1 |UseASID valuein compare i IBSregisteris
ASIDuse 23 p R/IW Undefined 1 otherwise
t
Debug software should only set the ASIDuse if a impl gr%ented
TLB intheimplementation isused by the application
software.
This bit isread-only and reads as zero, if not
implemented.
Use TC valuein comparison for instruction
breakpoint n. If TC is not used in the comparison,
then the comparison isrestricted to the match al TCs
in the current VPE if the breakpoints are not shared. Required if
If the breakpoints are shared, then they can match all MIPSMT is
TCuse 22 TCsin the processor unless VPEuUse is set. RIW Undefined | implemented.
i i Otherwise
Encoding Meaning Reserved.
0 Do not use TC value in compare
1 Use TC value in compare
Use VPE value in comparison for instruction
breakpoint n. Thisfield isused only if the Required if
breakpointsare shared acrossthe VPEsof aMT core,] MIPSMT is
VPEuse 17 that is, the IBPshare bit is set in register IBP. R/W Undefined impl k?mented.
Otherwise
If the breakpoints are not shared, then these bitsread Reserved.
zero, and writes are ignored.
Use instruction breakpoint n as triggerpoint:
Encoding Meaning
TE 2 - - - R/W 0 Required
0 Do not use it as triggerpoint <
1 Useit as triggerpoint
Use instruction breakpoint n as breakpoint:
Encoding Meaning _
BE 0 - - R/W 0 Required
0 Do not useit as breakpoint
1 Useit as breakpoint
0 21:4,1 Must be written as zeros; return zeros on read. 0 0 Reserved

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

EJTAG Specification, Revision 3.10

3.7 Data Breakpoint Registers

3.7 Data Breakpoint Registers

This section describes the data breakpoint registers for MIPS32 and MIPS64 processors, and other R4k privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the data
breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered 0 to 14,
respectively, for registers and breakpoints. The specific breakpoint number isindicated by “n”. The registers and their
respective addresses offsets are shown in Table 3-16.

Table 3-16 Data Breakpoint Register M apping

Register

Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAnN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n

3.7.1 Data Breakpoint Status (DBS) Register
Compliance Level: Required if any data breakpoints are implemented, optional otherwise.
The Data Breakpoint Status (DBS) register holds implementation and status information about the data breskpoints. It
islocated at drseg segment offset 0x2000. The ASIDsup, NoSVmatch, and NoLV match fields apply to all data
breakpoints.

Figure 3-8 shows the format of the DBS register; Table 3-17 describes the DBS register fields.
Figure 3-8 DBS Register For mat

31 30 29 28 27 24 23 16 15 14 0
32-bit Processor | O [ASI [NoSV|NoL BCN 0 DB BS[14:0]
D |match|Vmat Psh
sup ch are
63 31 30 29 28 27 24 23 16 15 14 0
64-bit Processor[0 ASI [NoSV] NoL BCN 0 DB BY14:0]
D |match|Vmat Psh
sup ch are
EJTAG Specification, Revision 3.10 37

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

38

Table 3-17 DBS Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset

State Compliance

ASIDsup

30

Indicates if ASID compare is supported in data

breakpoints:

Encoding

Meaning

0

No ASID compare

1

ASID compare (DBASIDn register
implemented)

ASID support indication does not guarantee a
TLB-type MMU, because the same breakpoint
implementation can be used with processors having
all different types of MMUs.

Preset Required

NoSVmatch

29

Indicatesif avalue compare on astoreissupportedin
data breakpoints:

Encoding

Meaning

0

Datavalue and addressin condition
on store

Address compare only in condition
on store

Preset Required

NoLVmatch

28

Indicatesif avalue compare on aload issupportedin
data breakpoints:

Encoding

Meaning

0

Datavalue and addressin condition
on load

Address compare only in condition
on load

Preset Required

BCN

27:24

Number of data breakpoints implemented:

Encoding

Meaning

0

Reserved

1-15

Number of data breakpoints

Preset Required

DBPshare

15

Determines whether the Data breakpoints are shared

across the di

fferent VPEs of the processor, or are

implemented per-VPE.

Encoding

Meaning

0

Not shared

1

Shared across VPEs

Required if
MIPSMT is
implemented,
otherwise
Reserved.

Preset

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7 Data Breakpoint Registers

Table 3-17 DBS Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance

Break Status (BS) bit for breakpoint nisat B[],
wherenis0to 14. The bit is set to 1 when the
condition for its corresponding breakpoint has
matched. Required for
The number of BS bits implemented corresponds to] im tl)(latrighted

BS[14:0] 14:0 the number of breakpointsindicated by the BCN bit. | R/WO Undefined brgakpoi nts,
Debug software is expected to clear the bits before _othelr bits ?gé
use, since these are not cleared by reset. Impiemen
Bits not implemented are read-only (R) and read as
Zeros.

0 M283813él Must be written as zeros; return zeros on read. 0 0 Reserved

3.7.2 Data Breakpoint Addressn (DBAnN) Register
Compliance Level: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Address n (DBAN) register hasthe virtual address used in the condition for data breakpoint n. This
register islocated at drseg segment offset 0x2100 + 0x100 * n.

Figure 3-9 shows the format of the DBAnN register; Table 3-18 describes the DBAN register field.
Figure 3-9 DBAN Register Format

31 0

32-bit Processor | DBAnN |
63 0

64-bit Procr| DBAnN |

Table 3-18 DBAN Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
DBA MSB:0 Data breakpoint virtual address for condition R/W Undefined Required

3.7.3 Data Breakpoint AddressMask n (DBMn) Register
Compliance L evel: Required with data breakpoint n, optional otherwise.
The Data Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition for data

breakpoint n. The address that is masked isin the DBAN register. The DBMn register islocated at drseg segment offset
0x2108 + 0x100 * n.

EJTAG Specification, Revision 3.10 39

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Figure 3-10 shows the format of the DBMn register; Table 3-19 describes the DBMn register field.
Figure 3-10 DBMn Register Format

31 0

32-bit Processor | DBMn |
63 0

64-bit Processor| DBMn |

Table 3-19 DBMn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
Data breakpoint address mask for condition:
Encoding Meaning
DBMn MSB:0 Corresponding address bit R/W Undefined | Required

0 compared

1 Corresponding address bit masked

3.7.4 Data Breakpoint ASID n (DBASIDn) Register
Compliance Level: Required with data breakpoint n if the ASIDsup bit in the DBS register is 1, optional otherwise.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n. It is
located at drseg segment offset 0x2110 + 0x100 * n.

Figure 3-11 showstheformat of the DBASIDn register; Table 3-20 describesthe DBASIDn register fields. The width of
the ASID field for the compare is 8 bits. It isidentical to the width of the ASID field in the EntryHi register used with
the TLB-type MMU.

Figure 3-11 DBASI Dn Register Format

31 20 19 16 15 8 7 0
32-hit Processor | 0 | VPE | TCvd | ASID |

63 20 19 16 15 8 7 0
64-hit Processor| 0 | VPE | TCvd | ASID |
40 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7 Data Breakpoint Registers

Table 3-20 DBASIDn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
Thisfield indicates the value of the VPE id to use for
comparison and is used only if VPEusein DBCn
register is 1 and the breakpoints are shared across o
V/PEs. If the breakpoints are not shared, then these Required if
bits read zero, and writes are ignored.] MIPSMT is
VPE 11:8 - - R/W Undefined implemented.
Encoding Meaning Otherwise
0 Do not use VPE value in compare Reserved.
1 Use VPE valuein compare
Value of the thread context that caused the Data Required if
Breakpoint isjammed into these bits since the data MIPSMT is
TCvad 15:8 breaks are imprecise. Software can examine these R/W Undefined | implemented,
bits to determine which thread context actually otherwise
caused the data break. Reserved.
ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined Required
0 MSB:20 | Must be written as zeros; return zeros on read. 0 0 Reserved

3.7.5 Data Breakpoint Control n (DBCn) Register
Compliance L evel: Required with data breakpoint n, optional otherwise.
The DataBreakpoint Control n (DBCn) register what constitutes data breakpoint n: triggerpoint, breakpoint, ASID value
inclusion, load/store access fulfillment, ignore byte access, byte lane mask. Thisregister islocated at drseg segment
offset 0x2118 + 0x100 * n.
For description of “data bus’ notation see Section 3.3.2 on page 24.

Figure 3-12 shows the format of the DBChn register; Table 3-21 describes the DBCn register fields.
Figure 3-12 DBCn Register For mat

31 24 23 22 21 18 17 14 13 12 11 8 7 4 3 2 1 0
32-bit Processor TC ASI[TC 0 BAI[7:0] [No[No 0 BLMJ[7:0] [VPE] TE] 0 [BE
D |use SB|LB use
use
63 32 31 24 23 22 21 14 13 12 11 4 3 2 1 0
64-bit Processor| 0 TC ASI[TC BAI[7:0] No [No BLM[7:0] VPE| TE| 0 [BE
D |use SB|LB use
use
EJTAG Specification, Revision 3.10 41

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

42

Table 3-21 DBCn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
The value of TC (thread context) to match in the Required in
TC 31:24 comparison to determine if the data break is to be RIW Undefined |'\|~:|1”I3e?ﬂl\gn1;e|3
: taken. This comparisoniseffectiveonly if the TCuse Optherwi w
bit is set to 1. Otherwise this TC value isignored. Reserved.
Use ASID vauein compare for data breakpoint n:
Encoding Meaning
0 Do not use ASID value in compare Required if
i ASIDsupin
ASIDuse 23 ! Use ASID valuein compare R/W Undefined | DBSreg.isl,
Debug software should only set the ASIDuseif a (i)rt#&r év;]ﬁtng
TLB intheimplementation is used by the application
software.
This bit is read-only and reads as zero, if not
implemented.
Use TC value in comparison for data breakpoint n. o
- - Required if
Encoding Meaning ASIDsupin
TC 22 X R/W Undefined DBSreg.is1,
o 0 Do not use TC value in compare neen cher\r,\,eigséiot
1 |UseTC vauein compare implemented
Byte accessignore. Each bit of thisfield determines
whether a match occurs on an access to a specific
byte of the database (BAI[Q] controls matching for
data bus bits 7:0; BAI[1] controls matching for data
bus bits 15:8, etc.)., with the polarity of each bit, as
follows:
Encoding Meaning
0 Condition depends on access to Required for
corresponding byte _bytle lanesin
. . - - . implementatio
BAI[7:0] 21:14 1 |Accessfor corresponding byte is RIW | Undefined n,potherwise
ignored not
implemented
A match depends on areference accessing one or
more of the non-ignored bytes. No matches will
occur if all bytes are ignored.
Debug software must adjust for endianess when
programming this field.
BAI[7:4] areread-only (R) and read as zeros for
32-bit processors.
Controls whether condition for data breakpoint is
ever fulfilled on a store access:
Encoding Meaning
NoSB 13 o |Condition can befulfilled on store R/W | Undefined Required
access
1 Condition is never fulfilled on store
access

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

EJTAG Specification, Revision 3.10

3.7 Data Breakpoint Registers

Table 3-21 DBCn Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance
Controls whether condition for data breakpoint is
ever fulfilled on aload access:
Encoding Meaning
NoLB 12 o |Condition can befulfilled on load RW | Undefined | Reguired
access
1 Condition is never fulfilled on load
access
Byte lane mask for value compare on data
breakpoint. BLM[0] masks byte at bits[7:0] of the
data bus, BLM[1] masks byte at bits[15:8], etc.:
Encoding Meaning
0 m rrespondin I Required for
Compare corresponding byte lane bytelanesin
1 Mask corresponding byte lane] implementatio
BLM[7:0] 11:4 R/W Undefined | nandif value
.) compare,
Debug software must adjust for endianess when otherwise not
programming thisfield. implemented
BLM[7:4] are unimplemented for 32-bit processors.
BLM[7:0] areunimplemented if value compareisnot
implemented, which is the case when NoSV match
and NoLVmatch bitsin DBS are both 1. Bitsare
read-only (R) and read as zeros if not implemented.
Use VPE value in comparison for instruction o
breakpoint n. Thisfield isused only if the Required if
breakpoints are shared acrossthe VPEsof aMT core,) MIPSMT is
VPEuse 17 that is, the DBPshare bit is set in register DBP. R/W Undefined |mplr(]emented.
Otherwise
If the breakpoints are not shared, then these bitsread Reserved.
zero, and writes are ignored.
Use data breakpoint n as triggerpoint:
Encoding Meaning
TE 2 - - - R/W 0 Required
0 Do not use it as triggerpoint
1 Useit astriggerpoint
Use data breakpoint n as breakpoint:
Encoding Meaning
BE 0 - - R/W 0 Required
0 Do not useit as breakpoint .
1 Useit as breakpoint
0 218: 13 ! 111 Must be written as zeros; return zeros on read. 0 0 Reserved

3.7.6 Data Breakpoint Valuen (DBVn) Register

ComplianceL evel: Required with databreakpoint nif datavalue compareis supported (indicated by either NoSVmatch

or NoLVmatch bitsin DBS being 0), optional otherwise.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is located at
drseg segment offset 0x2120 + 0x100 * n.

Figure 3-13 shows the format of the DBV n register; Table 3-22 describes the DBV n register field.
Figure 3-13 DBVn Register Format

31 0
32-bit Processor | DBVn
63 0
64-bit Processor| DBVn

Table 3-22 DBVn Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
Data breakpoint data value for condition.
DBV MSB:0 Debug software must adjust for endianess when RIW Undefined Required
programming this field.

3.8 Recommendations for Implementing Har dwar e Breakpoints

This section provides useful information for implementing instruction and data breakpoints.

3.8.1 Number of Instruction Breakpoints Without Single Stepping

If hardware single stepping is not implemented, then at least two instruction breakpoints are required. Four instruction
hardware breakpoints are recommended.

3.8.2 Data Breakpointswith Data Value Compares

Data breakpoints should be implemented with data value compares. Also, data value compares should be implemented
evenif itisnot possible to break on loads with precise data value compares. Refer to Section 3.8.4 on page 45 for more
information on precise exceptions.

3.8.3 Data Breakpoint Compare on Invalid Data

Data breakpoints should only compare on valid data, meaning they only generate debug exceptions based on valid data
inthe compare. Thisdoes a so apply to compare on store datafor astore to an unaligned address. For exampl e, no debug
exception should be generated for abus error on aload that has apending data breakpoint to compare on the datareturned
by the load.

However, in some cases, theindication of invalid dataislate relative to the data, for example, for acache error asaresult
of acomplex error detection. In this case, data breakpoints can indicate a debug exception because the datawas believed
to bevalid at the time of the compare, and the pending error is then indicated to the debug handler through the DBuseP
or CacheEP bit in the Debug register, because the error occurred after the debug exception.

44 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.9 Breakpoint Examples

However, for bus errors due to external events, the bus error indication usually is available when the comparein the data
breakpoint would take place. Thusit is possible to avoid a debug exception.

3.8.4 Precise/ Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

Data breakpoints are recommended to generate precise debug exceptions, if possible in the implementation. Thus the
DEPC register and DBD bit in the Debug register point to the load/store that caused the debug exception to occur. This
instruction can then be re-executed when execution resumes after the debug handler. However, data breakpoints are
allowed to cause imprecise debug exceptions when the breakpoint is set up with data value compares; for example, if
data breakpoints with compares on loaded data values cannot be made precise due to a non-blocking load. In this case,
the DEPC register and DBD hit in the Debug register point to an instruction in the execution flow after the load/store
that caused the imprecise debug exception. The BS bit can be updated when the match is detected, even though a debug
exception is not taken until later due to internal stalls (for example, anulled instruction in the pipeline at the time the
match is detected). It isimplementation specific as to which cases a data breakpoint can cause an imprecise debug
exception. It is recommended that the data breakpoints cause imprecise matches in as few cases as possible.

In aprocessor implementing the MIPS MT ASE, since instructions from multiple thread contexts may beinterleaved in
the pipeline, imprecise data breakpointsisabother since the thread taking the breakpoint exception may not be thethread
that caused the breakpoint. Hence, it isrequired that in a processor implementing MIPS MT, the hardware must jam the
value of the TC that caused the breakpoint in the TCval bits of the corresponding DBASIDn register. This must be done
irrespective of whether or not the data breakpoint exception isimplemented as a precise or animprecise debug exception,
for a consistent software implementation.

I mplementations can require imprecise debug exceptions from data breakpoints on loads with value comparesin a
specific address range, if re-execution of aload in this range is not acceptable. Thiscaseis possibleif the load has side

effects such asremoving an entry on aqueue. | mprecise debug exceptionsfor value compares ensure that the destination
register is properly updated with the |oaded value, whereby re-execution of the load is avoided.

3.9 Breakpoint Examples

This section provides several examples of instruction and data breakpoint uses.

3.9.1 Instruction Breakpoint Examples

This section provides examples that illustrate using an instruction break.

3.9.1.1 Instruction Break in Small Range of I nstructionswith ASID

This example shows how to set up an instruction breakpoint to break on the fetch of any one of the four instructionsin
the virtual address range shown below:

0x0000 0010 J Ll // ASID = 0x5
0x0000 0014 NOP
0x0000 0018 J L2
0x0000 001cC NOP

The break registers must be set up as follows:

 IBAO = 0x0000 0010

 IBMO = 0x0000 000C

+ |IBCO: BE=1, ASIDuse=1, ASID = 0x5, other bits zero

EJTAG Specification, Revision 3.10 45

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Note that IBAO has the starting address, and IBMO has the address mask.

3.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

In this example, instruction breakpoint O needs to be set up to break on the range 0x0000 0030 to 0x0000 0036, which
starts with the second part of an extended MIPS16e instruction:

0x0000 002e EXT // (lst part of MIPSl6e inst.)
0x0000 0030 ADD // (2nd part)

0x0000 0032 SUB

0x0000 0034 SUB

0x0000 0036 SUB

The break registers must be set up as follows:
* IBAO = 0x0000 0031
 IBMO = 0x0000 0006
» IBCO: BE =1, ASIDuse = 0, other bits zero

The CPU does not take a debug exception when fetching the second part of the ADD instruction, because it does not
constitute awhole instruction. The first break is on the SUB instruction at 0x0000 0032.

3.9.2 Data Breakpoint

This section provides three examples of data breakpoints.

3.9.2.1 Data Break on Load Accesswith ASID

This example shows how to perform a break on data breakpoint O when the CPU loads data OXAAAA 0000 from
memory location 0x0000 0100 in ASID=0x7:
LW $2, 0x100($0) // ASID = 0x7
The break registers must be set up as follows:
+ DBAO = 0x0000 0100
+ DBMO=0x0
+ DBVO=0xAAAA 0000
+ DBCO: BE=1, NoLB =0, NoSB =1, BLM =0, BAl =0, ASIDuse = 1, ASID = 0x7, other bits zero
In this example, DBAO contains the breakpoint address;, DBMO has the address mask; DBV O has the data value; and

DBCO indicates a breakpoint condition might be fulfilled on aload but not on a store, there is a value compare for a
corresponding byte, and an ASID is used.

3.9.2.2 DataBreak on Store(s) to Halfword in Memory

This example shows abreak on data breakpoint 0 when the CPU stores data in a specific halfword in memory. Storesto
the other halfword at the same address can be ignored. The dataword isillustrated in Figure 3-14; the halfword for bits

46 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.9 Breakpoint Examples

31:16isshaded. Thestoreinstructions shown in Figure 3-14 alter the shaded halfword and cause abreak if the breakpoint
registers are set up as shown below.

Figure 3-14 Data Break on Store with Value Compare
Break on Memory Address 0x0000 0200 bit 31:16, Little Endian

L3 | 2 | | |
31 0
SW $2, 0x0000 0200 bytes_valid = 1111,
SH $2, 0x0000 0202 bytes_valid = 1100,
SB $2, 0x0000 0202 bytes_valid = 0100,
SB $2, 0x0000 0203 Dbytes_valid = 1000,

In this example, the data breakpoint registers are set up asfollows:

« DBAO = 0x0000 0200

« DBMO=0

« DBCO: BE=1, NoLB =1, NoSB =0, BLM = 1111,, BAI = 0011,, ASIDuse = 0, other bits zero

3.9.2.3 Data Break on Store(s) to Halfword Rangein Memory with Certain Value

In this example, the most significant halfword in a given memory range is atered, and the most significant part of the
halfword is written a certain value. The data word isillustrated bel ow; the halfword for bits 31:16 is shaded. The store
instructions shown in Figure 3-15 alter the shaded halfword and cause a break if the breakpoint registers are set up as
shown below.

Figure 3-15 Data Break on Store with Value Compare

Break on Memory Address range 0x0000 0200 - 0x0000 02FC
Write to bits 31:16, bits 31:24 with value OXAA, Little Endian

L 3 | 2 | | |

31 0
SW $2, 0x0000 0220 $2=0xAAXX XXXX bytes_valid = 1111,
SH $2, 0x0000 0242 $2=0xXXXX AAXX bytes_valid = 1100,
SB $2, 0x0000 0282 $2=0xXXXX XXXX bytes_valid = 0100,
SB $2, 0x0000 02F3 $2=0xXXXX XXAA bytes_valid = 1000,

‘X’ denotes undefined value.

In this example, the data breakpoint registers are set up as follows:

» DBAO = 0x0000 0200

DBMO = 0x0000 00FC

DBV0 = OxAA00 0000

DBCO: BE=1, NoLB =1, NoSB =0, BLM = 0111,, BAl = 0011,, ASIDuse = 0, other bits zero

EJTAG Specification, Revision 3.10 a7
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

48 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 49

PC Sampling

This chapter describes the optional PC sampling feature of EJTAG which is being introduced in the 3.1 version of the
EJTAG specification. It contains the following sections:

» Section 4.1, "Introduction”
» Section 4.2, "Overview of the PC Sampling Feature"

4.1 Introduction

It isoften useful for program profiling and analysis purposesto samplethe value of the PC periodically. Thisinformation
can be used for statistical profiling of the program akin to gprof. Thisinformation is also very useful for detecting
hot-spotsin the code. In amulti-threaded environment, thisinformation can be used to detect thread behavior and verify
thread scheduling mechanismsin the absence of the PDtrace facility. Therest of this chapter describes the PC sampling
feature. The PC sampling feature is optional within EJTAG. But EJTAG and the TAP controller must be implemented
if PC Sampling is required. When implemented, PC sampling cannot be turned on or off, that is, the PC valueis
continually sampled.

4.2 Overview of the PC Sampling Feature

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 15 (PCS). As
mentioned already, if PC sampling isimplemented, then the PC values are constantly sampled at the requested rate. The
sampled PC values are written into a TAP register. The old valuein the TAP register is overwritten by anew value even
if this register has not be read out by the debug probe. The sample rate is specified in amanner similar to the PDtrace
synchronization period, with three bits. These bitsin the Debug Control register are 8:6 and called PCSR (PC Sample
Rate). These three bits take the value 2° to 212 similar to SyncPeriod. Note that the processor samples PC even when it
isasleep, that is, in aWAIT state. This permits an analysis of the amount of time spent by a processor in WAIT state
which may be used for exampleto revert to alow power mode during the non-execution phase of areal-time application.
See Chapter 2, “Debug Control Register,” on page 15 for a description of the bits specified here in the Debug Control
register.

The sampled valuesincludes anew data bit, the PC, the ASID of the sampled PC aswell asthe Thread Context id if the
processor implementsthe MIPSMT ASE. Figure showsthe format of the sampled valuesin the TAP register PCsample.
The new databit isused by the probeto determineif the PCsampleregister datajust read out isnew or aready been read
and must be discarded.

Figure 4-1 TAP Register PCsample Format

48 41 40 33 32 1 0
TC (for MIPSMT ASID PC Ne
processors only) w

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC isthe PC of the next graduating instruction. The processor continues
to sample the PC value even when it isin Debug mode.

Some of the lower sample periods can be too small with respect to the time needed to read out the sampled value. That
is, it might take 41 clock ticks to read a sample, while the smallest sample period is 32, hence the processor might

EJTAG Specification, Revision 3.10 49

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 PC Sampling

overwrite the sample before it has been full read out. Hence, the sample rate must be set to some appropriate value to
get areasonable reading of the sampled PC values.

4.2.1 PC Sampling in Wait State

When the processor isin aWAIT state to save power for example, an external agent might want to know how long it
staysinthe WAIT state. But counting cyclesto update the PC sample value is awaste of power. Hence, wheninaWAIT
state, the processor must simply switch the New bit to 1 each timeit is set to 0 by the probe hardware. Hence, the external
agent or probe reading the PC value will detect aWAIT instruction for as long as the processor remains in the WAIT
state. When the processor leaves the WAIT state, then counting is resumed as before.

4.2.2 PC SamplingaMT Processor

In amulti-VPE implementation of a processor with MIPS MT, each VPE hasits own TAP controller and will
independently sample the PC of the instructions executing in that VVPE of the processor. In the context of a VPE, PC

sampling is not enabled for aVPE until that VPE is enabled. If there are no active TCs on a given VPE then no new PC
samples at available at the TAP controller PCsampl e register.

50 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5

EJTAG Processor Core Extensions

This chapter describes the behavior for processors that support EJTAG. It contains the following sections:

Section5.1,"
Section 5.2, "
Section 5.3, "
Section5.4,"
Section 5.5, "
Section 5.6, "
Section5.7,"
Section 5.8, "

5.1 Overview

Overview"

Debug Mode Execution”

Debug Exceptions’

Debug Mode Exceptions'
Interrupts and NMIs"

Reset and Soft Reset of Processor”
EJTAG Instructions”

EJTAG Coprocessor 0 Registers'

The extensions for EJTAG provide the following major features:

Debug Mode, associated exceptions and dedicated debug vector
Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception Return)
CPO registers. Debug, DEPC and DESAVE

Memory-mapped debug segment (dseg) (optional)

Interrupt and NMI control from Debug Control Register (DCR) (optional)

Single step (optional)

Debug interrupt request signal (optional)

Note that some of the features are optional.

The general description in this chapter covers MIPS32 and MIPS64 processors, implying an R4k-like privileged
environment. Differences for processors with R3k privileged environments are described in Appendix A.

5.2 Debug M ode Execution

Debug Modeisentered only through adebug exception. It isexited asaresult of either execution of aDERET instruction
or application of areset or soft reset.

When the processor is operating in Debug Mode it has access to the same resources, instructions, and CPO registers as
in Kernel Mode. Restrictions on Kernel Mode access (non-zero coprocessor references, access to extended addressing
controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some additional capabilities
as described in this chapter.

EJTAG Specification, Revision 3.10 51

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

52

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as Non-Debug Mode.
Debug software can determineif the processor isin Non-Debug Mode or Debug Mode through the DM bit in the Debug
register.

A debug exception in a processor implementing the MIPSMT ASE will cause al other TCs (Thread Contexts) in the
processor, except the one executing the exception handler, to be suspended from concurrent execution until the DERET.
Debug mode execution takes priority over all other TC scheduling rulesin MIPS MT. A TC which is otherwise not
permitted to issue instructions, due to a Halted, non-Activated (see the MIPS MT specification) or OffLine state (see
section 5.8.1) may still be used to service a debug exception.

When aMIPS MT processor is operating in Debug Mode, it has access to the same resources and capabilities asif the
VPE in Debug Mode had the MVP bit of the VPEConfO register set, allowing access to all VPEs of the processor.

The ability of an OffLine MIPS MT TC to execute in Debug mode makes it possible for EJTAG-based debuggers to
allow other TCs and/or other VPEs to continue executing while a particular TC has been stopped for debugging. The
Debug exception handler can cause the TC to put itself, and/or other TCs, in an OffLine state, then execute a DERET.
On exiting Debug mode, the processor will resume normal scheduling of “on-line” TCs, but the OffLine oneswill remain
frozen until released by, e.g. service of a subsequent DINT Debug exception.

Itisnot arequirement in EJTAG, but it isleft as an implementation option in multiprocessor/multicore systems whether
or not a global debug state is defined and can be set by the debugger to suspend other processors when one of the
processors in a multi-core system encounters debug exception. Similarly, implementation can also trigger re-starting of
other processors when the one in debug mode executes a DERET. See Appendix <TBD> for a description of this
mechanism.

5.2.1 Debug Mode Instruction Set

The full native ISA of the processor is accessible in Debug Mode.

Coprocessor loads and stores to the dseg segment are not supported. The operation of the processor is UNDEFINED if
acoprocessor load or storeto dseg is executed in Debug Mode. Refer to Section 5.2.2 on page 52 for more information
on the dseg address space.

5.2.2 Debug M ode Address Space

Debug Mode access to unmapped address space isidentical to that of Kernel Mode. Mapped areas are accessible asin
Kernel Mode, but only if avalid trandation isimmediately provided by the MMU.

Thisis because a memory access that would cause a TL B-type exception when tried from Kernel Mode, would, when
tried from Debug Mode, cause re-entry into Debug Mode through an exception (see Section 5.4 on page 68). Memory
accesses usually causing TLB-type exception are therefore not handled by the usual memory management routines if
these memory accesses are made while in Debug Mode.

Updating and handling of cached areas is the same asthat in Kernel Mode.

In addition, an optional uncached and unmapped debug segment dseg (EJTAG area) appears in the address range
OxFFFF FFFF FF20 0000 to OXFFFF FFFF FF3F FFFF. The dseg segment thereby appears in the kseg part of the
compatibility segment, and access to kseg is possible with the dseg segment provided as described in Section 5.2.2.1 on
page 54 and Section 5.2.2.2 on page 55. Coprocessor |oads and stores to the dseg segment are not allowed, as described
in Section 5.2.1 on page 52.

The dseg segment isimplemented only if the Debug Control Register (DCR) isincluded in the implementation. Refer
to Chapter 5 on page 51 for more on the DCR. The implementation-dependent value of the NoDCR bit in the Debug

EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.2 Debug Mode Execution

register (see Section 5.8.1 on page 75) indicates the presence of the dseg segment as shown in Table 5-1. If the dseg
segment is not present, then all transactions from the processor in Debug Maode go to the Kernel Mode address space.
Debug software must check the Debugypcr bit before trying to access the dseg segment.

Table 5-1 Presence of the dseg Segment

NoDCR bit in Debug Register dseg Presence
0 dseg Present
1 No dseg

Conditions for access to the dseg segment are described in Section 5.2.2.2 on page 55 and Section 5.2.2.1 on page 54.
Figure 5-1 shows the layout of the virtual address space.

Figure5-1 Virtual Address Spaceswith Debug M ode Segments

64-bit Virtual Memory 32-bit Compatibility Address
FTT T T r OXFFFF FFFF FFFF FFFF
. Kernd Kernel ksea3
Debug Mode Segment ' Mapped | ® Mapped Seg
b ; OXFFFF FFFF E000 00000
OXFFFF FFFF FF3F FFFF ! Supervisor | Supervisor
Debug 1 Mapped ! Mapped g
dseg Unmapped b ; OXFFFF FFFF C000 0000
Uncached 1 Kernd Kernel
"Unmapped | Unmapped ksegl
OXFFFF FFFF FF20 0000 | |
| Uncached Uncached | o rrrr FrFF A000 0000
The dseg appears at an address | Kernel | Kernel
ksegO
range also used for accessto kseg. ' Unmapped ! Unmapped
However, kseg is still available > OXFFFF FFFF 8000 0000
when in Debug Mode. Kernel 2%-byte Compattility Segment
M apped xkseg
0xC000 0000 0000 0000
Kernel
Unmapped xkphys
0x8000 0000 0000 0000
Supervisor
M apped XSseg
0x4000 0000 0000 0000
User
M apped XUSeg .
23%.byte Compatibility Segment
| | 0x0000 0000 7FFF FFFF
| |
| |
| |
| |
| |
| |
' User ! User
| Mapped | Mapped | %
| l
| |
| |
| |
| |
L ! - 0x0000 0000 0000 0000
EJTAG Specification, Revision 3.10 53

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

54

The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG registers) segment.

dmseg segment is used when the probe services the memory segment. The drseg segment is used when the
memory-mapped debug registers are accessed. Table 5-2 shows the subdivision and attributes for the segments.

Table 5-2 Physical Addressand Cache Attribute for dseg, dmseg and drseg

The

Segment | Subsegment Cache
Name Name Virtual Address Reference Address Attribute
dmseg OXFFFF FFE('): FF20 0000 Because the dseg segment is serviced
exclusively by the EJTAG features, there
OXFRRF FRFF FR2F FRFF areno physical addressper se. |nstead the
lower 21 bits of the virtual address select
d theappropriatereferenceineither EJTAG Uncached
=9 memory or registers.
References are not mapped through the
drseg OxFFFF FF';('): FF30 0000 TLB, nor do the accesses appear on the

OXFFFF FFFF FF3F FFFF

external system memory interface.

The SYNC instruction, followed by appropriate spacing (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed to ensure that an accessto the dseg segment iscommitted (for example, after writing
to the dseg segment and before leaving Debug Mode). This procedure ensuresthat locationsin the dseg segment arefully
updated for Non-Debug Mode, otherwise behavior of the processor is UNDEFINED.

5.2.2.1 Accessto dmseg (EJTAG memory) Address Range

Table 5-3 shows the behavior of processor accesses in Debug Mode to the dmseg segment from
OxFFFF FFFF FF20 0000 to OxFFFF FFFF FF2F FFFF.

Table 5-3 Access to dmseg Segment Address Range

NoDCR bit in ProbEn bit in LSNM bit in
Debug Register Transaction DCR register Debug Register Access
1 X (Not present) 0 (read-only) Kernel Mode address space
1 X dmseg
Al 0 N See comments bel ow regarding
behavior when ProbEn is 0
0 dmseg
0 1
1 Kernel Mode address space
L oad/Store 1 Kernel Mode address space
0 0 See comments bel ow regarding
behavior when ProbEn is 0

‘X" denotesdon’t care

From Table 5-3, when ProbEn equal s O for dmseg segment accesses, debug software accessed the dmseg segment when
the ProbEn bit was 0, indicating that there is no probe available to service the request. Debug software must read the

state of the ProbEn bit in the DCR register before attempting to reference the dmseg segment. However, accessing the
dmseg segment while ProbEn is 0 can occur because there is an inherent race between the debug software sampling the
ProbEn bit as 1 and the probe clearing it to 0. The probe can therefore not assume that a reference to the dmseg segment

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.2 Debug Mode Execution

never occursif the ProbEn bitisdynamically cleared to O. If debug software references the dmseg segment when ProbEn
is 0, the reference hangs until it is satisfied by the probe.

There are no timing requirements with respect to transactions to the dmseg segment, which the probe services. Therefore
asystem watchdog must be disabled during dseg segment transactions, so accesses can take any amount of time without
being terminated.

The protocol for accesses to the dmseg segment does not allow atransaction to be aborted once started, except by areset
or soft reset.

Transactions of all sizes are allowed to the dmseg segment.

Merging is alowed for accesses to the dmseg segment, whereby for example two byte accesses can be merged to one
halfword access, and debug software isthus required to allow merging. However, merging must only occur for accesses
which can be combined into legal processors accesses, since processor access can only indicate accesses which can occur
due to a single load/store, thus not for example accesses to only first and last bytes of aword. The SYNC instruction,
followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section 5.2.4 on page 58) can be
executed to ensure that earlier accesses to the dmseg segment are committed thus will not be merged with later accesses.

The processor can do speculative fetching from the dmseg segment whereby it can fetch doublewords even if an
instruction that is not required in the execution flow isthereby fetched. For exampleif the DERET instruction isfetched
asthefirst word of adoubleword, then theinstruction in the second word is not executed. For details, refer to architecture
description covering speculative fetching from uncached areain general.

If the TAP is not present in the implementation, then the operation of the processor is UNDEFINED if the dmseg
segment is accessed.

5.2.2.2 Accesstodrseg (EJTAG Registers) Address Range

Table 5-4 showsthe behavior of processor accessesin Debug M odeto the drseg segment from OxFFFF FFFF FF30 0000
to OXFFFF FFFF FF3F FFFF.

Table 5-4 Accessto drseg Segment Address Range

NoDCR bit in LSNM bit in
Debug Register Transaction Debug Register Access
1 X 0 (read-only) Kernel Mode address space
Fetch X Operation of the processor is UNDEFINED at fetch
0 0 drseg segment (see comments below the table)
Load/Store
1 Kernel Mode address space
‘X’ denotes don't care

Instruction fetches from the drseg segment are not allowed. The operation of the processor is UNDEFINED if the
processor triesto fetch from the drseg segment.

When the NoDCR bit is 0 in the Debug register it indicates that the processor is alowed to access the entire drseg
segment, therefore a response occurs to all transactionsin the drseg segment.

The DCR register, at offset 0x0000 in the drseg segment, is aways available if the dseg segment is present. Debug
software is expected to read the DCR register to determine what other memory-mapped registers exist in the drseg
segment. The value returned in response to aread of any unimplemented memory-mapped register is
UNPREDICTABLE, and writes are ignored to any unimplemented register in the drseg segment.

EJTAG Specification, Revision 3.10 55

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

56

The allowed transaction size is limited for the drseg segment. Only word size transactions are allowed for 32-bit
processors, and only doubleword size transactions are allowed for 64-bit processors. Operation of the processor is
UNDEFINED for other transaction sizes.

5.2.3 Debug Mode Handling of Processor Resour ces

Unless otherwise specified, the processor resourcesin Debug Mode are handled identically to those in Kernel Mode.
Some identical cases are described in the following subsections for emphasis.

In addition, see the following related sections for more information:

* Section 5.4, "Debug Mode Exceptions' covering exception handling in Debug Mode.

 Section 5.5, "Interrupts and NMIs" for handling in both Debug and Non-Debug Modes.

* Section 5.6, "Reset and Soft Reset of Processor" for handling in both Debug and Non-Debug Modes.

5.2.3.1 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Unusable
exception in Kernel Mode (see Section 5.4.1 on page 68). Therefore Debug Mode software cannot reference
Coprocessors 1 through 2 without first setting the respective enable in the Status register.

5.2.3.2 Random Register

For TLB-based MMU implementations, the Random register (CPO register 1, select 0) optionally can befrozenin Debug
Mode, whereby execution with and without debug exceptions are identical with respect to TLB exception handling.

If the values that the Random register provides cannot be identical in behavior to the case where debug exceptions do
not occur, then freezing the Random register has no effect, because execution with and without debug exceptions will
not be identical. Stalls when entering Debug Mode (for example, due to pending scheduled |oads resolved at context
save in the debug handler) can make it impossible in some implementations to ensure that the Random register will
provide the same set of values when running with and without debug exceptions.

Thereisno bit to indicate or control if the Random register is frozen in Debug Mode, so the user must consult system
documentation.

5.2.3.3 Count Register

The Count register (CPO register 9) operation in Debug Mode depends on the state of the CountDM bit in the Debug
register (see Section 5.8.1 on page 75). The Count Register has three possible configurations, depending on the
implementation:

 Count register runsin Debug Mode the same asin Non-Debug Mode

 Count register is stopped in Debug Mode but is running in Non-Debug Mode

e The CountDM bit controls the Count register behavior in Debug Mode whereby it can be either running or stopped
Stopping of the Count register in Debug Modeis allowed in order to prevent generation of an interrupt at every return

to Non-Debug Mode, if the debug handler takes so long to execute that the Count/Compare registers request an interrupt.
In this case, system timing behavior might not be the same as if no debug exception occurred.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.2 Debug Mode Execution

5.2.3.4 WatchL o/WatchHi Registers

The WatchL o/WatchHi registers (CPO Registers 18 and 19) are inhibited from matching any instruction executed in
Debug Mode.

5.2.3.5 CacheErr Register

The MIPS32 and M1PS64 architecture specifications state that operation of the CacheErr register is implementation
dependent, so the CacheErr register handling described in the EJTAG Architecture is arecommendation only. Debug
software can therefore not depend on the CacheErr register being implemented as recommended bel ow.

The recommendation isthat a CacheErr shadow register captures information presented when a cache error isindicated,
and holds this information until alater update of the CacheErr register when a Cache Error exception occurs. The
CacheErr shadow register is updated at “ cache error indication AND (in Non-Debug Mode OR (in Debug Mode AND
the IEXI bitisset))”. The CacheErr shadow register is not updated when in Debug Mode and the |EXI hit is cleared,
but a cache error in this case only occurs due to an instruction executed in Debug Mode, if proper debug handler entry
code is used. The CacheErr register is only updated at a Cache Error exception, thus not at a Debug Mode Cache Error
exception.

If the CacheErr register valueisto be correct for a cache error deferred through Debug Mode, then no cache errors may
occur when in Debug Mode and the |EXI bit is set. The debug handler must therefore ensure the entry and exit code,
executed with |EX1 is set, can not cause cache errors, otherwise the CacheErr register contents presented to Non-Debug
Modeisinvalid.

5.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair

A DERET instruction does not clear the LLbit (see Section 5.7.1 on page 74), neither does the occurrence of a debug
exception. Loads and stores to uncacheable locations that do not match the physical address of the previous LL
instruction do not affect the result of the SC instruction. The value of the LLbit is not directly visible by software.

5.2.3.7 SYNC Instruction Behavior

The SYNC instruction is used to request the hardware to commit certain operations before proceeding. For example, a
SYNC isrequired to remove memory hazards on reference to the dseg segment. Also, the SY NC instruction ensuresthat
status bits in the Debug register and the hardware breakpoint registers are fully updated before the debug handler
accesses them and before Debug Maode is exited. Similarly, a SY NC combined with appropriate spacing (see Section
5.2.4 on page 58) is used to remove Coprocessor 0 (CP0) hazards.

The SYNC instruction must provide specific behavior as described in Table 5-5.
Table 5-5 SYNC Instruction References

Behavior Section References

Commit accesses to the dseg segment See Section 5.2.2 on page 52

See Section 5.3.7 on page 63 and

Update the DDBLImpr and DDBSImpr bits in the Debug register Section 5.8.1 on page 75

Update the BS bitsin the IBS and DBS registersin drseg See Section 3.4.2 on page 29

See Section 5.4.2 on page 69 and

Update the IBusEP, DBuUSEP, CacheEP, and M CheckP bitsin the Debug register Section 5.8.1 on page 75

The SYNC instruction must be executed before leaving Debug M odein order to commit all accessesto the dseg segment,
for example to commit accesses to set up hardware breakpoints.

EJTAG Specification, Revision 3.10 57

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

58

It may be required to remove hazards in relation to the SY NC instruction as described in Section 5.2.4 on page 58.

Other requirements of the SYNC instruction are described in the MIPS32 and M1PS64 Architecture specifications.

5.2.4 CPO and dseg Segment Hazards

Because resources controlled via Coprocessor 0 and EJTAG memory and registers in the dseg segment affect the
operation of various pipeline stages of the processor, manipulation of these resources may produce results that are not
detectable by subsequent instructions for some number of execution cycles. When no hardware interlock exists between
one instruction that causes an effect that is visible to a second instruction, a CP0 or dseg segment hazard exists.

In Release 1 of the MIPS32 and MIPS64 Architectures, hazards were rel egated to implementati on-dependent
cycle-based solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that thisisan
insufficient and error-prone practice that must be addressed with a firm compact between hardware and software. As
such, new instructions have been added to Release 2 of the Architecture which act as explicit barriers that eliminate
hazards. To the extent that it was possible to do so, the new instructions have been added in such away that they are
backward-compatible with existing MIPS processors.

5.2.4.1 Typesof Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. In Table 5-6 below, the final column liststhe “typical” spacing required in implementations of Release 1
of the Architecture to allow the consumer to eliminate the hazard. The “typical” value shown in these tables represent
spacing that isin common use by operating systems today. An implementation of Release 1 of the Architecture which
requires less spacing to clear the hazard (including one which has full hardware interlocking) should operate correctly
with an operating system which uses this hazard table. An implementation of Release 1 of the Architecture which
requires more spacing to clear the hazard incurs the burden of validating kernel code against the new hazard
requirements.

Note that, for superscalar MIPSimplementations, the number of instructionsissued per cycle may be greater than one,

and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It isfor thisreason
that MIPS Release 1 defines the SSNOP instruction to convert instruction issues to cyclesin a superscalar design.

Execution Hazards

Execution hazards are those created by the execution of oneinstruction, and seen by the execution of another instruction.
Table 5-6 lists execution hazards related to EJTAG.

Table 5-6 Execution Hazards

“ Typlcaln
Spacing
Producer - Consumer Hazard On (Cycles)
dseg memory
SYNC - DERET locations 2
BSbitsin the
IBS and DBS
SYNC - Load / Store registersin 2
drseg

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.2 Debug Mode Execution

Table 5-6 Execution Hazards

“Typical”
Spacing
Producer — Consumer Hazard On (Cycles)
Debugppgsimpr
B$38D05L|mprv
SYNC MFCO Debu |BUsEP 2
” 9 Debugpgysep
Debugcacheerp
Debugicheckp
MTCO DEPC - DERET DEPC 2
MTCO Debug - DERET Debug 2
MTCO .
Debug[L SNM] - Load / Store in dseg Debug[L SNM] 3
MTCO Instructions that can cause an
Debug[I EXI] - imprecise exception Debug[1EXI] 3

Dependencies from the SYNC instruction as producer takes effect since specific updates of the dseg segment and
resolving of pending impreci se exception indications are triggered by the SY NC instruction. Thisisdescribed in Section
5.2.3.7 on page 57.

Instruction Hazards

Instruction hazards are those created by the execution of oneinstruction, and seen by the instruction fetch of another
instruction. There are no instruction hazards that are specific to EJTAG.

5.2.4.2 Hazard Clearing Instructions
Table 5-7 lists the instructions designed to eliminate hazards.

Table 5-7 Hazard Clearing I nstructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

5.2.4.3 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions. These
encodingswere chosen for compatibility with existing MIPS implementations, including many which pre-date the M1PS
architecture. Because apipelineflush clears hazards on most early implementations, the JALR.HB or JR.HB instructions

EJTAG Specification, Revision 3.10 59

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

can beincluded in existing software for backward and forward compatibility. See the JALR.HB and JR.HB instructions
for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on
processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

The SSNOP and EHB instructions are fully described in the MIPS32 and MIPS64 Architecture for Programmers,
Volumell.

5.3 Debug Exceptions

60

This section describesissues rel ated to debug exceptions. Debug exceptions bring the processor from Non-Debug Mode
into Debug Maode. Implementations need only support those debug exceptionsthat are applicableto that implementation.

Exceptions can occur in Debug Mode, and these are denoted as debug mode exceptions. These exceptions are handled
differently from exceptions that occur in Non-Debug Mode, which are described in Section 5.4 on page 68.

5.3.1 Debug Exception Priorities

Table 5-8 lists the exceptions that can occur in Non-Debug Mode in order of priority, from highest to lowest. The table
also categorizes each exception with respect to type (debug or non-debug). Each debug exception has an associated status
bit in the Debug register (indicated in the table in parentheses). Refer to Section 5.8.1 on page 75 for more information.

Table 5-8 Priority of Non-Debug and Debug Exceptions

Priority Exception Type of Exception
Highest Reset
Non-debug
Soft reset
Debug Single Step
Debug Interrupt; by external signal (DINT), from EjtagBrk in TAP, or through use Debu
of EJTAG Boot. 9
Debug Data Break L oad/Store Imprecise (DDBLImpr/DDBSImpr)
Nonmaskable Interrupt (NMI)
Machine Check
Non-debug
Interrupt
Deferred Watch
Debug Instruction Break Debug
Weatch on instruction fetch
Address error on instruction fetch
TLB refill on instruction Ifetch
Non-debug
TLB Invalid oninstruction Ifetch
Cache error on instruction Ifetch
Bus error on instruction Ifetch

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.3 Debug Exceptions

Table 5-8 Priority of Non-Debug and Debug Exceptions (Continued)

Priority Exception Type of Exception

Debug Breakpoint; execution of SDBBP instruction Debug
Other execution-based exceptions Non-debug
Debug Data Break on L oad/Store address match only Debug
or Debug Data Break on Store address+data value match
Watch on data access
Address error on data access
TLB Réfill on data access
TLB Invalid on data access Non-debug
TLB Modified on data access
Cache error on data access
Bus error on data access

Lowest Debug Data Break on Load address+data match Debug

The specific implementation determines which exceptions can occur and the priority of asynchronous exceptions, such
asinterrupts.

5.3.2 Debug Exception Vector Location

The same debug exception vector location is used for all debug exceptions. The ProbTrap bit in the EJTAG Control
Register (ECR) in the optional Test Access Port (TAP) determines the vector location.

Table 5-9 Debug Exception Vector Location

ProbTrap bit in ECR register Debug Exception Vector Address
0 OxFFFF FFFF BFCO 0480
1 OxFFFF FFFF FF20 0200 in dmseg

If the TAPis not implemented, then the debug exception vector locationisasif ProbTrapisO.

5.3.3 General Debug Exception Processing

All debug exceptions have the same basic processing flow:

» The DEPC register isloaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in abranch delay slot. The value loaded into the DEPC register is either
the current PC (if theinstruction isnot in the delay slot of abranch) or the PC of the branch or jump (if theinstruction
isinthe delay slot of abranch or jump).

» TheDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register are updated
appropriately depending on the debug exception.

» DExcCode field in the Debug register is undefined.
» Halt and Doze bits in the Debug register are updated appropriately.
* |EXI bit is set to inhibit imprecise exceptions in the start of the debug handler.

EJTAG Specification, Revision 3.10 61

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

* DM bhit in the Debug register is set to 1.

» The processor begins fetching instructions from the debug exception vector.

The value loaded into the DEPC register represents the restart address from the debug exception and does not need to
be modified by the debug exception handler software. Debug software need only look at the DBD bit in the Debug
register if it wishes to identify the address of the instruction that actually caused a precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register indicate the
occurrence of distinct debug exceptions, except when a Debug Data Break Load/Store Imprecise exception occurs (see
Section 5.3.7 on page 63). Note that occurrence of an exception whilein Debug mode will clear these bits. The handler
can thereby determine whether a debug exception or an exception in Debug Mode occurred.

Also note that multiple cause bits may be set, but the priority of the debug exception or interrupt dictates the order in
which they are handled. For example, since DSSis the highest priority Debug exception, if it occurs, it will always be
taken first. Then, after it DERETS, other debug exceptions can be taken. For example, assume that the processor isin
single-step mode in a branch delay slot, and waiting to go past the delay slot to enter the DSS exception. At the branch
delay dlot, it could get aDINT or other lower priority Debug exception. In this case, it would not take the lower
exception, but enter Debug Mode past the delay slot. The entry into Debug Maode will clear the DINT. It would process
the single-step exception and DERET to normal non-debug mode. Note that in practice, not many cores set multiple
cause bitsin the Debug register since the highest priority debug exception is taken, and the others are cleared on entry
to Debug Mode as already specified.

No other CPO registers or fields are changed due to the debug exception, thus no additiona state is saved.

The overall exception processing flow happens in hardware before setting PC to point to the debug exception vector is
shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ¢« BranchInstructionPC
Debugppp ¢« 1
else
DEPC <« PC
Debugpgp ¢« O
endif
Debudpsgs, pep, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr <~ DebugExceptionType
DebUgpgxccode ¢~ UNPREDICTABLE
Debugy,i: ¢ HaltStatusAtDebugException
Debugp,,. ¢ DozeStatusAtDebugException
Debugrpxr < 1
Debugpy < 1
if ECRproprrap = 1 then
PC < OxFFFF FFFF FF20 0200
else
PC « OxFFFF FFFF BFCO 0480
endif

5.3.4 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of the DEPC register and
the DBD hit in the Debug register indicate that the SDBBP instruction caused the debug exception.

Debug Register Debug Status Bit Set
DBp

62 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.3 Debug Exceptions

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.3.5 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed instruction.
The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hardware
breakpoint match. This exception can only occur if instruction hardware breakpoints are implemented (see Chapter 3 on

page 19).
Debug Register Debug Status Bit Set
DIB

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.3.6 Debug Data Break L oad/Store Exception

A Debug Data Break Load/Store exception occurs when a data hardware breakpoint matches the load/store address of
an executed load/store instruction. The DEPC register and DBD bit in the Debug register indicate the load/store
instruction that caused the data hardware breakpoint to match, asthisis a precise debug exception. The load/store
instruction that caused the debug exception has not completed (it has not updated the destination register or memory
location), and the instruction therefore is executed on return from the debug handler. This exception can only occur if
data hardware breakpoints with precise data breaks are implemented (see Chapter 3 on page 19).

Debug Register Debug Status Bit Set
DDBL for aload instruction or DDBS for a store instruction

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.3.7 Debug Data Break L oad/Store I mprecise Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches aload/store
access of an executed load/storeinstruction, if it isnot possible to take a precise debug exception on the instruction. This
case occurswhen adata hardware breakpoint was set up with avalue compare, and aload access did not return data until
after theload instruction had | eft the pipeline asfor non-blocking loads. The DEPC register and the DBD bit in the Debug
register indicate an instruction later in the execution flow instead of the load/store instruction that caused the data
hardware breakpoint to match. The DDBLImpr/DDBSImpr bits in the Debug register indicate that a Debug Data Break
L oad/Store Imprecise exception occurred. The instruction that caused the Debug Data Break Load/Store Imprecise
exception will have completed. It updates its destination register, and is not executed on return from the debug handler.

EJTAG Specification, Revision 3.10 63
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

64

This exception can only occur if data hardware breakpoints with imprecise data breakpoints are implemented (see
Chapter 3 on page 19).

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug exception if the
|oad/store transaction that made the data hardware breakpoint match did not complete until after another debug exception
occurred. In this case, the other debug exception was the cause of entering Debug Mode, so the DEPC register and the
DBD bit in Debug register point to thisinstruction. DDBLImpr/DDBSImpr are set concurrently with the status bit for

that debug exception.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed in Debug Mode before the DDBLImpr and DDBSImpr bitsin the Debug register
and the BS bits for the data hardware breakpoint are read in order to ensure that all imprecise breaks are resolved and
the bitsare fully updated. A match of the data hardware breakpoint isindicated in DDBLImpr/DDBSImpr so the debug
handler can handle this together with the debug exception.

This scheme ensuresthat all breakpoints matching due to code executed before the debug exception areindicated by the
DDBLImpr, DDBSImpr, and BS bits for the following debug handler. Matches are neither queued nor do they cause
debug exceptions at alater point. A debug exception occurring later than the debug exception handler istherefore caused
by code executed in Non-Debug Mode after the debug exception handler.

Debug Register Debug Status Bit Set
DDBLImpr for aload instruction or DDBSImpr for a store instruction

Additional State Saved
None

Entry Vector Used
Debug exception vector

5.3.8 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken a single
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting of a
jump/branch instruction and the instruction in the associated delay slot. The SX bit in the Debug register enables Debug
Single Step exceptions. They are disabled on the first execution step after a DERET.

The DEPC register points to the instruction on which the Debug Single Step exception occurred, which is also the next
instruction to execute when returning from Debug Mode. The debug software can examine the system state before this
instruction is executed. Thus the DEPC will not point to the instruction(s) that have just executed in the execution step,
but rather the instruction following the execution step. The Debug Single Step exception never occurs on an instruction
in ajump/branch delay slot, because the jump/branch and the instruction in the delay slot are always executed in one
execution step; thus the DBD bit in the Debug register is never set for a Debug Single Step exception.

Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if anon-debug exception occurs
(other than reset or soft reset), a Debug Single Step exception istaken on thefirst instruction in the non-debug exception
handler. The non-debug exception occurs during the execution step, and the instruction(s) that received a non-debug
exception counts as the execution step.

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
causes a Debug Breakpoint exception with the DEPC register pointing to the SDBBP instruction. Also, returning to an
instruction (not jump/branch) just before the SDBBP instruction causes a Debug Single Step exception with the DEPC
register pointing to the SDBBP instruction.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.3 Debug Exceptions

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority over all exceptions,
except resets and soft resets.

Debug Single Step exception is only possible when the NoSSt bit in the Debug register is O (see Section 5.8.1 on page
75).

In an core that implements the MIPSMT ASE, the SX bit isinstantiated per TC. If the SX bit of the TC is set, a Debug
exception will be taken by that TC after any non-Debug mode instruction is executed. Other TCswith SX cleared are
scheduled and issue instructions normally according to the scheduling policy in force. Global single-step operation of a
VPE can be achieved by setting SX for all TCsfor the specified VPE.

When the single-step exception bit is set for multiple TCs, then the preferred behavior appliesit to each TC
independently and independent of the scheduling policy. This hasimplications for the software observable instruction
execution completion order. Three examples are shown in Figure 5-2, Figure 5-3, and Figure 5-4. In Figure 5-2 there are
two threads TCO and TC1, and thread TCO hasits S3 bit set but thread TC1 does not have its St bit set. In Figure 5-3,
there are two threads and both their St bits are set. In Figure 5-4, there are four threads, and two threads have their St
bits set and the other two do not. The figures show the observed instruction completion order for each of the cases. The
notation used is TC#.Instn#.

Debug Register Debug Status Bit Set

DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

EJTAG Specification, Revision 3.10 65

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Figure 5-2 Example 1: Single-stepping one thread TCO with non-single-stepping thread TC1

0.0-DSS

0.x - dexc

0.x - DERET
1.0 - completes
0.0 - completes
0.1-D

0.x - dexc

0.x - DERET
1.1 - completes
0.1 - completes

Figure 5-3 Example 2: Single-stepping two threads TCO and TC1

0.0-DSS
0.x - dexc handler
0.x - DERET

1.0- DSS

1.x - dexc handler
1.x - DERET

0.0 - completes
1.0 - completes
0.1-DSS

0.x - dexc handler
0.x - DERET

Figure 5-4 Example 3: Single-stepping two threads TCO and TC1 with other threads TC2 and TC3

0.0- DSS

0.x - dexc handler
0.x - DERET

1.0 - completes
2.0-DSS

2.X - dexc handler
2.x - DERET

3.0 - completes
0.0 - completes
1.1 - completes
2.0 - completes
3.1 - completes
0.1-DSS

0.x - dexc handler
0.x - DERET

1.2 - completes

66

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.3 Debug Exceptions

5.3.9 Debug Interrupt Exception

The Debug Interrupt exception is an asynchronous debug exception that istaken as soon as possible, but with no specific
relation to the executed instructions. The DEPC register and the DBD bit in the Debug register reference theinstruction
at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor isin Debug Mode, and pending requests are cleared when the
processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

A debug interrupt restarts the pipelineif stopped by a WAIT instruction and the processor clock is restarted if it was
stopped due to alow-power mode.

Debug Register Debug Status Bit Set

DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector

The possible sources for debug interrupts depend on the implementation. The following sources can cause Debug
Interrupt exceptions:

e The DINT signal from the probe

The optional DINT signal from the probe can request a debug interrupt on alow (0) to high (1) transition. The
DINTsup bit in the Implementation register in the Test Access Port (TAP) indicates whether the DINT signal from
the probe to the target processor isimplemented (see Section 6.5.2 on page 94). The timing requirements for the
DINT signal are shown in Section 8.2.2 on page 119.

The DINT signal can be synchronized to the processor clock domain before edge detection while still observing the
required timing of the DINT signal. If the CPU clock speed or clocking scheme is such that the required timing does
not leave enough time for synchronization or clock wake-up, then the DINT pulse is extended by the target systemin
the processor.

The EjtagBrk bit in the EJTAG Control register provides similar functionality similar to DINT from the probe, but
with higher latency.
» The EjtagBrk Bit in the EJTAG Control Register

The EjtagBrk bit in the EJTAG Control register requests a Debug I nterrupt exception when set (see Section 6.5.5 on
page 99).

* A debug boot by EJTAGBOOT

The EJTAGBOOT feature allows a debug interrupt to be requested immediately after areset or soft reset has
occurred, and before thefirst instruction is fetched from the reset exception vector (see Section 5.6.1 on page 71 and
Section 6.4.2 on page 91).

» Animplementation-specific debug interrupt signal to the processor

Through the availability of an optional debug interrupt request signal to the processor system, an external device can
regquest a Debug Interrupt exception, for example, when a signal goes from deasserted to asserted.

EJTAG Specification, Revision 3.10 67

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.4 Debug M ode Exceptions

68

The handling of exceptions generated in Debug Mode, other than through resets and soft resets, differs from those
exceptions generated in Non-Debug Mode in that only the Debug and DEPC registers are updated. All other CPO
registers are unchanged by an exception taken in Debug Mode. The exception vector is equal to the debug exception
vector (see Section 5.3.2 on page 61), and the processor stays in Debug Mode.

Reset and soft reset are handled as when occurring in Non-Debug Mode (see Section 5.6 on page 71).

5.4.1 Exceptions Taken in Debug Mode

Only some Non-Debug M ode exception events cause exceptions while in Debug Mode. Remaining events are blocked.
Exceptions occurring in Debug Mode have the same relative priorities as the Non-Debug M ode exceptions for the same
exception event. These exceptions are called Debug M ode <Non-Debug Mode exception name>. For example, a Debug
M ode Breakpoint exception is caused by execution of aBREAK instruction in Debug Mode, and a Debug Mode Address
Error exception is caused by an address error due to an instruction executed in Debug Mode.

Table 5-10 lists al the Debug Mode exceptions with their corresponding non-debug exception event names, priorities,
and handling.

Table 5-10 Exception Handling in Debug M ode

Priority Event in Debug Mode Debug Mode Handling
Highest Reset Reset and soft reset handled as for
Non-Debug Mode, see Section 5.6 on
Soft reset page 71.
Debug Single Step
Debug Interrupt
Blocked
Debug Data Break L oad/Store Imprecise
NMI
Machine Check Re-enter Debug Mode
Interrupt
Deferred Watch
Blocked
Debug Instruction Break, DIB
Watch on instruction fetch
Address error on instruction fetch
TLB refill on instruction Ifetch
TLB Invalid on instruction Ifetch Re-enter Debug Mode

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Re-enter Debug Mode as for execution of

Debug Breakpoint; execution of SDBBP instruction the BREAK instruction

Other execution-based exceptions Re-enter Debug Mode

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.4 Debug Mode Exceptions

Table 5-10 Exception Handling in Debug M ode (Continued)

Priority Event in Debug Mode Debug Mode Handling

Debug Data Break L oad/Store address match only or
Debug Data Break Store address+data value match Blocked

Watch on data access

Address error on data access

TLB Refill on data access

TLB Invalid on data access

Re-enter Debug Mode
TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on L oad address+data match Blocked

The specific implementation determines which exceptions can occur. Exceptions that are blocked in Debug Mode are
simply ignored, not causing updates in any state.

Handling of the exceptions causing Debug Mode re-enter are described below.

5.4.2 Exceptionson ImpreciseErrors

Exceptions on imprecise errors are possible in Debug Mode due to a bus error on an instruction fetch or data access,
cache error, or machine check.

The IEXI bit in the Debug register blocks imprecise error exceptions on entry or re-entry into Debug Mode. They can
be re-enabled by the debug exception handler once sufficient context has been saved to allow a safe re-entry into Debug
Mode and the debug handler.

Pending exceptions due to instruction fetch bus errors, data access bus errors, cache errors, and machine checks are
indicated and controlled by the IBusEP, DBusEPR, CacheEP and M CheckP hit in the Debug register.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed in Debug Mode before the IBuseP, DBusEPR, CacheEP, and M CheckP bits are read
in order to ensure that all pending causes for imprecise errors are resolved and all bits are fully updated.

Those bits required to handle the possible imprecise errors in an implementation are implemented as R/W, otherwise
they areread only.

5.4.3 Debug M ode Exception Processing

All exceptions that are allowed in Debug Mode (except for reset and soft reset) have the same basic processing flow:

» The DEPC register isloaded with the PC at which execution will be restarted and the DBD bit is set appropriately in
the Debug register. The value loaded into the DEPC register is either the current PC (if the instructionis not in the
delay slot of abranch or jump) or the PC of the branch or jump if theinstruction isin the delay dot of abranch or

jump).

e TheDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register are all cleared to
differentiate from debug exceptions where at least one of the bits are set.

EJTAG Specification, Revision 3.10 69

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

» The DExcCode field in the Debug register is updated to indicate the type of exception that occurred.
The Halt and Doze bits in the Debug register are UNPREDICTABLE.

The IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

The DM hit in the Debug register is unchanged, leaving the processor in Debug Mode.
» The processor is started at the debug exception vector, specified in Section 5.3.2 on page 61.

The value loaded into the DEPC register represents the restart address for the exception; typically debug software does
not need to modify thisvalue at the location of the debug exception. Debug software need not look at the DBD bit in the
Debug register unless it wishes to identify the address of the instruction that actually caused the exception in Debug
Mode.

It isthe responsibility of the debug handler to save the contents of the Debug, DEPC, and DESAVE registers before
nested entries into the handler at the debug exception vector can occur. The handler returns to the debug exception
handler by ajump instruction, not a DERET, in order to keep the processor in Debug Mode.

The cause of the exception in Debug Mode is indicated through the DExcCode field in the Debug register, and the same
codes are used for the exceptions as those for the ExcCode field in the Cause register when the exceptions with the same
names occur in Non-Debug Mode, with addition of the code 30 (decimal) with the mnemonic CacheErr for cache errors.

No other CPO registers or fields are changed due to the exception in Debug Mode.

The overall processing flow for exceptions in Debug Mode is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ¢« BranchInstructionPC
Debugppp ¢« 1
else
DEPC <« PC
Debugppp ¢« O
endif
Debugpss, pep, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr < O
Debugpgxccoge ¢ DebugExceptionType
Debugy,r ¢ UNPREDICTABLE
Debugp,,. ¢ UNPREDICTABLE
Debugrpxr < 1
if ECRproprrap = 1 then
PC < OxFFFF FFFF FF20 0200
else
PC « OxFFFF FFFF BFCO 0480
endif

5.5 Interruptsand NMIs

Interrupts and NMIs are handled for EJTAG-compliant processors as described in the following subsections.

55.1 Interrupts

Interrupts are requested through either asserted external hardware signalsor internal software-controllablebits. Interrupt
exceptions are disabled when any of the following conditions are true;

» The processor is operating in Debug Mode

70 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.6 Reset and Soft Reset of Processor

» TheInterrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (see Section 2-1, "DCR Register
Field Descriptions' on page 16)

* A non-EJTAG related mechanism disables the interrupt exception

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

55.2 NMlIs

An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator holds the NMI
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:
e The Processor is operating in Debug Mode

e The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared, see Section 2-1, "DCR Register Field
Descriptions’ on page 16

If an asserting edge onthe NM 1 signal to the processor isdetected while NM 1 exception isdisabled, thenthe NMI request
isheld pending and is deferred until NM 1 exceptions are no longer disabled.

A pending NMI isindicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

5.6 Reset and Soft Reset of Processor

This section covers the handling of issues with respect to resets and soft resets. For EJTAG features, there are no
difference between areset and a soft reset occurring to the processor; they behave identically in both Debug Mode and
Non-Debug Mode. References to reset in the following therefore refers to both reset (hard reset) and soft reset.

5.6.1 EJTAGBOOT Feature

The EJTAGBOOT feature allows a debug interrupt to be requested as aresult of areset, whereby a Debug Interrupt
exception is taken after reset, and before any of the instructions from the reset exception vector are executed.

The debug exception handler isin this case provided by the probe through the dmseg segment, even if no instructions
can be fetched from the Reset exception handler.

Control and details of EJTAGBOOT are described in Section 6.4.2 on page 91.

5.6.2 Reset from Probe

While asserted, the RST* signal from the probeis required to generate areset or soft reset to the system. The SRstE bit
in the Debug Control Register does not mask this source. See Section 8.1.3 on page 117 for more information.

5.6.3 Processor Reset by Probethrough Test Access Port

The PrRst bit in the EJTAG Control register can optionally cause areset depending on the implementation. If areset
occurs, then all parts of the system are reset, because partial resets are not allowed.

EJTAG Specification, Revision 3.10 71

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.6.4 Reset Occurred Indication through Test Access Port
The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the event to the probe.

Refer to Section 6.5.5 on page 99 for more information on the EJTAG Control Register.

5.6.5 Soft Reset Enable

The optional Soft Reset Enable (SRstE) bit in the Debug Control Register (DCR) can mask the soft reset signal outside
the processor. Because SRstE masks the soft reset signal before it arrives at the processor, there is no masking of soft
reset within the processor itself.

5.6.6 Reset of Other Debug Features

The operation of processor resets and soft resets also apply to resets of the following:
 Debug Control Register (DCR), see Chapter 2 on page 15

» Hardware Breakpoint, see Chapter 3 on page 19

» Test Access Port (TAP) EJTAG Control Register, see Chapter 6 on page 85

5.7 EJTAG Instructions

The SDBBP and DERET instructions are added to the processor’sinstruction set as part of the required EJTAG features.
These instructions are described on the next two pages.

72 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.7 EJTAG Instructions

SDBBP I nstruction

Softwar e Debug Breakpoint SDBBP
31 26 25 6 5 0
SPECIAL?2 SDBBP
code
011100 111111
6 20 6

15 11 10 5 4 0
RR SDBBP MIPS16e
code Format
11101 00001
5 6 5
Format: SDBBP code EJTAG
Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpeyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:
A Reserved Instruction Exception is signaled if EJTAG is not implemented.

Operation:
If Debugpy = 0 then
SignalDebugBreakpointException () /* See Section 5.3.3 on page 61 */
else
SignalDebugModeBreakpointException () /* See Section 5.4.3 on page 69 */
endif
Exceptions:
Debug Breakpoint exception

Debug Mode Breakpoint exception

EJTAG Specification, Revision 3.10 73

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.7.1 DERET Instruction

Debug Exception Return DERET
31 26 25 24 6 5 0
COPO (6(0) 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG
Purpose:

74

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode, the operation of the processor is UNDE-
FINED otherwise.

The operation of the processor isUNDEFINED if a DERET is executed in the delay slot of abranch or jump instruc-
tion.
Operation:if Debugp, = 1 then
Debugpy < 0
Debugrpxr ¢ 0
if IsMIPSl6Implemented() then
PC « DEPCpcyrpra-1..1 || 0
ISAMode <« DEPCj,
else
PC <« DEPC
endif
else
UNDEFINED
endif
ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

5.8 EJTAG Coprocessor 0 Registers

The Coprocessor 0 registers for EJTAG are shown in Table 5-11. Each register is described in more detail in the
following subsections.

Table 5-11 Coprocessor 0 Registersfor EJTAG

Register Register Compliance
Number | Se Name Function Reference Level
23 0 Debug Debug indications and controls for the processor. geglsesrg' (r))gg e75 Required
2 | o |oec | Domoumedidmweoionor | seeo) | R
31 0 DESAVE Debug exception save register. g%eSSegrt: ng 083 Required

The CPOinstructionsMTCO, MFCO, DMTCO, and DM FCO work with the three EJTAG CPO registers as per the MIPS32

and M1PS64 Architecture specifications.

Operation of the processor is UNDEFINED if the Debug, DEPC, or DESAVE registers are written from Non-Debug

Mode. Thevalue of the Debug, DEPC, or DESAVE registersis UNPREDICTABLE when read from Non-Debug Mode,
unless otherwise explicitly stated in the individual register description. However, for test purposes, the implementations

can allow writes to and reads from the registers from Non-Debug Mode.

To avoid pipeline hazards, there must be an appropriate spacing, refer to Section 5.2.4 on page 58, between the update
of the Debug and DEPC registers by MTCO/DMTCO and use of the new value. This appliesfor example to modification

of the LSNM hit of the Debug register and aload/store affected by that bit.

In a processor implementing the MIPS MT ASE, each of the Coprocessor 0 EJTAG registers described aboveis

instantiated per VPE. The exception is the S and OffLine bits in the Debug register which isinstantiated per-TC.

5.8.1 Debug Register (CPO Register 23, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also controls

single stepping. This register indicates low-power and clock states on debug exceptions, debug resources, and other

internal states.

Only the DM hit and the EJTAGver field are valid when read from the Debug register in Non-Debug Mode; the value

of all other bitsand fieldsis UNPREDICTABLE.

The following bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

» DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr are updated on both debug exceptions and on

exceptions in Debug Modes
» DExcCode is updated on exceptionsin Debug Mode, and is undefined after a debug exception
» Halt and Doze are updated on a debug exception, and are undefined after an exception in Debug Mode. In the

situation where the processor is awakened from sleep or doze state by a hardware interrupt or other external event,
and a debug exception is taken instead (for example, if single-stepping a WAIT instruction), the state of the Halt and
Doze bits should be as if the hardware interrupt had not occurred. That is, these bits should indicate that the state of

the processor was in Halt or Doze respectively before the exception, ignoring that the interrupt time might be
between halt/doze and the debug exception.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

75

Chapter 5 EJTAG Processor Core Extensions

76

» DBD isupdated on both debug and on exceptions in Debug Modes

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed to ensure that the DDBLImpr, DDBSImpr, IBuseP, DBusEPR, CacheEP, and

M CheckP bits are fully updated. This instruction sequence must be used both in the beginning of the debug handler
before pending imprecise errors are detected from Non-Debug M ode, and at the end of the debug handler before pending
imprecise errors are detected from Debug Mode. The IEXI hit controls enable/disable of imprecise error exceptions.

Figure 5-5 shows the format of the Debug register; Table 5-12 describes the Debug register fields.

Figure 5-5 Debug Register For mat

31 30 29 28 21 26 25 24 23 2 21 20 19 18 17 16

32/64-hit DBD| DM | No [LSNM|Doze| Halt [Count|IBus| M [Cach|[DBus|IEXI|DDB [DDB | EJTAGver
Processor DCR DM | EP |CheckP| eEP | EP S L [2:1]
Impr | Impr
15 14 10 9 8 7 6 5 4 3 2 1 0
EJTA DExcCode NoSSt| SSt [OffLing O [DINT| DIB |DDB |DDB [DBp|DSS
Gver S L
(0]
Table 5-12 Debug Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
Indicates whether the last debug exception or
exception in Debug Mode occurred in a branch or
jump delay slot:
DBD 31 Encoding Meaning R Undefined Required
0 Not in delay slot
1 Indelay slot
Indicates that the processor is operating in Debug
Mode:
Encoding M eaning
DM 30 - — R 0 Required
0 Processor is operating in Non-Debug
Mode
1 Processor is operating in Debug Mode
Indicates whether the dseg segment is present:
Encoding Meaning
NoDCR 29 - R Preset Required
0 dseg segment is present
1 dseg present is not present

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

Table 5-12 Debug Register Field Descriptions (Continued)

Fields
Read/ Reset

Name Bits Description Write State Compliance

Controls access of |oads/stores between the dseg
segment and remaining memory when the dseg
segment is present:

Required if
Encoding Meaning the dseg
segment is
0 Loads/stores in the dseg segment present,
LSNM 28 address range go to the dseg segment RW 0 otherwise not
implemented.

1 Loads/stores in dseg segment address
range go to system memory See bit 29,
NoDCR.

Further description in Section 5.2.2 on page 52.

If DCR is not implemented, thisbit is read-only (R)
and reads as zero.

Indicatesthat the processor wasin alow-power mode
when a debug exception occurred:

Encoding M eaning

0 Processor not in low-power mode when
debug exception occurred

1 Processor in low-power mode when
Doze 27 debug exception occurred R Undefined Required

Seetheintroduction above for corner casesin setting
the state of this bit. The Doze bit indicates Reduced
Power (RP) and WAIT, and other
implementation-dependent |ow-power modes.

If the implementation does not support low-power
modes, then this bit always reads as 0.

Indicatesthat theinternal processor system bus clock
was stopped when the debug exception occurred:

Encoding Meaning

0 Internal system bus clock running

1 Internal system bus clock stopped
Halt 26 R Undefined Required

Seetheintroduction above for corner casesin setting
the state of this bit. Halt indicates WAIT, and other
implementation-dependent events that stop the
system bus clock.

If the implementation does not support a halt state,
then the bit always reads as 0.

EJTAG Specification, Revision 3.10 77
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Read/ Reset
Name Bits Description Write State Compliance

Controls or indicates the Count register behavior in
Debug Mode. Implementations can have fixed
behavior, in which case this bit isread-only (R), or
the implementation can allow this bit to control the
behavior, in which case this bit is read/write (R/W).

Thereset value of thisbit indicates the behavior after
reset, and depends on the implementation.

Encoding of the bit is: R]
CountDM 25 or Preset Required

Encoding M eaning RIW
0 Count register stopped in Debug Mode

1 Count register isrunning in Debug
Mode

If notimplemented, thisbit isread-only (R) and reads
as zero.

Indicatesif aBus Error exception is pending from an
instruction fetch. Set when an instruction fetch bus
error event occurs or a1 iswritten to the bit by o
software. Cleared when a Bus Error exception on an _Required if
instruction fetch istaken by the processor. If IBUsEP imprecise bus
isset when IEX| iscleared, aBus Error exception on error can
an instruction fetch is taken by the processor, and _occur on
BusEP 24| |BusEPis cleared. RW1 ° ingtruction
fetch,
In Debug Mode, aBus Error exception appliesto a otherwise
Debug Mode Bus Error exception. optional

If not implemented, thisbit isread-only (R) and reads
as zero.

Indicates if aMachine Check exception is pending.
Set when a machine check event occursor alis
written to the bit by software. Cleared when a
Machine Check exception is taken by the processor.
If MCheckP is set when |EX| is cleared, a Machine
Check exception is taken by the processor, and
MCheckP is cleared.

In Debug Mode, aMachine Check exception applies Required if
to a Debug Mode Machine Check exception. Imprecise
machine
MCheckP 23 Note that machine checks due to duplicate TLB R/W1 0 check error
entriesmust bereported asynchronouswith respect to can occur,
the instruction that causes them, and these would be otherwise
prioritized as “ Other execution-based exception” in optional
Table 5-8. In this case this bit would not be set.

Any asynchronous implementati on-dependent
machine check should be reported using EJTAG
priority in Table 5-8.

If notimplemented, thisbit isread-only (R) and reads
as zero.

78 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

Table 5-12 Debug Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance
Indicates if a Cache Error is pending. Set when a
cache error event occursor a1 iswritten to the bit by
software. Cleared when a Cache Error exception is o
taken by the processor. If CacheEP is set when IEX| Required if
is cleared, a Cache Error exception is taken by the |mﬁreC|se
rocessor, and CacheEP is cleared. cache error
CacheEP 22 P R/W1 0 can ocour,
In Debug Mode, aCache Error exception appliesto a otherwise
Debug Mode Cache Error exception. optional
If not implemented, thisbitisread-only (R) and reads
as zero.
Indicates if a Data Access Bus Error exception is
pending. Set when a data access bus error event
occursor aliswrittentothebit by software. Cleared o
when a Bus Error exception on data access is taken _Required if
by the processor. If DBUSEP is set when IEX| is imprecise bus
cleared, aBusError exception on dataaccessistaken error can
DBusEP 21 by the processor, and DBUSEP is cleared. R/W1 0 occur on data
access,
In Debug Mode, aBus Error exception appliesto a otherwise
Debug Mode Bus Error exception. optional
If not implemented, thisbit isread-only (R) and reads
as zero.
Anlmprecise Error eXception Inhibit (IEXI) controls
exceptions taken due to imprecise error indications. o
Set when the processor takes a debug exception or an Required if
exception in Debug Mode occurs. Cleared by any imprecise
execution of the DERET instruction. Otherwise error covered
modifiable by Debug Mode software. by MCheckP,
IEXI 20 . N . RIW 0 Cacheeh
When |EX1 isset, then theimprecise error exceptions IBUSEP or
from bus errors on instruction fetches or data DBuUSER, can
accesses, cache errors, or machine checks are occur,
inhibited and deferred until the bit is cleared. otherwise
optional
If not implemented, thisbitisread-only (R) and reads
as zero.
Indicates that a Debug Data Break Store Imprecise
exception due to a store was the cause of the debug
exception, or that an imprecise data hardware break
due to a store was indicated after another debug N
exception occurred. Cleared on exception in Debug Required if
Mode. Debug Data
Break on
- - Store
DDBSImpr 19 Encoding Meaning R Undefined Imprecise
o [Nomatchof animprecisedatahardware exception can
breakpoint on store oceur,
otherwise
1 Match of imprecise data hardware optional
breakpoint on store
If not implemented, this bit reads as zero.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

79

Chapter 5 EJTAG Processor Core Extensions

80

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset

State Compliance

DDBLImpr

18

Indicates that a Debug Data Break Load Imprecise
exception due to aload was the cause of the debug
exception, or that an imprecise data hardware break
due to aload was indicated after another debug
exception occurred. Cleared on exception in Debug
Mode.

Encoding M eaning

0 No match of animprecise datahardware
breakpoint on load

1 Match of imprecise data hardware
breakpoint on load

If not implemented, this bit reads as zero.

Required if
Debug Data
Break onLoad
Imprecise
exception can
occur,
otherwise
optional

Undefined

EJTAGver

17:15

Provides the EJTAG version.

Encoding Meaning
0 Version 1 and 2.0
1 Version 2.5
2 \Version 2.6
3 Version 3.1
4-7 |Reserved

Preset Required

DExcCode

14:10

Indicates the cause of the latest exception in Debug
Mode.

Thefield is encoded as the ExcCode field in the
Cause register for those exceptions that can occur in
Debug Mode (the encoding is shown in MIPS32 and
MIPS64 specifications), with addition of code 30
with the mnemonic CacheErr for cacheerrorsand the
use of code 9 with mnemonic Bp for the SDBBP
instruction.

Thisvalue is undefined after a debug exception.

Undefined Required

NoSSt

Indicateswhether the single-step feature controllable
by the SSt bit is available in this implementation:

Encoding M eaning
0 Single-step feature available

1 No single-step feature available

A minimum number of hardware instruction
breakpoints must be available if no single-step
featureisimplemented in hardware. Refer to Section
3.8.1 on page 44 for more information.

Preset Required

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

Table 5-12 Debug Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance
Controls whether single-step feature is enabled:
Encoding M eaning
0 No enable of single-step feature Required if
: single-step
s g 1 Single-step feature enabled RIW o features are
a\/allgabl e
If not implemented due to no single-step feature otherwise not
(NoSSt is 1), this bit is read-only (R) and reads as implemented
zero.
If implemented, then in a processor with MIPSMT,
this bit isinstantiated on a per-TC basis.
In MIPS MT processors, this bit isinstantiated on a
per-TC basis and allows a hardware thread context
(TC) to be taken off-line for debug.
Encoding Meaning
0 TC may fetch and issue according to the
rulesof MIPSMT
1 TC may only fetch and execute in
Debug mode.
. Required for
Innon-MT processors, the OffLine bit, if processors
implemented, inhibits the fetch and issue of implementing
OffLi 7 instructions by the processor as awhole, unlessitis RIW 0 EJTAG and
ine in Debug mode. Thisallowsisolation of processorsin MIPSMT
amulti-processor or multi-core system. ASE.
. . N Otherwise
Following aDERET with the OffLinebit set, aMIPS optional.
MT processor can betaken out of the off-line state by
aMTTR instruction targeting the off-line TC's
Debug register, by aDINT Debug exception handler,
or a hardware reset.
Following a DERET with the OffLine bit set, a
non-MT processor can only be taken out of the
off-line state by a DINT Debug exception handler
clearing the OffLine bit, or a hardware reset.
If notimplemented, thisbit isread-only (R) and reads
as zero.
Indicates that a Debug Interrupt exception occurred.
Cleared on exception in Debug Mode. o
Required if
; ; Debug
Encoding M eaning _ Interrupt
DINT 5 0 No Debug |nterrupt excep[i on R Undefined exception can
occur,
1 Debug Interrupt exception otherwise not
implemented
If not implemented, this bit reads as zero.
EJTAG Specification, Revision 3.10 81

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

82

Table 5-12 Debug Register Field Descriptions (Continued)

Fields
Read/ Reset
Name Bits Description Write State Compliance
Indicates that a Debug Instruction Break exception
occurred. Cleared on exception in Debug Mode. Required if
- - Debu
Encoding Meaning Instructigon
- - . Break
DIB 4 0 No Debug Instruction Break exception R Undefined exception can
1 Debug Instruction Break exception occur,
otherwise not
implemented
If not implemented, this bit reads as zero.
Indicates that a Debug Data Break Store exception
occurred on a store due to a precise data hardware
break. Cleared on exception in Debug Mode. Required if
Debug Data
Encoding M eaning] Break Store
DDBS 3 - R Undefined exception can
0 No Debug Data Break Store Exception occur,
: otherwise not
1 Debug Data Break Store Exception implemented
If not implemented, this bit reads as zero.
Indicates that a Debug Data Break L oad exception
occurred on aload due to a precise data hardware
break. Cleared on exception in Debug Mode. Required if
Debug Data
Encoding Meaning _ Break Load
DDBL 2 - R Undefined exception can
0 No Debug Data Break Store Exception occur,
: otherwise not
1 Debug Data Break Store Exception implemented
If not implemented, this bit reads as zero.
Indicates that a Debug Breakpoint exception
occurred. Cleared on exception in Debug Mode.
DBp 1 Encoding Meaning R Undefined Required
0 No Debug Breakpoint exception
1 Debug Breakpoint exception
Indicates that a Debug Single Step exception
occurred. Cleared on exception in Debug Mode.
Encoding M eaning Required if
- - Debug
0 No debug single-step exception _ Single Step
DSS 0 1 Debug single-step exception R Undefined exception can
occur,
Thisbit isread-only (R) and reads as zero if not ?mg ;ﬁlselequ
implemented.
On aprocessor implementing the MIPS MT, this bit
isimplemented per-V PE.
0 6 Must be written as zeros; return zeros on reads. 0 0 Reserved

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

5.8.2 Debug Exception Program Counter Register (CPO Register 24, Select 0)

Compliance L evel: Required for EJTAG debug support.

The Debug Exception Program Counter (DEPC) register is aread/write register that contains the address at which

processing resumes after the exception has been serviced. The size of thisregister is 32 bitsfor 32-bit processors and 64
bitsfor 64-bit processors, even with only 32-bit virtual addressing enabled. All bits of the DEPC register are significant

and writable. A DMFCO from the DEPC register returns the full 64-bit DEPC on 64-bit processors.

Hardware updates this register on debug exceptions and exceptionsin Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:

» thevirtual address of the instruction that was the direct cause of the exception, or

» thevirtual address of the immediately preceding branch or jump instruction, when the exception-causing instruction
isin abranch delay slot, and the Debug Branch Delay (BDB) hit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at
which execution is resumed when returning to Non-Debug Mode.

Figure 5-6 shows the format of the DEPC register; Table 5-13 describes the DEPC register field.

Figure 5-6 DEPC Register Format

31 0
32-bit Processor | DEPC |

63 0
64-hit Processor| DEPC |

Table 5-13 DEPC Register Field Description
Fieds
Read/ Reset
Name Bits Description Write State Compliance
DEPC MSB:0 | Debug Exception Program Counter R/W Undefined Required

5.8.3 Debug Exception Save Register (CPO Register 31, Select 0)

Compliance L evel: Required for EJTAG debug support.

The Debug Exception Save (DESAVE) register isaread/write register that functions as asimple scratchpad register. The

size of thisregister is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a
pre-determined memory area, for example, in the dmseg segment. This register allows the safe debugging of exception
handlers and other types of code where the existence of avalid stack for context saving cannot be assumed.

Figure 5-7 shows the format of the DESAVE register; Table 5-14 describes the DESAVE register field.

32-bit Processor

Figure 5-7 DESAVE Register For mat

64-bit Processor|

31 0
| DESAVE |
63 0
DESAVE |
83

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Table 5-14 DESAVE Register Field Descriptions

Fields
Read/ Reset
Name Bits Description Write State Compliance
DESAVE MSB:0 | Debug Exception Save contents R/W Undefined Required
84 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

EJTAG Test Access Port

This chapter describes the EJTAG features provided when the optional EJTAG Test Access Port (TAP) isincluded in the
implementation. The TAP isan optional part of EJTAG, but if implemented then it is required that the DCR isalso
implemented, and all featuresin the TAP described below are required, except for those features explicitly mentioned as
optional.

This chapter contains the following sections:

» Section 6.1, "TAP Overview"

 Section 6.2, "TAP Signals"

» Section 6.3, "TAP Controller"

 Section 6.4, "Instruction Register and Specia Instructions’

» Section 6.5, "TAP Data Registers'

* Section 6.6, "Examples of Use"

6.1 TAP Overview

The overall features of the EJTAG Test Access Port (TAP) are:

* |dentification of device and EJTAG debug features accessed through the TAP

» dmseg segment memory “emulation” (mapping dmseg segment processor accesses into probe transactions).
* Reset handling allows debug exception immediately after reset

» Debug interrupt request from probe

 Low-power mode indications

 Implementati on-dependent processor and peripheral reset

If the TAP is not implemented then other features depending on register values and indications from the TAP should
behave as if these register values and indications have the power-up and reset value.

EJTAG Specification, Revision 3.10 85

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Figure 6-1 shows an overview of the elementsin the TAP.
Figure 6-1 Test Access Port (TAP) Overview

TCK) ..
T™MS o I
'I 1
@ : I
q X TAP controller
.§ ______________________
c
T ':I'DO
£
]
<
Instruction Register
9 1pI <
Selected Data Register(s)
TRST* (optional

The TAP consists of the following signals: Test Clock (TCK), Test Mode (TMS), Test Data In (TDI), Test Data Out
(TDO), and the optional Test Reset (TRST*). TCK and TMS control the state of the TAP controller, which controls
accessto the Instruction or selected data register(s). The Instruction register controls selection of dataregisters. Access
to the Instruction and data register(s) occurs serially through TDI and TDO. The optional TRST* is an asynchronous
reset signal to the TAP.

Access through the TAP does not interfere with the operation of the processor, unless features specifically described to
do so are used.

The description of the EJTAG TAP in this chapter is intended only to cover EJTAG issues related to use of a TAP.
Consult the “1EEE Std 1149.1-1990, | EEE Standard Test Access Port and Boundary-Scan Architecture” for detailed
information about use of a TAP for other purposes, for example, integration with JTAG boundary scan.

For EJTAG features, there are no difference between areset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug M ode. Referencesto reset in the following therefore refersto both reset

(hard reset) and soft reset.

6.2 TAP Signals
The signals TCK, TMS, TDI, TDO, and the optional TRST* make up the interface for the TARP. These signals are
described in detail below. Refer to Chapter 7 on page 113 for the connection of the signalsto chip pins.

6.2.1 Test Clock Input (TCK)

TCK isthe clock that controls the updating of the TAP controller and the shifting of data through the Instruction or
selected data register(s).

TCK isindependent of the processor clock, with respect to both frequency and phase.

6.2.2 Test Mode Select Input (TMYS)

TMSisthe control signal for the TAP controller. This signal is sampled on the rising edge of TCK.

86 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.3 TAP Controller

6.2.3 Test Data Input (TDI)

TDI isthetest datainput to the Instruction or selected data register(s). Thissignal is sampled on therising edge of TCK
for some TAP controller states.

6.2.4 Test Data Output (TDO)

TDO isthe test data output from the Instruction or data register(s). This signal changes on the falling edge of TCK, or
becomes 3-stated asynchronously when TRST* is driven low.

The off-chip TDO is only driven when data is shifted out, otherwise the off-chip TDO is 3-stated.

The 3-state notation indicates that the TDO off-chip signal is undriven.

6.2.5 Test Reset Input (TRST*)

TRST* isthe optional test reset input that asynchronously resets the TAP, with the following immediate effects:
e The TAP controller is put into the Test-L ogic-Reset state

e Thelnstruction register is loaded with the IDCODE instruction

e Any EJTAGBOOQT indication is cleared

e The TDO output is 3-stated

TRST* does not reset another part of the TAP or processor. Thus thistype of reset does not affect the processor, and the
processor reset is not allowed to have any effect on the above parts of the TAP.

Even though TRST* isan optional signal, the TRST* signal isreferred to in the following discussions. If TRST* is not
implemented, then a power-up reset of the TAP must provide the reset functionality similar to alow value on TRST*
during power-up.

6.3 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to Instruction and dataregisters.

EJTAG Specification, Revision 3.10 87

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

The state transitions in the TAP controller occur on the rising edge of TCK or when TRST* goeslow. The TMS signal
determines the transition at the rising edge of TCK. Figure 6-2 shows the state diagram for the TAP controller.

Figure 6-2 TAP Controller State Diagram

TMS=1

C Test-Logic-Reset

.
'°
e D

The behavior of the functional states shown in the figure is described below. The non-functional states are intermediate
states in which no registers in the TAP change, and are not described here.

Crmr)
Exit2-DR
1

Events in the following subsections are described with relation to the rising and falling edge of TCK. The described
events take place when the TAP controller isin the corresponding state when the clock changes.

The TAP controller isforced into the Test-L ogic-Reset state at power-up either by alow value on TRST* or by a
power-up reset circuit.

6.3.1 Test-Logic-Reset State

When the Test-L ogic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and any
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the
CPU core.

The TAP controller always reaches this state after five rising edges on TCK when TMSisset to 1.

A low value on TRST* immediately places the TAP controller in this state asynchronousto TCK.

6.3.2 Capture-IR State

In the Capture-IR state, the two L SBs of the Instruction register are loaded with the value 01,, and the upper MSBs are
loaded with implementation-dependent values. Both values are loaded on the rising edge of TCK.

6.3.3 Shift-IR State

In the Shift-IR state, the LSB of the Instruction register is output on TDO on the falling edge of TCK. The Instruction
register is shifted one position from MSB to LSB on the rising edge of TCK, with the MSB shifted in from TDI. The

88 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.4 Instruction Register and Special Instructions

valueinthe Instruction register does not take effect until the Update-IR state. Figure 6-3 shows the shifting direction for
the Instruction register.

Figure 6-3 TDI to TDO Path when in Shift-IR State

L,I Instruction Register Iﬁy

MSB 0/LSB

The length of the Instruction register is specified in Section 6.4 on page 89.
The valueloaded in the Capture-IR state is used asthe initial value for the Instruction register when shifting starts; thus
it is not possible to read out the previous value of the Instruction register.

6.3.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising or falling edge of TCK.

6.3.5 Capture-DR State

In the Capture-DR state, the value of the selected dataregister(s) is captured on the rising edge of TCK for shifting out
in the Shift-DR state. The Capture-DR state reads the data, in order to output this read value in the Shift-DR state.

The Instruction register controls the selection of the following data register(s): Bypass, Device ID, Implementation,
EJTAG Control, Address, and Data register(s).

6.3.6 Shift-DR State

In the Shift-DR state, the L SB of the selected dataregister(s) isoutput on TDO on thefalling edge of TCK. The selected
data register(s) is shifted one position from MSB to L SB on the rising edge of TCK, with TDI shifted in at the MSB.
The value(s) shifted into the register(s) does not take effect until the Update-DR state. Figure 6-4 shows the shifting
direction for the selected data register.

Figure 6-4 TDI to TDO Path for Selected Data Register (s) when in Shift-DR State

I TDO
4>| Selected Data Register(s) |—>

MSB 0/LSB

The length of the shift path depends on the selected data register(s).

6.3.7 Update-DR State

In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state occurs on the
falling or rising edge of TCK. This update writes the selected register(s).

6.4 Instruction Register and Special Instructions
The Instruction register controls selection of accessed data register(s), and controls the setting and clearing of the
EJTAGBOOT indication.

EJTAG Specification, Revision 3.10 89
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

90

The Instruction register is five or more bits wide when used with EJTAG. Table 6-1 shows the alocation of the TAP

instruction.
Table 6-1 TAP Instruction Overview

Code Instruction Function
AllO's (Freefor other use) Free for other use, such as JTAG boundary scan
0x01 IDCODE Selects Device |dentification (1D) register
0x02 (Freefor other use) Free for other use, such as JTAG boundary scan
0x03 IMPCODE Selects Implementation register
0x04 - 0x07 (Freefor other use) Free for other use, such as JTAG boundary scan
0x08 ADDRESS Selects Address register
0x09 DATA Selects Dataregister
O0x0A CONTROL Selects EJTAG Control register
0x0B ALL Selects the Address, Data and EJTAG Control registers
0x0C EJTAGBOOT Makes the processor take a debug exception after reset
0x0D NORMALBOOT Makes the processor execute the reset handler after reset
Ox0E FASTDATA Selects the Data and Fastdata registers
OxOF (EJTAG reserved) Reserved for future EJTAG use
0x10 TCBCONTROLA Selects the control register TCBTraceControl in the Trace Control Block
0x11 TCBCONTROLB Selects another trace control block register
L
0x13 TCBCONTROLC Selects another trace control block register
0x14 PCSAMPLE Selects the PCsampl e register
0x15 - 0x1B (EJTAG reserved) Reserved for future EJTAG use
0x1C-All l's (Freefor other use) Free for other use, such as JTAG boundary scan
All 1's BYPASS Select Bypass register

The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BY PASS select asingle data register, as
indicated in the table. The unused instructions reserved for EJTAG select the Bypass register. The ALL, EJTAGBOOT,
NORMALBOQT, and FASTDATA instructions are described in the following subsections. The instructions that are
related to trace registers in the trace control block (TCB) are described in the Trace Control Block Specification
document.

Any EJTAGBOOT indication is cleared at power-up either by alow value on the TRST* or by a power-up reset circuit,
and the Instruction register is loaded with the IDCODE instruction.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.4 Instruction Register and Special Instructions

6.4.1 ALL Instruction

The Address, Data and EJTAG Control dataregisters are selected at once with the ALL instruction, as shown in Figure
6-5.

Figure 6-5 TDI to TDO Path when in Shift-DR Stateand ALL Instruction is Selected

TDI TDO
4’| Address register |—P| Data register |—P| EJTAG Control register |—>

MSB 0/LSB MSB 0/LSB MSB 0/LSB

6.4.2 EJTAGBOOT and NORMALBOQOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether adebug interrupt isrequested asaresult of areset.
If EJTAGBOQT isindicated then a debug interrupt is requested at reset, and a Debug Interrupt exception is taken after
the processor isreset, and instead of fetching instructions from the reset exception vector, instructions are fetched from
the debug exception vector. The location of the debug exception vector is controlled by the ProbTrap bit in the Control
register (see Table 6-9 on page 100). The debug exception handler isin this case fetched from the probe through the
dmseg segment. It is possible to take the debug exception and execute the debug handler from the probe even if no
instructions can be fetched from the reset handler. This condition guarantees that the system will not hang at reset when
the EJTAGBOOT featureis used, even if the norma memory system does not work properly.

Aninternal EJTAGBOOT indication holdsinformation on the action to take at a processor reset, and thisis set when the
EJTAGBOOT instruction takes effect in the Update-IR state. The indication is cleared when the NORMALBOOT
instruction takes effect in the Update-IR state, or when the Test-L ogic-Reset state is entered, for example, when TRST*
is asserted low. The requirement of clearing the internal EJTAGBOQT indication when the Test-Logic-Reset state is
entered, and not on a TCK clock when in the state, ensures that the indication can be cleared with five clocks on TCK
when TMSis high.

Theinternal EJTAGBOOT indication is cleared at power-up either by alow value on the TRST* or by a power-up reset
circuit. Thus the processor executes the reset handler after power-up unless the EITAGBOOT instruction is given
through the TAP,

The Bypass register is selected when the EITAGBOOT or NORMALBOOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bits in the EJITAG Control register follow the internal EJTAGBOOT indication.

They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug handler
from the probe.

6.4.3 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 6-6.
Figure 6-6 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

DI Data register |—>| Fastdata register TDO
MSB 0/LSB 0

EJTAG Specification, Revision 3.10 91

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.5 TAP Data Registers

92

Table 6-2 summarizesthe dataregistersin the TAP. Complete descriptions of these registers are located in the following

subsections.

Table 6-2 EJTAG TAP Data Registers

Instruction Used Register Compliance
to Access Register Name Function Reference Level
: | dentifies device and accessed See Section ;
IDCODE Device D processor in the device. 6.5.1 on page 93 Required
| dentifies main debug features See Section
IMPCODE Implementation implemented and accessible through Required
6.5.2 on page 94
the TAP.
DATA, ALL, or . . See Section .
FASTDATA Data Data register for processor access. 6.5.3 on page 96 Required
) See Section ;
ADDRESSor ALL Address Address register for processor access. 6.54 on page 99 Required
Control register for most EJTAG See Section :
CONTROL or ALL EJTAG Control features used through the TAP 6.55 on page 99 Required
BYPASS,
EJTAGBOOT, . . .
NORMALBOOT, or Bypass ﬁqrg_/l_l /(-j\le? aone bit shift path through gese 8Se(;:rt]lon o107 Required
unused EJTAG : -6 0N pag
instructions
Provides a one bit register whose ; :
valueistagged to thefront of the Data See Section Rqu\'].rregév ith
FASTDATA Fastdata register to capture the value of the 6.4.3 on pace 91 version 02.60
processor access pending (PrAcc) bit o pag and higher
in the EJTAG Control register 9
Required with
Implemented and used in the Trace EJTAG
Control Block (TCB). Used by Seethe TCB version 02.60
TCBCONTROLA TCBControlA external probe (debugger) softwareto | documentation and higher if
control tracing output from the core tracelogicis
implemented
Required with
: EJTAG
Implemented and used in the Trace :
TCBCONTROLB | TCBControlB Control Block (TCB). Controls SetheTCB o she o
tracing configuration options trace logic is
implemented
Required with
EJTAG
: Seethe TCB version 02.60
TCBDATA TCBData Implemented and used in the TCB. documentation and higher if
tracelogicis
implemented
Required with
. EJTAG
Implemented and used in the Trace ;
TCBCONTROLC | TCBControlC Control Block (TCB). Controls SetheTCB e it
tracing configuration options trace logic is
implemented
p Optional
See Chapter 4,“PC
Implemented and used by the PC IS feature
PCSAMPLE PCsample Sampling logic Samepélllgg, on (defined
page 9. EJTAG 3.10)

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

A read of adataregister corresponds only to the Capture-DR state of the TAP controller, and awrite of the data register
corresponds to the Update-DR state only.

Theinitial states of these registers are specified with either areset state or a power-up state. If areset state is specified,
then theindicated value is applied to the register when a processor reset is applied. If apower-up stateis specified, then
the indicated value is applied at power-up reset.

TCK does not have to be running in order for a processor reset to reset the registers.

6.5.1 Device ldentification (ID) Register (TAP Instruction IDCODE)
Compliance L evel: Required with EJTAG TAP feature.

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG. This
register is also defined in IEEE 1149.1. The Device ID register holds a unique number among different devices with
EJTAG compliant processorsimplemented. It is recommended that the register is also unique amongst different EJTAG
compliant processors in the same device.

Figure 6-7 shows the format of the Device ID register; Table 6-3 describes the Device ID register fields.
Figure 6-7 Device | D Register For mat
31 28 27 12 11 1

32/64-hit Version PartNumber ManufID 1
Processor

o

Table 6-3 Device I D Register Field Descriptions

Fields

Read/ | Power-up
Name Bits Description Write State Compliance

Identifies the version of a specific device.

The value in this field must be unique for particular
values of Manufacturer ID and Part Number values.
The value identifies a specific revision of the design
(such as a sequence of bug fixes within the same
major design). The value is assigned by the design
house.

Version 31:28 R Preset Required

Identifies the part number of a specific device.

Thevauein thisfield must be uniquefor aparticular
Manufacturer 1D value.

Part-

Number 27:12 Design houses which wish to use the MIPS R Preset Required

Technologies, Inc. Manufacturer 1D may request
assignment of a group of Part Numbers which are
then managed by that design house. Assignment of
Part Numbers within another Manufacturer ID value
is done by the owner of that Manufacturer 1D.

EJTAG Specification, Revision 3.10 93

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Table 6-3 Device I D Register Field Descriptions (Continued)

Fields

Read/ | Power-up
Name Bits Description Write State Compliance

Identifiesthe manufacturer identity code of aspecific
device, which identifies the design house
implementing the processor.

According to |EEE 1149.1-1990 section 11.2, the
manufacturer identity codeisacompressed form of a
JEDEC standard manufacturer’s identification code
in the JEDEC Publications 106, which can be found

at:
http://www.jedec.org/

ManufID[6:0] are derived from the last byte of the
JEDEC code with the parity bit discarded.
ManufID[10:7] provide abinary count of the number
of bytes in the JEDEC code that contain the
ManuflD 11:1 continuation character (0x7F). When the number of R Preset Required
continuations characters exceeds 15, these four bits
contain the modulo-16 count of the number of
continuation characters.

If the design house does not have a JEDEC Standard
Manufacturer's | dentification Code, whichis
encoded for use in thisfield, the design house can
request use of the MIPS Technologies, Inc. assigned
number, or use the number assigned to the core
provider. Use of the MIPS Technol ogies, Inc. number
requires prior approval of the Director, MIPS
Architecture.

The MIPS Technologies, Inc. Standard
Manufacturer's I dentification Code is 0x127.

1 0 Ignored on write; returns one on read. R 1 Required

6.5.2 Implementation Register (TAP Instruction IMPCODE)
Compliance L evel: Required with EJTAG TAP feature.

The Implementation register is a 32-hit read-only register that identifies features implemented in this EJTAG compliant
processor, mainly those accessible from the TAP.

Figure 6-8 shows the format of the Implementation register; Table 6-4 describes the Implementation register fields.

Figure 6-8 Implementation Register Format

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 1 0
32/64-hit EJTAGver [R4k/ 0 DIN| O | ASID 0 MIPS| O | No 0 MIPS|
Processor R3k T size 16 DMA 32/64
sup
94 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

Table 6-4 Implementation Register Field Descriptions

Fields

Read/ | Power-up
Name Bits Description Write State Compliance

Indicates the EJTAG version:

Encoding Meaning
0 Version1and 2.0
EJTAGver 31:29 1 |Version25 R Preset Required
2 Version 2.6
3 Version 3.1
37 |Reserved

Indicates R4k or R3k privileged environment:

Encoding Meaning .
R4k/R3k 28 — - R Preset Required
0 R4k privileged environment

1 R3K privileged environment

Indicates support for DINT signal from probe:

Encoding Meaning

DINT signa from the probeis not i
DINTsup 24 0 supported by this processor R Preset Required

1 Probe can use DINT signal to make
debug interrupt on this processor

Indicates size of the ASID field:

Encoding Meaning

) 0 No ASID in implementation]
ASIDsize 22:21 - R Preset Required

1 6-bit ASID
2 8-bit ASID
3

Reserved

Indicates MIPS16e™ ASE support in the
processor:

MIPS16e 16 Encoding Meaning R Preset Required
0 No MIPS16e support

1 MIPS16e is supported

Indicates no EJTAG DMA support:

Encoding Meaning _
NoDMA 14 R 1 Required
0 Reserved

1 |NoEJTAG DMA support

EJTAG Specification, Revision 3.10 95

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

96

Table 6-4 Implementation Register Field Descriptions (Continued)

Fields

Read/ | Power-up
Name Bits Description Write State Compliance

Indicates 32-bit or 64-bit processor:

Encoding Meaning
0 32-bit processor

MIPS32/64 0 R Preset Required

1 64-bit processor

See the R4k/R3k bit for indication of privileged
environment.

27:25, 23,
0 20:17, 15, Ignored on writes; return zeros on reads. R 0 Required
13:1

6.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)

Compliance L evel: Required with EJTAG TAP feature.

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the Data
register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

Thevaluereadinthe Dataregister isvalid only if aprocessor accessfor awriteis pending, in which case the dataregister
holds the store value. The value written to the Data register is only used if a processor access for a pending read is
finished afterwards, in which case the data value written isthe value for the fetch or load. This behavior implies that the
Dataregister is not amemory location where a previously written value can be read afterwards.

Figure 6-9 shows the format of the Data register; Table 6-5 describes the Data register field.
Figure 6-9 Data Register Format

31 0
32-bit Data
Processor
63 0
64-bit Data
Processor
Table 6-5 Data Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
Data MSB:0 Data used by processor access. R/W Undefined Required

The contents of the Data register are not aligned but hold data asit is seen on adata bus for an external memory system.
Thus the bytes are positioned in the Data register based on access size, address, and endianess.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor access read
can be written with any value by the probe shifting the value into the Data register.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

Table 6-6 and Table 6-7 show the position of bytesin the Dataregister for al possible accesses. This positioning depends
on the Psz field from the EJTAG Control register, the two or three L SBs from the Address register, and the endianess.

The endianness for Debug Mode, used in the following, isindicated through the ENM hit in the Debug Control Register (DCR), see Chapter

2 on page 15.

Table 6-6 showsthe byte positioning for a32-bit processor (M1PS32/64 = 0), in which casethe two L SBs of the Address
register are used. Byte O refers to bits 7:0, byte 1 refersto bits 15:8, byte 2 refers to bits 23:16, and byte 3 refersto bits
31:24, independent of endianess.

Table 6-6 Data Register Contentsfor 32-bit Processors

Psz Little Endian Big Endian
from
ECR Size Addresg1:0] (3 (2|10 312|1|0
00,
01,
0 Byte
10,
11,
00,
1 Halfword
10,
2 Word 00,
00,
3 Triple
01,
Reserved n.a n.a

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

97

Chapter 6 EJTAG Test Access Port

Table 6-7 shows the byte positioning for a 64-bit processor (MIPS32/64 = 1), in which case the three L SBs of the
Addressregister are used. Byte O refersto bits 7:0, byte 1 refers to bits 15:8, and so on up to byte 7 which refers to bits
63:56, independent of endianess.

Table 6-7 Data Register Contentsfor 64-bit Processors

Psz Little Endian Big Endian
from
ECR Size Address[20] | 7|6|5(4|3|2|1]|0 7/16(5(4(3|2|1]0
000,
001,
010,
011,
0 Byte
100,
101,
110,
111,
000,
010,
1 Halfword
100,
110,
Word 000,
5-byte/Quinti 001,
6-byte/Sexti 010,
7-byte/Septi 011,
? Word 100,
5-byte/Quinti 101,
6-byte/Sexti 110,
7-byte/Septi 111,
000,
010,
Triple
3 100,
110,
Doubleword 111,
Reserved n.a n.a
98 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

6.5.4 Address Register (TAP Instruction ADDRESSor ALL)
Compliance L evel: Required with EJTAG TAP feature.
Theread-only Addressregister provides the address for a processor access. The width of the register correspondsto the
size of the physical address in the processor implementation (from 32 to 64 bits). The specific length is determined by
shifting through the Address register, because the length is not indicated elsewhere.
The value read in the register isvalid if aprocessor access is pending, otherwise the value is undefined.
The two or three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size
and data position of the pending processor access transfer. These bits are not taken directly from the address referenced

by the load/store. See Section 6.5.3 on page 96 for more details.

Figure 6-10 shows the format of the Address register; Table 6-8 describes the Address register field.
Figure 6-10 Address Register Format

MSB 0
32/64-bit Address
Processor
Table 6-8 Address Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
Address MSB:0 Address used by processor access. R Undefined Required

6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
Compliance L evel: Required with EJTAG TAP feature.
The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indication,
access start, finish, and size and read/write indication. The ECR also:
« controls debug vector location and indication of serviced processor accesses,
« alowsadebug interrupt request,
* indicates processor |ow-power mode, and
« alowsimplementation-dependent processor and peripheral resets.
The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit

31) iseither already O or iswritten to O at the same time. This condition ensures proper handling of processor accesses
after areset.

Reset of the processor can be indicated through the Rocc bit in the TCK domain a number of TCK cycles after it is
removed in the processor clock domain in order to alow for proper synchronization between the two clock domains.

Bitsthat are R/W in the register return their written value on a subsequent read, unless other behavior isdefined. Internal
synchronization ensures that a written value is updated for reading immediately afterwards, even when the TAP
controller takes the shortest path from the Update-DR to Capture-DR state.

EJTAG Specification, Revision 3.10 99

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Figure 6-11 shows the format of the EJTAG Control register; Table 6-9 describes the EJTAG Control register fields.
Figure 6-11 EJTAG Control Register Format

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 O

32/64-bit [Rocc| Psz 0 VPE |Doze| Halt | Per [PRn[Pr | O | Pr [Prob|Prob| O |Ejtag 0 DM 0
Processor D Rst| W |Acc Rst| En | Trap Brk

Table 6-9 EJTAG Control Register Field Descriptions

Fields
Read/ Reset

Name Bits Description Write State Compliance

Encoding Meaning
0 No reset occurred
1 Reset occurred

Rocc 31 The Rocc bit stays set as long as reset is applied. R/WO 1 Required

Thisbit must be cleared to acknowledgethat the reset
was detected. The EJTAG Control register is not
updated in the Update-DR state unless Rocc is 0 or
written to O at the same time. Thisisin order to
ensure correct handling of the processor access after
reset. Refer to Section 6.6.3 on page 108 for more
information on Rocc.

Indicates the size of a pending processor access, in
combination with the Address register:

32-bit Processor |64-bit Processor
Encoding MIPS32/64=0 | MIPS32/64=1

0 Byte Byte

1 Halfword Halfword

Psz 30:29 2 Word \Word, 5-7 bytes R Undefined Required
3 Triple Triple, Doubleword

A full descriptionislocated in Section 6.5.3 on page
96, including reserved combinations with Address
register bits.

Thisfield isvalid only when a processor accessis
pending, otherwise the read value is undefined.

For processorswith MIPSMT ASE thisbit isastatus
bit that indicates whether the VPE is currently
disabled. A value of 1 indicatesthat the VPE is
disabled and the rest of the EJTAG stateis not valid.
If this bit is O, then the processor is either not aMT
coreoritisan MT corethat is currently enabled.
Hence, anon-MT core must implement this bit and
tieit to zero.

Ofor
non-MT
R coresand 1
for MT

cores

Required for
EJTAG
version 3.10
and higher.

VPED 23

100 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset
State

Compliance

Doze

22

Indicates if the processor isin low-power mode:

Encoding Meaning
0 Processor is not in low-power mode

1 Processor isin low-power mode

Doze indicates Reduced Power (RP) and WAIT, and
other implementati on-dependent |ow-power modes.

If the implementation does not support |ow-power
modes, then this bit always reads as 0.

Required

Halt

21

Indicates if the internal system bus clock is running:

Encoding Meaning

0 Internal system bus clock is running

1 Internal system bus clock is stopped

Halt indicates WAIT, and other
implementation-dependent events that stop the
system bus clock.

If the implementation does not support a halt state,
then the bit alwaysreads as 0.

Required

PerRst

20

Controls the peripheral reset with
implementati on-dependent behavior:

Encoding Meaning
0 No peripheral reset applied
1 Peripheral reset applied

Thishit PerRst might not have any effect. Thereisno
inherent indication of whether the PerRst iseffective,
so the user must consult system documentation.

When this hit is changed, then it is only guaranteed
that the new value has taken effect when it can be
read back here. This handshake mechanism ensures
that the setting from the TCK clock domain takes
effect in the processor clock domain and in
peripherals.

This bit isread-only (R) and reads as zero if not
implemented.

RIW

Optional

PRnW

19

Indicates read or write of a pending processor access:

Encoding Meaning

0 Read processor access, for afetch/load
access

1 \Write processor access, for astore
access

Thisvalue is defined only when aprocessor accessis
pending.

Undefined

Required

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

101

Chapter 6 EJTAG Test Access Port

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Read/ Reset
Name Bits Description Write State Compliance

Indicates a pending processor access and controls
finishing of a pending processor access. When read:

Encoding Meaning

0 No pending processor access

1 Pending processor access

PrAcc 18 R/WO 0 Required

A write of 0 finishes a processor access if pending;
otherwise operation of the processorisUNDEFINED
if the bit is written to 0 when no processor access is
pending. A write of 1 isignored.

A successful FASTDATA access will clear this bit.
See Table 6-11 for details.

Controls the processor reset with
implementati on-dependent behavior:

Encoding Meaning

0 No processor reset applied

1 Processor reset applied

The PrRst bit might not have any effect. Thereisno
inherent indication of an effective PrRst, so the user
must consult system documentation.

If areset occurson PrRst, then all parts of the system

arereset. Itisnot allowed for only some deviceto be i
PrRst 16 reset. RIW 0 Optional

When thisbit ischanged then it isguaranteed that the
new value has taken effect when it can be read back
here. This handshake mechanism ensures that the
setting from the TCK clock domain takeseffect inthe
processor clock domain and in peripherals.

However, because a processor reset clears this bit,
then the effect of setting it can be that the bit is
cleared when the reset takes effect. In this case, the
Rocc bit should be observed to detect that the reset
took effect.

This bit isread-only (R) and reads as zero if not
implemented.

102 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5 TAP Data Registers

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset
State

Compliance

ProbEn

15

Controls whether the probe handles accesses to the
dmseg segment through servicing of processors
accesses:

Encoding Meaning

Probe will not served processor

0 accesses

Probe will service processor

accesses

The ProbEn hit is reflected as aread-only bit in the
Debug Control Register (DCR) bit 0, see Chapter 2
on page 15.

When this bit is changed, then it is guaranteed that
the new value hastaken effect inthe DCR whenit can
be read back here. This handshake mechanism
ensures that the setting from the TCK clock domain
takes effect in the processor clock domain.

However, a change of the ProbEn prior to setting the
EjtagBrk bit will be effective for the debug handler.

Not all combinations of ProbEn and ProbTrap are
allowed, see section 6.5.5.2 .

RIW

Section
6.5.5.1 on
page 104

Required

ProbTrap

14

Controls location of the debug exception vector:

Encoding Meaning

0 Normal memory
OxFFFF FFFF BFCO 0480

1 in dmseg at OxFFFF FFFF FF20 0200

When this bit is changed, then it is guaranteed that
the new valueisindicated to the processor when it
can be read back here. This handshake mechanism
ensures that the setting from the TCK clock domain
takes effect in the processor clock domain.

However, a change of the ProbTrap prior to setting
the EjtagBrk bit will be effective at the debug
exception.

Not all combinations of ProbEn and ProbTrap are
allowed, see Section 6.5.5.2 on page 105.

R/W

See
Section
6.5.5.1 on
page 104

Required

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

103

Chapter 6 EJTAG Test Access Port

104

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset
State

Compliance

EjtagBrk

12

Requests a Debug Interrupt exception to the
processor when this bit iswritten as 1. The debug
exception request isignored if the processor is
already in debug at thetime of the request. A write of
Oisignored.

The debug request restarts the processor clock if the
processor was in alow-power mode.

The read value indicates a pending Debug Interrupt
exception requested through this bit:

Encoding Meaning

0 No pending Debug Interrupt exception
requested through this bit

1 Pending Debug Interrupt exception

The read value can, but is not required to, indicate
other pending DINT debug reguests (for example,
through the DINT signal).

Thisbit is cleared by hardware when the processor
enters Debug Mode.

R/W1

Section
6.5.5.1 on
page 104

Required

DM

Indicates if the processor isin Debug Mode:

Encoding Meaning

0 Processor is not in Debug Mode

1 Processor isin Debug Mode

Required

28:24,
17, 13,
11:4,
2.0

Must be written as zeros; return zeros on reads.

Reserved

6.5.5.1 EJTAGBOOT Indication Deter mines Reset Value of EjtagBrk, ProbTrap and ProbEn

The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAGBOOT indication.
If the EJTAGBOOT instruction has been given, and the internal EJTAGBOQOT indication is active, then the reset value

of the three hitsis set (1), otherwise the reset value is clear (0).

Theresults of setting these bits are:

» A Debug Interrupt exception is requested right after reset because EjtagBrk is set
» Thedebug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in EJTAG

memory at OXFFFF FFFF FF20 0200

* Service of the processor accessisindicated because ProbEn is set

Thusit ispossible to execute the debug handler right after reset, without executing any instructionsfrom the normal reset

handler.

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

EJTAG Specification, Revision 3.10

6.5 TAP Data Registers

6.5.5.2 Combinations of ProbTrap and ProbEn

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availability
of EJTAG memory. Behavior for the different combinations is shown in Table 6-10. Note that not all combinations are
allowed.

Table 6-10 Combinations of ProbTrap and ProbEn

ProbTrap ProbEn Debug Exception Vector Processor Accesses
0 0 Not serviced by probe
Normal memory at OxFFFF FFFF BFCO 0480
0 1 Serviced by probe

If these two bits are changed to this state, the operation of the processor is UNDEFINED,
1 0 indicating that the debug exception vector isin EJTAG memory, but the probe will not
SErvice processor accesses.

1 1 EJTAG memory at OxFFFF FFFF FF20 0200 Serviced by probe

6.5.6 Fastdata Register (TAP Instruction FASTDATA)
Compliance L evel: Required with EJTAG TAP feature for EJTAG version 02.60 and higher.

Thewidth of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register iswritten and read, i.e., abitis
shifted in and abit is shifted out. (See Section 6.4.3 on page 91 for how the Data + Fastdataregisters are selected by the
FASTDATA instruction.) During a Fastdata access, the Fastdata register value shifted in specifies whether the Fastdata
access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access was
successful or not (if completion was requested).

Figure 6-12 Fastdata Register For mat
0

32/64-bit [SPrA
Processor cc

Table 6-11 Fastdata Register Field Description

Fields
Read/ | Power-up

Name Bits Description Write State Compliance

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc hit in the EJITAG Control
register is overwritten with zero when the access
succeeds. (The access succeeds if PrAcc is one and
the operation addressisin the legal dmseg segment
Fastdataarea.) When successful, aoneis shifted out.
SPrAcc 0 Shifting out a zero indicates a Fastdata access failure. RIW Undefined Required

Shifting in a one does not complete the Fastdata
access and the PrAcc bit is unchanged. Shifting out a
one indicates that the access would have been
successful if allowed to complete and azero indicates
the access would not have successfully completed.

The FASTDATA access is used for efficient block transfers between the dmseg segment (on the probe) and target
memory (on the processor). An “upload” is defined as a sequence of processor loads from target memory and stores to
the dmseg segment. A “download” is a sequence of processor loads from the dmseg segment and stores to target
memory. The “Fastdata ared’ specifies the legal range of dmseg segment addresses (OxF..F20.0000 - OxF..F20.000F)

EJTAG Specification, Revision 3.10 105

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

106

that can be used for uploads and downloads. The Data + Fastdata registers (selected with the FASTDATA instruction)
allow efficient completion of pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accessesto the Fastdata area. The PrAcc (processor
access pending bit) will be 1 indicating the probeis required to complete the access. Both upload and downl oad accesses
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to seeif the
attempt will be successful (i.e., there was an access pending and alegal Fastdata area address was used). Downloads will
also shift in the datato be used to satisfy the load from the dmseg segment Fastdata area, while uploads will shift out the
data being stored to the dmseg segment Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:
PrAcc must be 1, i.e.,, there must be a pending processor access.
The Fastdata operation must use a valid Fastdata area address in the dmseg segment (OxF..F20.0000 to
OxF..F20.000F).

Table 6-12 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 6-12 Operation of the FASTDATA access

PrAccin
Address the LSB LSB
Praobe Match Control | (SPrAcc) | Actioninthe PrAcc shifted Datashifted
Operation check Register | shiftedin | Data Register | changesto out out
Fails X X none unchanged 0 invalid
1 1 none unchanged 1 invalid
Download
using valid
FASTDATA Passes 1 0 write data 0 (SPrAcc) 1 (previous)
data
0 X none unchanged 0 invalid
Fails X X none unchanged 0 invalid
Upload using 1 1 none unchanged 1 invalid
FASTDATA Passes 1 0 read data 0 (SPrAco) 1 valid data
0 X none unchanged 0 invalid

Thereis no restriction on the contents of the Dataregister. It is expected that the transfer size is negotiated between the
download/upload transfer code and the probe software. Note that the most efficient transfer sizes are word and
double-word for 32-bit and 64-bit processors respectively.

The Rocc bit of the Control register is not used for the FASTDATA operation.

6.5.7 PCsample Register (PCSAMPLE Instruction)

Compliance L evel: Required if PC Sampling feature isimplemented in EJTAG (PC Sampling was introduced in
EJTAG revision 3.xx.)

The PCSAMPLE instruction reads out the entire PCsampl e register. The width of the register depends on whether or not
the processor implementsthe MIPSMT ASE. If MIPS MT is not implemented, the length is 41 bits. If MIPSMT is
implemented, then the PCsample register length is 49 bits.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.6 Examples of Use

Figure 6-10 shows the format of the PCsample register; Table 6-8 describes the PCsample register field.
Figure 6-13 PCsample Register Format

438 41 40 33 32 1 0
32/64-bit TC (for MIPSMT ASID PC Ne
Processor processors only) w
Table 6-13 PCsample Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance
Required if
TC 48:41 Thread Context 1d of the sampled PC. R Undefined MIPSMT is
implemented
ASID 40:33 Address Space Id of the sampled PC R Undefined Required
PC 32:1 Program Counter value R Undefined Required
Processor writes a 1 to this field whenever anew
sample iswritten into this register. The probe
New 0 replaces with a zero when it reads out the sample R/WO Undefined Required
value. Used to detect a duplicate sample read on the
probe side.

6.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)
Compliance L evel: Required with EJTAG TAPR.

The Bypassregister is aone-bit read-only register, which provides a minimum shift path through the TAP. Thisregister
isaso defined in IEEE 1149.1.
Figure 6-14 shows the format of the Bypass register; Table 6-14 describes the Bypass register field.
Figure 6-14 Bypass Register Format
0

32/64-hit 0
Processor

Table 6-14 Bypass Register Field Description

Fields
Read/ | Power-up
Name Bits Description Write State Compliance
0 0 Ignored on writes; returns zero on reads. R 0 Required

6.6 Examplesof Use

This section provides several examples that use the TAP.

EJTAG Specification, Revision 3.10 107

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.6.1 TAP Operation

An example for operation of the TAP is shown in Figure 6-15. TRST* is assumed deasserted high.
Figure 6-15 TAP Operation Example

o gy uyuuyyy

TMS

[}

= x x x & o
TAP 3 § o o 3 § 2 o

E 5 = ®| =) 5 =

controller F x| 8 = |4 |3 =

5 3|3 5|8 §
TDI IRO | IR1 | IR2 | IR3 | IR4 DRO |DR1 |DR2

™0 AVEOY OO0

Thefive-bit Instruction register isinitially loaded with 00001,. Thefirst bit shifted out of the Instruction register isa 1
followed by four 0's. IR0 to IR4 indicate the new value for the Instruction register. IR0, the new LSB, isshifted in first,
because it will be at the LSB position once al five bits are shifted in.

This example is similar for the selected data register.

6.6.2 ManuflD Value

Table 6-15 showsthe values of the ManufID field in the Device I D register as defined by the manufacturers. The Device
ID register is described in Section 6.5.1 on page 93.

Table 6-15 Manufl D Field Value Examples

Last bytewithout
Company JEDEC Code | Continuations Carry ManuflD Value
Philips 0x15 0 0x15 0x015
LSl Logic 0xB6 0 0x36 0x036
IDT 0xB3 0 0x33 0x033
Toshiba 0x98 0 0x18 0x018
MIPS Technologies, Inc. OX7F 7TFA7 2 0x27 0x127

6.6.3 Rocc Bit Usage

The R/WO0 Rocc bit in the EJTAG Control register acknowledges that the probe has seen a processor reset, and further
accesses take this reset into account. This bit is set at reset. The probe must clear it as an acknowledge of the reset.

108 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.6 Examples of Use

All other writes to the EJTAG Control register, except for the reset acknowledge, should write 1 to this bit in order to
not acknowledge any resets occurring between reads and writes of the EJTAG Control register.

Correct use of the Rocc bit ensures safe handling of processor access even across reset. An example is the following
scenario:

1. A processor accessis pending and the PrAcc is read with value 1 (Rocc has been cleared previously).

2. The Address and Dataregisters are accessed and set up to handle the processor access.

3. TheEJTAG Control register is accessed to finish the processor access. The register isread in the Capture-DR state.
Shifting in of the value to write begins.

4. A reset of the processor occurs, the Rocc bit is set, and the PrAcc bit is cleared.
5. A new processor access occurs, because EJTAGBOOT was indicated.

6. A write of the EJTAG Control register is attempted with PrAcc equal to 0 and Rocc equal to 1, but the write does
not occur because the Rocc bit is set. The new processor access that was not seen is not finished.

7. Poalling of the EJTAG Control register continues. The probe detects that the Rocc bit is set.

8. The probe writes the EJTAG Control register with Rocc equal to 0 to acknowledge that the probe has seen the
reset.

9. Thenew processor accessis serviced as usual.

Inhibiting writes to the EJTAG Control register because of the Rocc bit ensures that the new processor accessis not
finished by mistake due to detection of a pending processor access before the reset occurred.

6.6.4 EJTAG Memory Access Through Processor Access

The processor access feature makes it possible for the probe to handle accesses from the processors to the specific
EJTAG memory area (dmseg). Thus the processor can execute a debug handler from EJTAG memory, whereby
applications that are not prepared with EJTAG code in the system memory still can be debugged.

The probe can get information about the access through the TAP as shown in Table 6-16.
Table 6-16 I nformation Provided to Probe at Processor Access

I nfor mation Field and Register
Pending processor access PrAcc field in the EJTAG Control register
Read or write access PRnW field in the EJTAG Control register
Size and datalocation Psz field in EJTAG Control register, and two or three LSBsin the Address register
Address Address register
Data Data register

The servicing of processor accessesworkswith apolling scheme, wherethe PrAcc bit ispolled until apending processor
accessisindicated by PrAcc equal to 1. Then the Addressregister is read to get the address of the transaction, and the
Dataregister is accessed to get the write data or provide the read data. Finally the PrAcc bit is cleared, in order to finish
the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication to the processor
that the probe will service accesses to the EJTAG memory through processor accesses.

EJTAG Specification, Revision 3.10 109

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

110

Handling of processor accessin relation to reset requires specific handling. A pending processor accessiis cleared at
reset. At the sametime, the Rocc bit is set, thereby inhibiting any processor accesses to be finished until Roccis cleared.
Thusthe probewill haveto acknowledge that areset occurred, and will thereby not accidentally finish aprocessor access
due to a processor access that occurred before the reset.

A pending processor access can only finish if the probe clears PrAcc or a processor reset occurs.

Thewidth of the Addressregister isfrom 32 to 64 bits. The specific length is determined by shifting aknown bit pattern
through the register.

The following subsections show examples of servicing read and write processor accesses.

6.6.4.1 Write Processor Access

Figure 6-16 shows a possible flow for servicing awrite processor access. The example implements a 32-bit processor
with 32-bit Address register, running in little-endian mode. A halfword store is performed to address OxFF20 1232 of
value 0x5678.

Figure 6-16 Write Processor Access Example

PrAcc

PRnW

Psz Size=1
Address Address = = O0xFF20 1232
Data Data = = 0x5678 XXXX

4= OB ORONNONNONNORONGE

The different probe actions shown on the figure are described below:

1. TheEJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is attempted to
be written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The
values of PRNW and Psz are saved when PrAcc indicates a pending processor access.

2. The Addressregister isread. It contains the address of the store resulting in the write processor access.
The Dataregister is read, which contains the data from the store resulting in the write processor access.

4. ThePrAcc bit iswritten to O, in order to finish the processor access.
The probe must update the appropriate bytesin itsinternal memory used for EJTAG memory with the value of the write.

Notice that the two lower bytes of the Dataregister are undefined, and that the two lower bytes of the saved register are
shifted up on the two high bytesin the Dataregister ason adatabusfor an external memory system. The Addressregister
in this case contains the address from the store; however, for some accesses, thisis not the case because the two LSBs
(32-bit processor) are modified for some accesses depending on size and address.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.6 Examples of Use

6.6.4.2 Read Processor Access

Figure 6-17 shows a possible flow for servicing aread processor access. The example implements a 64-bit processor
with 36-bit Address register. A doubleword load/fetch from address OXFFFF FFFF FF20 3450 is shown in the figure.

Figure 6-17 Read Processor Access Example

PrAcc IR
PRNW [
Psz Size=3

Address Address = = OxF FF20 3457

Data 0X0.00-06.0 BEEF

A ONONO @ ©, © © C

The different probe actions shown in the figure are described below:

1. TheEJTAG Control register ispolled to get theindication for apending PrAcc bit. The PrAcc bit is attempted to be
written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The values
of PRNW and Psz are saved when PrAcc indicates a pending processor access.

2. TheAddressregister isread. It contains the address of the load/fetch resulting in the write processor access, with
the three L SBs (64-bit processor) modified to allow size indication together with the Psz.

The Data register is written with the data to return for the load/fetch, resulting in the read processor access.

4. ThePrAcc bitiscleared, in order to finish the processor access.
The probe must provide data for the read processor access from the internal EJTAG memory.

Notice that the Address register does not contain the direct address from the access, because the three L SBs (64-bit
processor) are modified to indicate the size in conjunction with Psz. Also notice that in this case, there is no shifting of
the data returned for the processor access by writing to the Data register, because a doubleword is provided. For other
accesses, the Data register must be written with a shifted value depending on the specific access.

EJTAG Specification, Revision 3.10 111

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

112 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

On-Chip Interfaces

This chapter coversissues regarding implementation of aprocessor on achip with respect to hook-up of the EJTAG TAP
and DINT interfaces. It contains the following sections:

» Section 7.1, "Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals'
 Section 7.2, "Optional TRST* Pin"

* Section 7.3, "Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins'

* Section 7.4, "Connecting Multi-Core Test Access Port (TAP) Controllers'

7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals

If the EJTAG capabilities provided through the Test Access Port (TAP) and Debug Interrupt (DINT) signalson a
processor core are unused when the processor core isimplemented on a chip, then TRST* istied to low (if TRST* is
present on the core) and the remaining input signals TCK, TMS, TDI, and DINT must betied to a constant value, either
high or low. The output signal TDO should be left unconnected.

7.2 Optional TRST* Pin

The TRST* signal to the TAP is optional, and need not be provided as a pin on the chip for a processor implementing
the EJTAG TAP.

If aTRST* chip pinisnot provided, then a TAP reset like the one provided when TRST* is asserted (low) must be
applied tothe TAP at power-up, for exampl e, through a power-up reset circuit on the chip. This power-up TAP reset must
be finished after the time Ty orise (Se€ Section 8.2.4 on page 120).

If aTRST* chip pinis provided, then the power-up TAP reset is applied by apull-down resistor, because the probe will
not drive TRST* at power-up.

7.3 Input Bufferswith Pull-Up/Down and Output Driversfor Chip Pins

If an input buffer with an integrated pull-up resistor is used for the TRST* chip pin, then itsresistor value must be
sufficiently large that it is overruled by the external pull-down resistor on the PCB, so awell-defined logical level is
present on the TRST* pin (see Section 8.5.1 on page 123 for more information).

Observethe additional rulesdescribed inthe | EEE Std. 1149.1 specification, if the same TAPisused for JTAG boundary
scan also.

The output driver for the TDO chip pin must be capable of supplying thelq, and | current required for the probe (see
Section 8.3 on page 121).

EJTAG Specification, Revision 3.10 113

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 On-Chip Interfaces

7.4 Connecting Multi-Core Test Access Port (TAP) Controllers

This section is concerned with building a multi-core system where each core has its own TAP controller, but share one
set of external EJTAG TAP controller pins. Note that this section does not attempt to address the full issue of multi-core
debug, which involves resolving debugger issues and other hardware issues such as debug signalling anong multiple
cores, and handling breakpoints across multiple cores, etc.

Figure 7-1 shows the recommended dai sy-chain connection for a multi-core configuration, where the TCK, TMS and
optional TRST* signals of al the TAP controllers are connected together. The TDI and TDO signals are daisy chained
together so that the information flow between the selected register of all the TAP controllers is a continuous segquence.

Figure 7-1 Daisy-chaining of multi-core EJTAG TAP controllers

EJTAG TAP1 Probe
Connector
TCK |- TCK
TMS (=& ™S
TDI |- TDI
TDO » TDO
TRST* ‘ TRST* is optional) TRST*

Several EJTAG TAPspossible

EJTAG TAPn

TCK |-
TMS [
DI |(——m—
TDO
TRST* | (TRST" isoptiond)

The simplest usage model for this multi-core connection, under most circumstance, only uses one “active” device. This
isaccomplished by including BY PASS TAP instruction for “non-active’ devicesin every TAP command chain sent by
the debugger. “Non-active” devices only get attention when made “active”. Note that it is not necessary that only one
device be “active” at atime, it depends entirely on how the debugger and the end-user want to control the multiple
on-chip TAP controllers.

It is recommended that the EJTAG TAPs are connected in a single daisy-chain without any non-EJTAG TAPs in that
chain, sincethis provide the fastest accessto the EJTAG TAPsand it allows the most debug software packagesto operate
the EJTAG TAPs. Special care must be taken by the system designer if both EJTAG TAPs and non-EJTAG TAPs are
connected in the same chain. In this case the system designer must ensure that both the EJTAG debug hardware and
software, and the external device using the non-EJTAG TAPs can apply the BY PASS TAP instruction when the TAPs
unrelated to the current operation are to be made “non-active’.

114 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

Off-Chip and Probe Interfaces

This chapter outlines the requirements for the target system chip and probe interfaces to make them compatible. This
chapter contains the following sections:

» Section 8.1, "Logical Signals'

» Section 8.2, "AC Timing Characteristics'

* Section 8.3, "DC Electrical Characteristics'

* Section 8.4, "Mechanical Connector"

 Section 8.5, "Target System PCB Design"

* Section 8.6, "Probe Requirements and Recommendations®

The off-chip interface formsthe connection from the chip over thetarget system PCB and to the probe connector, thereby
allowing the probe to connect to the target processor. The probe connection is optional in the target system.

The probe signals are described with respect to logical functionality, timing behavior, electrical characteristics, and
connector and PCB design. Comments are also added with respect to probe functionality.

The descriptionsin this chapter only cover issues related to EJTAG use of the Test Access Port (TAP). Issuesrelated to
reuse of the same TAP on achip, for example, for JTAG boundary scan, are not covered.

8.1 Logical Signals

This section describes the EJTAG signals categorized according to functionality:
» Test Access Port: TCK, TMS, TDI, TDO, and TRST* (optional TRST*)

» Debug Interrupt: DINT (optional)

» System reset (reset or soft reset): RST*

* Voltage Sensefor 1/0: VIO

EJTAG Specification, Revision 3.10 115

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

Figure 8-1 shows the signal flow between the chip, target system PCB, and Probe.
Figure 8-1 Signal Flow between Chip, Target System PCB, and Praobe

L Target System
Chip with EJTAG Probe
Connector
TCK [TCK
™S < ™S
TDI |- TDI
TDO »-| TDO
TRST* < TRST* is optional, see description) TRST*
DINT 4 (DINT is optional, see description) DINT
Reset [———— g RST*
Target System
Reset Circuit Chip1/0 VIO
Voltage >
Other reset sources ———— P

8.1.1 Test AccessPort Signals

TheTCK, TMS, TDI, TDO, and TRST* signals make up the Test Access Port (TAP). For more details about the logical

functionality of these signals, refer to Chapter 6 on page 85. The five signals are listed in Table 8-1 with a short

description.
Table 8-1 Test Access Port Signals Overview
Signal Description Direction | Compliance
Test Clock Input is the clock that controls the updates of the TAP controller and
TCK the shifts through the Instruction or selected data register(s). Both the rising and Input
the falling edges of TCK are used.
Test Mode Select Input isthe control signal for the TAP controller. Thissignal is . .
T™S sampled at the rising edge of TCK. Input Req1:)|rr(t)3t()jeVV|th
DI Test Data Input has the data shifted into the Instruction or dataregister. This Inout connection
signal is sampled on the rising edge of TCK. P
TDO Test Data Output has the data shifted out from the Instruction or data register. Outout
Thissignal is changed on the falling edge of TCK. p
Test Reset Input is used for the TAP reset of the TAP controller, Instruction Optional with
TRST* register, and EJTAGBOOT indication. TAP reset isapplied asynchronously when Input probe
low. connection

The TRST* chip pinisoptiona. If TRST* is not provided, then the TAP controller must be reset by a power-up reset
circuit on-chip. Refer to Section 7.2 on page 113 for information on a power-up reset that is on-chip and Section 8.2.4
on page 120 for duration of this power-up reset.

116 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.1 Logical Signals

8.1.2 Debug Interrupt Signal

The Debug Interrupt (DINT) signal allows the probe to request the CPU to take a debug exception. Table 8-2 briefly
defines this signal.

Table 8-2 Debug I nterrupt Signal Overview

Signal Description Direction | Compliance

A debug interrupt is requested when DINT goes from low to high. The CPU is
allowed to synchronize this signal to the CPU clock before detecting itsrising

DINT edge, if thisis possible with respect to the minimum pulse width indicated in Input OE%t.l'.zrgl.l\fXg
Section8.2.2 on page 119. Therequestisignored if the CPU isalready in Debug
Mode.

The DINT signal from the probeis optional. The DINTsup bit indicates whether or not the DINT signal isimplemented.

Refer to Section 6.5.2 on page 94 for moreinformation on DINTsup. The debug interrupt request isdescribed in Section
5.3.9 on page67.

8.1.3 System Reset Signal

The System Reset (RST*) signal from the probeis required to generate areset of the target board. It is recommended

that assertion of RST* resultsin a (hard) reset of the processor, but it is allowed to generate a soft reset. Table 8-3 briefly
describes the RST* signal.

Table 8-3 System Reset Signal Overview

Signal Description Direction | Compliance
RST* isthe system reset of the target board. When the probe asserts RST* low, Requiredwith
RST* theresult is either areset (recommended) or soft reset of the processor. Input probe
No reset is applied when the RST* is undriven (3-stated from the probe). connection

The probe controlsthe RST* viaan open-collector (OC) output. Thus RST* is actively driven low when asserted (low),
but is 3-stated when deasserted (high).

8.1.4 Voltage Sensefor 1/0O Signal

The Voltage sense for I/O (VI0) indicates target power is applied and voltage levels are present at the probe I/0
connections. Table 8-4 briefly describes the VIO signal.

Table 8-4 Voltage Sensefor 1/O Signal Overview

Signal Description Direction | Compliance
Voltage Sense for 1/O indi if i lied, and indi h Requiredwith

VIO oltage Sense for 1/0 indicates if target power is applied, and indicates the Output orobe
voltage level for the probe signals. oo

With V10, the probe can auto adjust the voltage level for the signals, and detect if power islost at the target system.

EJTAG Specification, Revision 3.10 117

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

8.2 AC Timing Characteristics

The timing relations and AC requirements for the signals are described in this section. The timing is measured at the
probe connector for the target system, and must be valid in the full operating range of the target board.

All setup and hold times are measured with respect to the 50% value between V| / V4 for inputs, and Vo / V gy for
outputs.

All rise and fall times are measured at 20% and 80% of the values of V| / V| for inputsand Vg, / Vg for outputs.

The capacitance of Cryget aNd Cprope iS assumed to be as seen from the probe connector for the inputs and outputs.

8.2.1 Test AccessPort Timing

Figure 8-2 shows the timing relationships of the five TAP signals, TCK, TMS, TDI, TDO, and TRST*. Table 8-5 shows
the absolute times for the symbolsin the figure.

Figure 8-2 Test Access Port Signals Timing

-« Tk o

| |
Trekhigh o ! Trexi -
:‘ = >:< o >: : Trf :
I | ! L
! 1
TeK O I N
|
: ! <> !
1 1 |
: : Tyt I
| |
TMS | U N/ T
DI >,< i >,< ! >< .><. :
> : ! ! gt I
"Trsetup ' TThold i ara :
| 1 Tt |
| |
TDO
X D
- r
' ‘TTRST* lowg, Trpoout ' TrDOzstate
| |
TRST* I\ e
-t I Defined Undefined
1 Trf 1 1
Table 8-5 Test Access Port Signals Timing Values
Symbol Description Min Max Unit
Trekeye TCK cycletime 25 ns
TrcKhigh TCK high time 10 ns
TreKlow TCK low time 10 ns
Trsetup TAP signals setup time before rising TCK 5 ns
T1hold TAP signals hold time after rising TCK 3 ns
TTDOoout TDO output delay time from falling TCK 5 ns
118 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.2 AC Timing Characteristics

Table 8-5 Test Access Port Signals Timing Values (Continued)

Symbol Description Min M ax Unit
TTDOzstate TDO 3-state delay time from falling TCK 5 ns
TTRST*low TRST* low time 25 ns
Tyt TAP signalsrise/ fall time, all input and output 3 ns

TRST* isindependent of the TCK signal, because TRST* isatruly asynchronous signal. Note the IEEE 1149.1
recommendation in 3.6.1 (d): “To ensure deterministic operation of the test logic, TM S should be held at 1 while the
signal applied at TRST* changesfrom 0to 1.” A race might otherwise occur if TRST* is deasserted (going from low to
high) on arising edge of TCK when TMSislow, because the TAP controller might go either to Run-Test/Idle state or
stay in the Test-L ogic-Reset state.

8.2.2 Debug Interrupt Timing

Figure 8-3 shows the timing for the DINT signal from the probe. Table 8-6 shows the absolute times for the symbolsin

the figure.
Figure 8-3 Debug Interrupt Signal Timing
1 T . 1 T 1 Ll
- DINThigh - DINTIow > :Trf |
|
l ! ! I
DINT m
A <
Debug interrupt request - _ . T
Table 8-6 Debug Interrupt Signal Timing Values
Symbol Description Min M ax Unit
ToiNThigh DINT hightime 1 us
TD|NT|UW DINT low time 1 us
Tyt DINT signal rise/ fall times 3 ns

The probe should guarantee that the Tpnhigh @d TpjnTiow PUlse widths meet the specifications, in order to leave
enough time for the CPU to synchronize the DINT signal to the internal CPU clock domain.

If the CPU clock speed or clocking schemeis such that TpNThigh and TpinTiow do Not leave enough time for
synchronization or, for example, PLL walk-up, then the target system isresponsible for extending the DINT pulsein the
processor.

EJTAG Specification, Revision 3.10 119

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

8.2.3 System Reset Timing

Figure 8-4 shows the timing for the RST* signal from the probe. Table 8-7 shows the absolute times for the symbolsin
the figure. The target system is responsible for extending the RST* pulseif required.

Figure 8-4 System Reset Signal Timing

RST* \ / ___ Undriven

Table 8-7 System Reset Signal Timing Value

Symbol Description Min M ax Unit

TRST*Iow RST* low time 1 ms

8.2.4 Voltage Sensefor I/O (VIO) Timing

Figure 8-5 shows the timing for the VIO signal. Table 8-8 shows the absolute time for the symbol in the figure. VIO
must rise to the stable level within a specific time Ty qyise &fter the probe detects VIO to be above a certain limit

VVIOa\ctive-
Figure 8-5 Voltage Sense for 1/0 Signal Timing

VIOt

: s
VIO :
Vvigadtive_ _ _ _ _ '

Table 8-8 Voltage Sense for 1/0O Signal Timing Value
Symbol Description Min M ax Unit
Tviorise VIO risetime from Vygactive t0 Stable VIO value 2 s

Thetarget system must ensurethat Ty orise IS Obeyed after the V' oaative Vel Ue iSreached, so the probe can usethisvalue
to determine when the target has powered-up. The probe is allowed to measure the Ty orise time from a higher value
than Vv oactive (PUt lower than Vo minimum) because the stableindication in this case comes | ater than thetimewhen
target power is guaranteed to be stable.

If TRST* isasserted by apulse at power-up, either on-chip or on PCB, then thisreset must be completed after Ty orie-
If TRST* is asserted by a pull-down resistor, then the probe will control TRST*.

At power-down no power isindicated to the probe when VIO drops under the V| oactive ValUe, which the probe uses to
stop driving the input signals, except for RST*.

120 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.3 DC Electrical Characteristics

8.3 DC Electrical Characteristics

Table 8-9 describes the DC electrical characteristics for voltage and current measured at the probe connector. Current
measures positive in direction from the probe to the target system, and negative in the other direction. The characteristics
apply to the full operating range of the target system.

Table 8-9 DC Electrical Characteristics

Symbol Description Condition Min Typ M ax Unit
Vvio VIO voltage When stable 15 5.0 \
Vvioative | VIO activeindication 05 \Y
lvio V10 output current 20 mA

28V <Vyo -03 0.8 \
Vi Low-level input voltage

Vyi0<28V -03 0.3* Vyio \

2.8V <Vyo 20 Vyjo+0.3 \
\m High-level input voltage

Vyj0<28V 0.7* Vyio Vyjo+0.3 \

28V <Vyo -0.3 04 \
VoL Low-level output voltage

Vyio<28V -03 0.15* Vyo \
VoH High-level output voltage

Vyio<28V 0.85* Vy o Vyjo+0.3 \Y

Low-level input current, except

Iy R P €0 -80 mA
IrsT RST* low-level input current -10 mA
hH High-level input current 8.0 mA
loL Low-level output current 8.0 mA
lon High-level output current -80 mA
| 7gtate 3-state input or output current 0V <Vgg<Vyio -50 50 UA
Craget Capacitance for target system 25 pF
Cprobe Capacitance for probe 25 pF

The | 744 SPecifies the current that a 3-stated (undriven) output driver and pull-up/down can provide. It sets alimit for
the driversin the probe for TCK, TMS, TDI, TRST*, DINT, and RST*, and it sets alimit for the output driver on-chip
for TDO. Thislimit allows design of pull-up/down resistors that can keep alogical level when no driver is controlling

the signal.

Crarget and Cprope are the capacitances in the target system for inputs and the capacitances for the probe for outputs.
Additional capacitance in the target system must be added to Cp, e When designing the output driver, and additional
capacitance for the probe driver is added to Crgget-

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

121

Chapter 8 Off-Chip and Probe Interfaces

8.4 Mechanical Connector

Figure 8-6 shows the recommended EJTAG connector on atarget system. The connector is a common pin strip with
dimensions 0.100” x 0.100", for example, SAMTEC part number TSW-107-23-L-D or compatible. The socket on the
probe side must alow for an angled connector on the target system.

Figure 8-6 EJTAG Connector Mechanical Dimensions

Top view on PCB Side view on PCB Signal Positions
2.54 mm 5.84 mm
—»>» —>»
| I | I
| | | 1
1| m|2 — TRST* |® B | GND
B X — > TDI |® ® | GND
M |- - ——1--2 0.64mm TDO |® ® | GND
2.54 mm
B OE[-- —— * TMS|® ® | GND
H X * ——) TCK |® ® | GND
b —— RST* | ® key
Pin 12 removed
B|e =14 to alow for key) DINT|® =|VIO

Table 8-10 shows the pin assignments for the connector.

Table 8-10 EJTAG Connector Pinout

Pin Signal Direction || Pin Signal Direction

1 TRST* - Test Reset Input Input 2 GND - Ground GND

3 TDI - Test Data I nput Input 4 GND - Ground GND

5 TDO - Test Data Output Output 6 GND - Ground GND

7 TMS - Test Mode Select Input Input 8 GND - Ground GND

9 TCK - Test Clock Input Input 10 GND - Ground GND

11 RST* - System Reset Input 12 key - pin removed on connector n.a

13 DINT - Debug Interrupt Input 14 V10 - Voltage Sense for 1/0 Output

Pin 12 on the target system connector should be removed to provide keying and thereby ensure correct connection of the
probe to the target system.

The connector in Figure 8-6 does not provide PC trace signals. An additional connector, probably with 0.05” x 0.05”
spacing, will be defined later when the PC trace feature is redefined.

8.5 Target System PCB Design

This section provides guidelines for using the EJTAG connector on atarget system.

122 EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.5 Target System PCB Design

8.5.1 Electrical Connection

Figure 8-7 shows the electrical connection of the target system connector. This subsection only covers the case where
the prabe connects directly to a chip with an EJTAG compliant processor.

Figure 8-7 Target System Electrical EJTAG Connection

VDD
EJTAG-compliant 3 E E E E E
Processor On Chip 1
TRST* | TRST* o GND
D! | TDI | g |GND }GND
— TDO GND
TDO Series-res. m =
TMS |<€ TMS - GND
TCK <€ TCK - GND
RST* -
DINT | DINT | {VIO
Reset (soft/hard) g
% VIO voltage
reference
Other reset Targel Syst
sources arg em < GND
> Reset Circuit

In Figure 8-7, the pull-up resistors for TCK, TMS, TDI, DINT, and RST*, the pull-down resistor for TRST*, and the
series resistor for TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is
1.0 kQ, because alow value reduces crosstalk on the cabl e to the connector, allowing higher TCK frequencies. A typical
value for the seriesresistor is 33 Q2. Recommended resistor values have 5% tolerance.

The |EEE 1149.1 specification requires that the TAP controller is reset at power-up, which can occur through a
pull-down resistor on TRST* if the probe is not connected. However, on-chip pull-up resistors can be implemented on
some chips due to an | EEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistorsfor the TRST*
signal requires special carein the design to ensure that avalid logical level is provided to TRST*, for example, using a
small external TRST* pull-down resistor to ensure this level overrides the on-chip pull-up. An aternativeisto use an
active power-up reset circuit for TRST*, which drives TRST* low only at power-up and then holds TRST* high
afterwards with a pull-up resistor.

It must be ensured that avalid logical level is provided on TRST*, because some chips have an on-chip pull-down
resistor on TRST* (even through this setup contradicts the IEEE 1149.1 standard), which might cause an undefined
signal value when other chips have on-chip pull-ups, and they all connect to TRST*.

The pull-up resistor on TDO must ensure that the TDO level is high when no probe is connected and the TDO output is
3-stated. This requirement allows reliable connection of the probeif it is hooked-up when the power is already on (hot
plug). The value of the pull-up resistor depends on the 3-state current of the TDO output driver in the chip, but avalue
around 47 kQ usually is sufficient.

Optional diodes to protect against overshoot and undershoot voltage can be provided on the signals to the chip with
EJTAG.

The RST* signal must have a pull-up resistor becauseit is controlled by an open-collector (OC) driver in the probe, and
thusisactively pulled low only. The pull-up resistor isresponsible for the high value when not driven by the probe. The

EJTAG Specification, Revision 3.10 123
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the Crgget
and Cpygpe Capacitance to a high logical level.

V10 must connect to avoltage reference that drops rapidly to below Vy;oactive When the target system loses power, even
with the capacitive load of Cpyqpe. The probe can thus detect the lost power condition.

The signals on the probe connection for the optional signals DINT and TRST* should be left unconnected in the target
system, if unused.

8.5.2 Layout Considerations

Layout around the pin connector on the target system must provide for sufficient clearance for the probe to connect.
Figure 8-8 showsthe recommended clearance. Place the connector at the edge of the PCB. Avoid tall componentsaround
the connector to allow for easy access.

Figure 8-8 Target System Layout for EJTAG Connection

Target System PCB

NCEINEEE
A
Ne =N
NS N
Ne X
NE =2 N
N
Q\\EE_Q____*
\mm\.
N

Y
A

5 7
7
Ty

v 3
i

No components taller than the
30mm base of the pin header should
be placed in the marked area

8.6 Probe Requirements and Recommendations

This section provides the probe requirements for different features.

8.6.1 Target System Power-Up with Probe Attached

124

A probe connected to the target system at power-up is not allowed to drive the inputs before VIO indicates a stable
voltage (see Section 8.2.4 on page 120). TRST* (if present) is then asserted by the target system pull-down resistor at
power-up, whereby a TAP reset is applied through TRST* for TAPs, depending on TRST*. This step impliesthat inputs
are not driven until the target system is powered up; otherwise the communication on the TAP might be undefined or
damage could occur.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.6 Probe Requirements and Recommendations

At power-down the probe is not allowed to drive the inputs after VIO has dropped under a certain level (see Section
8.2.4 on page 120).

The RST* signal is an exception to the above description because it can be driven low by the probe during power-up.

8.6.2 Hot Plugin of Probe

The probe must not drive any inputs to the target system if it is connected while the system is running (hot plug).
Detection of astable VIO from thetarget systemisrequired before any input isallowed to be (see Section 8.2.4 on page
120).

To avoid spikes or changes in the input voltage to the target system when the probe is connected, the level of the signal
on the probe must be adjusted to the same level as the signals on the target system. This adjustment can be done with
large pull-up/down resistors (in the range of 150 k) on the probe signals, so the level of these signals matchesthe level
on the target system shown in Figure 8-8. The specific implementation of this feature is dependent on the probe, the
driver type, etc. used in the probe.

8.6.3 TDO Level when 3-Stated
The probe must apply apull-up resistor on TDO to have awell-defined logical level when TDO onthe TAPis 3-stated.
The pull-up on the target system ensures the level at hot plug. The size of the pull-up on the probe is expected to be
1.0 kQ or more. The resistor value must be chosen so | 744 IS Observed.

8.6.4 RST* Drive by Open Collector
Drive the RST* signal with an open-collector (OC) output driver to allow for easy connection of the RST* signal in the
target system.

8.6.5 Changing TMSand TDI
It isrecommended that the TM S and TDI signals driven by the probe changein relation to the falling edge generated on
the TCK, since this ensures a high setup and hold time for the TMS and TDI in relation to the rising edge of TCK, on
which these signals are sampled by the target processor.
If the TCK clock speed can be adjusted by extending the high and low period time of the TCK clock, then the behavior
described above will also make the probe work even with atarget processor not respecting setup and hold time, simply
by lowering the TCK frequency.

8.6.6 Mechanical Connector

The female connector from the probe must allow for an angled board connector.

Block Hole 12 on the probe connector in order to provide keying and ensure correct connection of the probe to the target
system. Connect the signal from the probe at line 12 to GND on the probe.

EJTAG Specification, Revision 3.10 125

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

126 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Differences for R3k Privileged Environments

This appendix describes the EJTAG feature differences necessary for integration with a 32-bit processor having an R3k
privileged environment.
A.1 EJTAG Processor Core Extensions

This section covers differences between an R3K environment and the description in Chapter 5 on page 51.

A.1.1 SYNC Instruction

The SYNC instruction is not available for processors with R3k privileged environment, but this instruction must be
available and have behavior as described in Section 5.2.3.7 on page 57.

A.1.2 Debug Exception Vector Location

Table A-1 shows the debug exception vector location in system memory for processors with R3k privileged
environments.

Table A-1 Debug Exception Vector Location for R3k Privileged Environment Processors

ProbTrap bitin
ECR register Debug Exception Vector Address

0 O0xBFCO 0200

The debug exception vector in dmseg (EJTAG memory) is the same for processors with R3k and R4k privileged
environments.

A.1.3 SYNC Instruction Substitute

In casethe SYNC instruction is not provided (for example, on aprocessor with an R3k privileged environment), then an
implementati on-specific instruction sequence must be used to ensure full update of the Debug register status bits and
BSn bitsfor hardware breakpoints with respect to handling of imprecise data hardware breakpoints and imprecise errors.

A.1.4 CPO Register Numbersfor Debug and DEPC Registers

Theregister numbersto usein processorswith R3Kk privileged environmentsfor CPO Debug and DEPC registersis shown
below:

» Debug register: 16
» DEPC register: 17

EJTAG Specification, Revision 3.10 127

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A Differences for R3k Privileged Environments

A.2 Hardware Breakpoints

This section describes the differences between hardware breakpoints in an R3k privileged environment and those
describesin Chapter 3 on page 19.

A.2.1 Instruction Breakpoint Registers

Table A-2 shows the address offsets in drseg for the Instruction Breakpoint registers. In the table, n is the breakpoint
number in the range 0 to 14.

Table A-2 Offsetsfor Instruction Breakpoint Registersfor R3k Privileged Environment Processors

Register
Offset in drseg Mnemonic Register Name and Description
0x0004 IBS Instruction Breakpoint Status
0x0100 + 0x010 * n IBAN Instruction Breakpoint Address n
0x0104 + 0x010 * n IBCn Instruction Breakpoint Control and ASID n
0x0108 + 0x010 * n IBMn Instruction Breakpoint Address Mask n

A.2.2 Conditionsfor Matching Instruction Breakpoints
Thewidthin bitsof the ASID field for the compareis 6 bits, asisthesizeusedinthe TLB. The ASID and IBASIDnaqp
references used in the equationsin Section 3.3.1 on page 22 hasthis size.

A.2.3 ASID Field in IBCn Register

Compliance L evel: Required with instruction breakpoints when the ASIDsup bit in the IBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for instruction breakpoint n; it is placed in the IBCn register,
not in aregister of its own. Table A-3 shows the format of the ASID field.

Table A-3ASID Field in IBCn Register

Fields
Read/
Name Bits Description Write Reset State
ASID 29:24 Instruction breakpoint ASID value for compare. R/W Undefined

A.2.4 DataBreakpoint Registers

Table A-4 shows the address offsets in drseg for the Data Breakpoint registers. In the table, n is the breakpoint number
in the range 0 to 14.

Table A-4 Offsetsfor Data Breakpoint Registersfor R3k Privileged Environment Processors

Register
Offset in drseg Mnemonic Register Name and Description
0x0008 DBS Data Breakpoint Status
128 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

A.3 EJTAG Test Access Port

Table A-4 Offsetsfor Data Breakpoint Registersfor R3k Privileged Environment Processor s (Continued)

Register
Offset in drseg Mnemonic Register Name and Description
0x0200 + 0x010 * n DBAnN Data Breakpoint Address n
0x0204 + 0x010 * n DBCn Data Breakpoint Control and ASID n
0x0208 + 0x010 * n DBMn Data Breakpoint Address Mask n
0x020C + 0x010 * n DBVn Data Breakpoint Value n

A.2.5 Conditionsfor Matching Data Breakpoints
Thewidthin bitsof the ASID field for the compareis6 bits, asisthesizeusedinthe TLB. The ASID and DBASIDna g p
references used in the equationsin Section 3.3.2 on page 24 hasthis size.

A.2.6 ASID Field in DBCn Register

Compliance Level: Required with instruction breakpoints when the ASIDsup bit in the DBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for data breakpoint n; it is placed in the DBCn register, not in
aregister of its own. Table A-5 shows the format of the ASID field.

Table A-5 ASID Field in DBCn Register

Fields
Read/
Name Bits Description Write Reset State
ASID 29:24 Data breakpoint ASID value for compare. R/W Undefined

A.3 EJTAG Test Access Port

There are no differences for processors with R3k privileged environment with respect to the EJTAG Test Access Port.
The R4k/R3k bit in the Implementation register selects between R4k and R3k privileged environments (see Section
6.5.2 on page 94).

EJTAG Specification, Revision 3.10 129

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A Differences for R3k Privileged Environments

130 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix B
Terminology

This appendix defines several terms used throughout this document.

Term Definition
3-state Undriven output, thus output with high impedance
ASE Application Specific Extension.
CPO Coprocessor 0 (zero)
Debug exception Exception bringing the processor from Non-Debug Mode to Debug Mode.

Debug Mode exception

Exception occurring in Debug Mode, which causes the processor to re-enter
Debug Mode.

Memory-mapped area, accessible from the processor in Debug Mode only. Itis

dmseg provided as emulated memory handled by the probe through processor accesses.

drseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains registers for hardware breakpoint setup, for example.

dseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains the combined dmseg and drseg areas.

EJTAG Enhanced JTAG.

EJTAG Area See dseg definition.

EJTAG Memory See dmseg definition.

EJTAG Registers See drseg definition.

GPR General-Purpose Registersr0 to r31.

|IEEE 1149.1 | EEE standard describing the TAP and the boundary-scan architecture.

ISA Instruction Set Architecture.

JTAG Joint Test Action Group.

Hardware breakpoint Instruction or data breakpoints implemented in hardware.

LSB Least Significant Bit.

MMU Memory Management Unit. Translates virtual addresses to physical addresses.

MSB Most Significant Bit.

Naturally-aligned

Alignment of amemory structure at an address corresponding to its size, so for
example aword is aligned to an word boundary thus where the two L SBs of the
addressare 0.

Non-Debug Mode

Any mode other than Debug Mode (User Mode, Supervisor Mode or Kernel
Mode).

PC

Program Counter, the virtual address of the currently executed instruction.

Probe

A hardware system controlling the target system through the TAP. The probeis
controlled through the debug host, a PC, or workstation.

Processor access

Access from the processor to dmseg, which is handled by the probe through the
TAP.

SDBBP instruction, which can be inserted in the code being debugged, causing

Software breakpoint a debug exception when executed.
Test Access Port. Theinterface port defined in IEEE 1149.1 and used for access

TAP to EJTAG from the probe. Theinterfaceis made up of the test clock (TCK), test
mode select (TMS), test datain (TDI), test data out (TDO), and optional TAP
reset (TRST*).

TLB Translation Lookaside Buffer. Provides programmable mapping of address

EJTAG Specification, Revision 3.10

translations done by the MMU.

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

131

Appendix B Terminology

Term Definition

Hardware breakpoint, which is set up to generate atrigger indication when it

Triggerpoint matches.

132 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix C
Functiona Clarifications from Old EJTAG 2.5

The following items were clarified from the previous EJTAG rev. 2.5 Specification:

Update of Instruction register in Update-IR state

Updating Instruction register in the Update-IR state is allowed either on the rising or the falling TCK edge. See
Section 6.3.4 on page 89 for more information.

Update of selected Data register(s) in Update-DR state

Updating selected Data register(s) in the Update-IR state is alowed either on therising or the falling TCK edge. See
Section 6.3.7 on page 89 for more information.

Use of the Device ID register

The Device ID register is recommended to be unique among designs and among several processors on the same chip.
See Section 6.5.1 on page 93 for more information.

Reset State or Power-up State

Either the reset state or the power-up state is indicated for the data registers. It is not possible to state only the reset
value, because a reset denotes a processor reset. For example, the Bypass register must be reset to 1 as soon asthe

TAP can be operated, thus the processor should not be required to be reset first. See Section 6.5 on page 92 for more
information.

SRstE Changed to Optional

The SR<tE bit described in Chapter 2 on page 15 has been made optional, because not every implementation needsit,
and its behavior is defined as implementation dependent.

Bypass Register Initial Value as 0 (zero)

Theinitia value for the Bypass register (in Capture-DR state) is defined to O (zero), see Section 6.5.8 on page 107.,
since the JTAG spec. requires thisin chapter 9 page 9-1.

EJTAG Specification, Revision 3.10 133

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix C Functional Clarifications from Old EJTAG 2.5

134 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D

Multithreaded and Multi-Core Debug

Thisisnot arequired feature of EJTAG, but is provided here has a recommended method to implement debug for a
multi-core or a multi-threaded processor.

0.1 Introduction

This document serves as a guideline for designing a Multi-Core Breakpoint Unit (MCBU) for System-On-Chip (SOC)
devicesthat integrate multiple MIPS processor cores. The document isintended to be used by designers of SOC devices
and by software tool vendors who design debuggers capable of interacting with these SOC devices.

The MCBU is capable of requesting a debug interrupt from any number of coresin the SOC as aresult of any corein
the system entering Debug Mode. In addition, the MCBU can be used to request debug interrupt, soft reset, hard reset
and non-maskable interrupt from any number of the cores under software control.

0.2 MCBU Register Map

The MCBU consists of registers that specify which of the processors in the multi-processor system should receive a
RESET, COLD RESET, NMI, and Debug Interrupt signal. There are also per-processor debug interrupt registers that
say whether that processor would cause a debug interrupt to be sent to other processors in the multi-processor system.
These registers are described below. These registers are memory-mapped for access by the debug probe hardware and
software and the memory map is shown in Table D-1 and Table D-2.

Table D-1 sMCBU Register Memory Map

Register Name Memory Map of the Register
Reset Base+0x000
Cold_Reset Base+0x010
NMI Base+0x020
Debug_Interrupt Base+0x030

Table D-2 M CBU Debug_Int Register Memory Map

Register Name Memory Map of the Register
Debug_Int_0 Base+0x200
Debug_Int_1 Base+0x210
Debug_Int_2 Base+0x220
Debug_Int_i Baset+0x200+(0x10%i4¢), (i expressed in hex)
Debug_Int_63 Base+0x5F0
EJTAG Specification, Revision 3.10 135

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

SoC designers are advised to design the base address to be Ox1FFFCOO0. Thisisthe end of ksegl (ROM is at
0x1FC00000). If itisimpossibleto map the MCDU into thisaddress, SoC designersare requested to map baseinto ksegl
and to notify the head of the Architecture Team at M1PS Technologies of the selected base address. Debugger designers
are advised to use the above-specified address as the default, but to enable configuring this address in the debuggers for
SoC devices that are using a different address. A default configuration file (mips_mcbu_base.cfg) could be made
available by the chip manufacturer to the debugger vendors.

Addresses Base through Base+0x1FFF should be reserved for future expansion of the MCBU. If no more than N cores
are implemented in the SoC (N < 32), only registers Debug_Int_0 through Debug_Int_N-1 need to be implemented.
Registers Debug_Int_N through Debug_Int_31 should remain reserved.

0.3MCBU Registers

D.0.1 Debug_Int_i

There are amaximum of 64 such registers, but only as many as exist in the multiprocessor system needs to be
implemented. The Debug_Int_i register is a 64-bit read/write register that contains a mask used to control which of the
processor cores in the SOC device should receive an EJ DINT request upon a detection of an asserted EJ DebugM in
processor core number “i” inthe SOC. When Mask(j] is set, an asserted EJ DebugM in processor core number “i” will
forcethe EJ_DINT in core number “j” to be asserted. When Mask[j] is clear, an asserted EJ DebugM in processor core
number “i” will have no effect on EJ DINT in core number “j”.

If no more than N cores are implemented in the SOC (N < 64), bits N through 63 should remain reserved. Upon SOC
reset, the value of the Mask bits is undefined.

Figure 8-9 Debug_Int_i Register For mat

63 k+l k 10
| 0 | Mas |

Table 8-11 Debug_Int_i Register Field Descriptions

Fields
Read/ | Power-up
Name Bits Description Write State Compliance
There are k+1 processorsin the multi-processor
system under debug. For each processor, the Required if
Mask k:0 corresponding mask hit, that is, mask[j] for processor R/W 0 MCBU is
j specifies whether or not the current processor i will implemented
assert EJ DINT for j wheni getsaEJ DebugM.
Required if
0 63:k+1 Reserved R 0 MCBU is
implemented

0.3.1 Reset

136

The Reset register isa64-bit read/write register that contains amask used to control which of the processor coresin the
SoC device should receive aSl_Reset request. When Mask(j] is set, the MCDU will forcethe SI_Reset input of core“j”
to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

EJTAG Specification, Revision 3.10
Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Figure 8-10 Reset Register Format

63 k+1 k
| 0 | Mask

Table 8-12 Reset Register Field Descriptions

Fields
Read/ | Power-up
Name Bits Description Write State Compliance

There are k+1 processors in the multi-processor Required if

Mask k:0 system under debug. When the mask bit j is set, this R/W 0 MCBU is
forcesa Sl_Reset signal to processor j. implemented

Required if

0 63:k+1 Reserved R 0 MCBU is
implemented

0.3.2 Cold Reset

The Cold Reset register is a64-hit read/write register that contains amask used to control which of the processor cores

in the SoC device should receive aSI_ColdReset request. When Mask(j] is set, the MCDU will forcethe SI_ColdReset
input of core“j” to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-11 Cold Reset Register For mat

63 k+1 k 1 0
| 0 | Mas |
Table 8-13 Cold Reset Register Field Descriptions
Fields
Read/ | Power-up
Name Bits Description Write State Compliance
There are k+1 processorsin the multi-processor Required if
Mask k:0 system under debug. When the mask bit j is set, this R/W 0 MCBU is
forcesa Sl_ColdReset signal to processor j. implemented
Required if
0 63:k+1 Reserved R 0 MCBU is
implemented

0.3.3NMI

The NMI register is a64-bit read/write register that contains amask used to control which of the processor coresin the

SoC device should receive aSI_NMI request. When Mask([j] is set, the MCDU will forcethe SI_NMI input of core“j”
to be asserted.

EJTAG Specification, Revision 3.10 137

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-12 NM1 Register Format

63 k+1 k
| 0 | Mask

Table 8-14 NM|I Register Field Descriptions

Fields
Read/ | Power-up
Name Bits Description Write State Compliance

There are k+1 processors in the multi-processor Required if

Mask k:0 system under debug. When the mask bit j is set, this R/W 0 MCBU is
forcesa SI_NMI signal to processor j. implemented

Required if

0 63:k+1 Reserved R 0 MCBU is
implemented

0.3.4 Debug Interrupt

The Debug Interrupt register is a 64-bit read/write register that contains a mask used to control which of the processor

cores in the SoC device should receive aEJ DINT request. When Mask]j] is set, the MCDU will forcethe EJ DINT
input of core“j” to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-13 Debug Interrupt Register For mat

63 k+1 k 1 0
| 0 | Mask
Table 8-15 Debug Interrupt Register Field Descriptions
Fields
Read/ | Power-up
Name Bits Description Write State Compliance
There are k+1 processorsin the multi-processor Required if
Mask k:0 system under debug. When the mask bit j is set, this R/W 0 MCBU is
forcesaEJ _DINT signal to processor j. implemented
Required if
0 63:k+1 Reserved R 0 MCBU is
implemented

138 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

0.4 Possible Implementation

The following diagram demonstrates a possible implementation of a circuit that generates EJ DINT to processor “j” in
a system with 9 processors

Figure D-1 An Example Implementation

EJ_Debug, EJ_Debug, EJ_Debugg

Debug_Int_0[j]

Jo

Debug_Int_1[j]

J o

Debug_Int_8[j]

Other
DINT
\ Sources
EJ DI NTJ-
EJTAG Specification, Revision 3.10 139

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

140 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix E

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figuretitles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these
sections indicate alterations since the previous version of the relevant Architecture document.

Table E-1 Revision History

Revision Date Description
25 February 22, 2000 Release to users under NDA
Changesin thisrevision:
« Clarification describing possible speculative fetch from dmseg. See Section
5.2.21 on page 54.
« Clarification of SYNC instruction behavior in Section 5.2.3.7 on page 57.
» Added hazard description on DEBUG[LSNM] and DEBUGI[IEXI] in
Section 5.2.4 on page 58.
* Clarification for Doze and Halt bitsin Debug register, see Section5.8.1 on
page 75.
251 June 6, 2000
* Removed requirement that bytes of TAP Data Register which are not
accessed for a processor access read must be written with Os by the probe.
Thus, now any value may be written to the not accessed bytes.
» Wording change in headline and beginning of Appendix C covering
clarification of changes since previous EJTAG revisions.
» Added cross references for clarification.
 Corrected typos.
* Declassify the document.
Removed old Section 6.2, and added Section 6.4 to discuss multi-core EJTAG,
25-2 August 22, 2000 i.e., MIPS recommended way to connect multiple TAP controllersto one set of
external EJTAG TAP pins.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

141

Appendix E Revision History

Table E-1 Revision History

Revision Date Description

Changesin thisrevision:

» Revision number changed to have format XX.Y'Y, thus the next minor
revision after 2.5-2 is named 02.53.

« Clarification of data triggerpoint handling when exception occur on a
load/store instruction.

« Clarification of value of BY TELANE for hardware breakpoints when
02.53 January 8, 2001 access with unaligned address occurs.

« Elaborated description of fieldsin TAP Device ID register.

» Added recommendation for handling of CacheErr register in Debug Mode.
» Modified description of connecting multiple TAP controllersin daisy chain.
» Updates for clarificationsin general.

 Corrected typos.

Changesin thisrevision:

» Updated the chapter on TAP controller to specify the FASTDATA
instruction.

02.60 February 15, 2001 « Added the instructions needed for the trace control block register access.

» Updated the revision number to 02.60 and made avalue of 2 in the
EJTAGuver field correspond to this version.

Changesin thisrevision:

02.61 September 30, 2002 |, nqjude the EJTAGver field encoding of 2, inadvertently left out of version

2.60.

Changesin thisrevision:

* Remove Appendix D, asthisinformation in not appropriateto a
specification documenting the current state of the EJTAG architecture.

« Clarify the definition of EJTAGBOOT. If this condition is active, the first
instruction fetch after reset isto one of the EJTAG debug addresses, not to
the reset exception vector.

« Clarify the wording describing the BAI field of the Data Breakpoint
Control register.

 Clarify the definition of ADDR for the LUXC1 and SUXCL1 instructions,
when used in the data breakpoint address match equation.

02.62 May 7, 2003

* Clarify the use of the Debugpgyccoge field for SODBBP instructionsin
Debug Mode.

* Add an introduction to EJTAG to the first chapter of the specification.

 Clarify the state of the Halt and Doze bitsin the Debug register if a
hardware interrupt or other event awakens the processor, but a debug
exception is taken instead.

* Makeit clear that it isimplementation dependent whether an SC/SCD,
which would fail because the LLbit is 0, will cause a debug exception due
to a data breakpoint match.

» Update with MIPS32 and M1PS64 Release 2 Architecture changes.

142 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table E-1 Revision History

Revision Date Description
Changesin thisrevision:
* Added PC Sampling feature
» Added support for MIPSMT ASE
3.10 July 5, 2005

» EJTAG version 3 for specification revision 3.10 and up

* Inclusion of apossible proposal for implementing EJTAG support for
multiple processors or a multi-threaded configuration

* Miscellaneous cleanup

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

143

	EJTAG Specification
	Table of Contents
	List of Figures
	List of Tables
	The EJTAG System
	1.1 Introduction to EJTAG
	1.2 Historical Perspective
	1.3 EJTAG Capabilities
	1.3.1 Debug Exception and Debug Mode
	1.3.2 Off-board EJTAG Memory
	1.3.3 Debug Breakpoint Instruction
	1.3.4 Hardware Breakpoints
	1.3.5 Single-Step Execution

	1.4 EJTAG Components and Options
	1.4.1 EJTAG Processor Core Extensions
	1.4.2 EJTAG Test Access Port
	1.4.3 Debug Control Register
	1.4.4 Hardware Breakpoint Unit

	1.5 EJTAG-Specific Coprocessor 0 Registers
	1.6 Memory-Mapped EJTAG Registers
	1.6.1 Debug Control Register
	1.6.2 Instruction Hardware Breakpoint Registers
	1.6.3 Data Hardware Breakpoint Registers

	1.7 Memory-Mapped EJTAG Memory Segment
	1.8 EJTAG Test Access Port Registers
	1.9 The Implications of Multiprocessing and Multithreading for EJTAG
	1.10 Related Documents
	1.11 Notations and Conventions
	1.11.1 Compliance
	1.11.2 UNPREDICTABLE and UNDEFINED Operations
	1.11.2.1 UNPREDICTABLE
	1.11.2.2 UNDEFINED

	1.11.3 Register Field Notations
	1.11.4 Value Notations
	1.11.5 Address Notations

	Debug Control Register
	Hardware Breakpoints
	3.1 Introduction
	3.1.1 Instruction Breakpoint Features
	3.1.2 Data Breakpoint Features

	3.2 Overview of Instruction and Data Breakpoint Registers
	3.2.1 Overview of Instruction Breakpoint Registers
	3.2.2 Overview of Data Breakpoint Registers

	3.3 Conditions for Matching Breakpoints
	3.3.1 Conditions for Matching Instruction Breakpoints
	3.3.2 Conditions for Matching Data Breakpoints
	3.3.2.1 Data Breakpoints in case of Unaligned Address
	3.3.2.2 Match for Data Breakpoint with Value Compare on Bus or Cache Error
	3.3.2.3 Precise Match for Data Breakpoints
	3.3.2.4 Imprecise Match for Data Breakpoints

	3.4 Debug Exceptions from Breakpoints
	3.4.1 Debug Exception Caused by Instruction Breakpoint
	3.4.2 Debug Exception by Data Breakpoint
	3.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception
	3.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

	3.5 Breakpoints Used as Triggerpoints
	3.6 Instruction Breakpoint Registers
	3.6.1 Instruction Breakpoint Status (IBS) Register
	3.6.2 Instruction Breakpoint Address n (IBAn) Register
	3.6.3 Instruction Breakpoint Address Mask n (IBMn) Register
	3.6.4 Instruction Breakpoint ASID n (IBASIDn) Register
	3.6.5 Instruction Breakpoint Control n (IBCn) Register

	3.7 Data Breakpoint Registers
	3.7.1 Data Breakpoint Status (DBS) Register
	3.7.2 Data Breakpoint Address n (DBAn) Register
	3.7.3 Data Breakpoint Address Mask n (DBMn) Register
	3.7.4 Data Breakpoint ASID n (DBASIDn) Register
	3.7.5 Data Breakpoint Control n (DBCn) Register
	3.7.6 Data Breakpoint Value n (DBVn) Register

	3.8 Recommendations for Implementing Hardware Breakpoints
	3.8.1 Number of Instruction Breakpoints Without Single Stepping
	3.8.2 Data Breakpoints with Data Value Compares
	3.8.3 Data Breakpoint Compare on Invalid Data
	3.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

	3.9 Breakpoint Examples
	3.9.1 Instruction Breakpoint Examples
	3.9.1.1 Instruction Break in Small Range of Instructions with ASID
	3.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

	3.9.2 Data Breakpoint
	3.9.2.1 Data Break on Load Access with ASID
	3.9.2.2 Data Break on Store(s) to Halfword in Memory
	3.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

	PC Sampling
	4.1 Introduction
	4.2 Overview of the PC Sampling Feature
	4.2.1 PC Sampling in Wait State
	4.2.2 PC Sampling a MT Processor

	EJTAG Processor Core Extensions
	5.1 Overview
	5.2 Debug Mode Execution
	5.2.1 Debug Mode Instruction Set
	5.2.2 Debug Mode Address Space
	5.2.2.1 Access to dmseg (EJTAG memory) Address Range
	5.2.2.2 Access to drseg (EJTAG Registers) Address Range

	5.2.3 Debug Mode Handling of Processor Resources
	5.2.3.1 Coprocessors
	5.2.3.2 Random Register
	5.2.3.3 Count Register
	5.2.3.4 WatchLo/WatchHi Registers
	5.2.3.5 CacheErr Register
	5.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
	5.2.3.7 SYNC Instruction Behavior

	5.2.4 CP0 and dseg Segment Hazards
	5.2.4.1 Types of Hazards
	5.2.4.2 Hazard Clearing Instructions
	5.2.4.3 Instruction Encoding

	5.3 Debug Exceptions
	5.3.1 Debug Exception Priorities
	5.3.2 Debug Exception Vector Location
	5.3.3 General Debug Exception Processing
	5.3.4 Debug Breakpoint Exception
	5.3.5 Debug Instruction Break Exception
	5.3.6 Debug Data Break Load/Store Exception
	5.3.7 Debug Data Break Load/Store Imprecise Exception
	5.3.8 Debug Single Step Exception
	5.3.9 Debug Interrupt Exception

	5.4 Debug Mode Exceptions
	5.4.1 Exceptions Taken in Debug Mode
	5.4.2 Exceptions on Imprecise Errors
	5.4.3 Debug Mode Exception Processing

	5.5 Interrupts and NMIs
	5.5.1 Interrupts
	5.5.2 NMIs

	5.6 Reset and Soft Reset of Processor
	5.6.1 EJTAGBOOT Feature
	5.6.2 Reset from Probe
	5.6.3 Processor Reset by Probe through Test Access Port
	5.6.4 Reset Occurred Indication through Test Access Port
	5.6.5 Soft Reset Enable
	5.6.6 Reset of Other Debug Features

	5.7 EJTAG Instructions
	5.7.1 DERET Instruction

	5.8 EJTAG Coprocessor 0 Registers
	5.8.1 Debug Register (CP0 Register 23, Select 0)
	5.8.2 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	5.8.3 Debug Exception Save Register (CP0 Register 31, Select 0)

	EJTAG Test Access Port
	6.1 TAP Overview
	6.2 TAP Signals
	6.2.1 Test Clock Input (TCK)
	6.2.2 Test Mode Select Input (TMS)
	6.2.3 Test Data Input (TDI)
	6.2.4 Test Data Output (TDO)
	6.2.5 Test Reset Input (TRST*)

	6.3 TAP Controller
	6.3.1 Test-Logic-Reset State
	6.3.2 Capture-IR State
	6.3.3 Shift-IR State
	6.3.4 Update-IR State
	6.3.5 Capture-DR State
	6.3.6 Shift-DR State
	6.3.7 Update-DR State

	6.4 Instruction Register and Special Instructions
	6.4.1 ALL Instruction
	6.4.2 EJTAGBOOT and NORMALBOOT Instructions
	6.4.3 FASTDATA Instruction

	6.5 TAP Data Registers
	6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)
	6.5.2 Implementation Register (TAP Instruction IMPCODE)
	6.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)
	6.5.4 Address Register (TAP Instruction ADDRESS or ALL)
	6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	6.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
	6.5.5.2 Combinations of ProbTrap and ProbEn

	6.5.6 Fastdata Register (TAP Instruction FASTDATA)
	6.5.7 PCsample Register (PCSAMPLE Instruction)
	6.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

	6.6 Examples of Use
	6.6.1 TAP Operation
	6.6.2 ManufID Value
	6.6.3 Rocc Bit Usage
	6.6.4 EJTAG Memory Access Through Processor Access
	6.6.4.1 Write Processor Access
	6.6.4.2 Read Processor Access

	On-Chip Interfaces
	7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals
	7.2 Optional TRST* Pin
	7.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins
	7.4 Connecting Multi-Core Test Access Port (TAP) Controllers

	Off-Chip and Probe Interfaces
	8.1 Logical Signals
	8.1.1 Test Access Port Signals
	8.1.2 Debug Interrupt Signal
	8.1.3 System Reset Signal
	8.1.4 Voltage Sense for I/O Signal

	8.2 AC Timing Characteristics
	8.2.1 Test Access Port Timing
	8.2.2 Debug Interrupt Timing
	8.2.3 System Reset Timing
	8.2.4 Voltage Sense for I/O (VIO) Timing

	8.3 DC Electrical Characteristics
	8.4 Mechanical Connector
	8.5 Target System PCB Design
	8.5.1 Electrical Connection
	8.5.2 Layout Considerations

	8.6 Probe Requirements and Recommendations
	8.6.1 Target System Power-Up with Probe Attached
	8.6.2 Hot Plug in of Probe
	8.6.3 TDO Level when 3-Stated
	8.6.4 RST* Drive by Open Collector
	8.6.5 Changing TMS and TDI
	8.6.6 Mechanical Connector

	Differences for R3k Privileged Environments
	A.1 EJTAG Processor Core Extensions
	A.1.1 SYNC Instruction
	A.1.2 Debug Exception Vector Location
	A.1.3 SYNC Instruction Substitute
	A.1.4 CP0 Register Numbers for Debug and DEPC Registers

	A.2 Hardware Breakpoints
	A.2.1 Instruction Breakpoint Registers
	A.2.2 Conditions for Matching Instruction Breakpoints
	A.2.3 ASID Field in IBCn Register
	A.2.4 Data Breakpoint Registers
	A.2.5 Conditions for Matching Data Breakpoints
	A.2.6 ASID Field in DBCn Register

	A.3 EJTAG Test Access Port

	Terminology
	Functional Clarifications from Old EJTAG 2.5
	Multithreaded and Multi-Core Debug
	D.0.1 Debug_Int_i

	Revision History

