
Document Number: MD00047
Revision 3.10
July 5, 2005

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

EJTAG Specification

Copyright © 2000-2005 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies
or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of this information, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related
documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 25Kf, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CoreLV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Template: B1.14, Built with tags: 2B

EJTAG Specification, Revision 3.10 i

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 The EJTAG System ..1
1.1 Introduction to EJTAG ..1
1.2 Historical Perspective ...1
1.3 EJTAG Capabilities ..4

1.3.1 Debug Exception and Debug Mode ..4
1.3.2 Off-board EJTAG Memory ...5
1.3.3 Debug Breakpoint Instruction ...5
1.3.4 Hardware Breakpoints ..5
1.3.5 Single-Step Execution ...5

1.4 EJTAG Components and Options ...6
1.4.1 EJTAG Processor Core Extensions ..6
1.4.2 EJTAG Test Access Port ..7
1.4.3 Debug Control Register ..7
1.4.4 Hardware Breakpoint Unit ..7

1.5 EJTAG-Specific Coprocessor 0 Registers ..7
1.6 Memory-Mapped EJTAG Registers ...8

1.6.1 Debug Control Register ..8
1.6.2 Instruction Hardware Breakpoint Registers ..8
1.6.3 Data Hardware Breakpoint Registers ..9

1.7 Memory-Mapped EJTAG Memory Segment ...9
1.8 EJTAG Test Access Port Registers ...10
1.9 The Implications of Multiprocessing and Multithreading for EJTAG ...10
1.10 Related Documents ...11
1.11 Notations and Conventions ...11

1.11.1 Compliance ...11
1.11.2 UNPREDICTABLE and UNDEFINED Operations ..12
1.11.3 Register Field Notations ...13
1.11.4 Value Notations ..13
1.11.5 Address Notations ...13

Chapter 2 Debug Control Register ..15

Chapter 3 Hardware Breakpoints ..19
3.1 Introduction ...19

3.1.1 Instruction Breakpoint Features ..20
3.1.2 Data Breakpoint Features ..20

3.2 Overview of Instruction and Data Breakpoint Registers ..20
3.2.1 Overview of Instruction Breakpoint Registers ...21
3.2.2 Overview of Data Breakpoint Registers ...21

3.3 Conditions for Matching Breakpoints ...22
3.3.1 Conditions for Matching Instruction Breakpoints ..22
3.3.2 Conditions for Matching Data Breakpoints ..24

3.4 Debug Exceptions from Breakpoints ..28
3.4.1 Debug Exception Caused by Instruction Breakpoint ..28
3.4.2 Debug Exception by Data Breakpoint ..29

3.5 Breakpoints Used as Triggerpoints ...31
3.6 Instruction Breakpoint Registers ...31

3.6.1 Instruction Breakpoint Status (IBS) Register ...32
3.6.2 Instruction Breakpoint Address n (IBAn) Register ..33
3.6.3 Instruction Breakpoint Address Mask n (IBMn) Register ..34
3.6.4 Instruction Breakpoint ASID n (IBASIDn) Register ..34

ii EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.6.5 Instruction Breakpoint Control n (IBCn) Register ..35
3.7 Data Breakpoint Registers ..37

3.7.1 Data Breakpoint Status (DBS) Register ..37
3.7.2 Data Breakpoint Address n (DBAn) Register ...39
3.7.3 Data Breakpoint Address Mask n (DBMn) Register ..39
3.7.4 Data Breakpoint ASID n (DBASIDn) Register ..40
3.7.5 Data Breakpoint Control n (DBCn) Register ..41
3.7.6 Data Breakpoint Value n (DBVn) Register ..43

3.8 Recommendations for Implementing Hardware Breakpoints ...44
3.8.1 Number of Instruction Breakpoints Without Single Stepping ..44
3.8.2 Data Breakpoints with Data Value Compares ..44
3.8.3 Data Breakpoint Compare on Invalid Data ...44
3.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares45

3.9 Breakpoint Examples ..45
3.9.1 Instruction Breakpoint Examples ..45
3.9.2 Data Breakpoint ..46

Chapter 4 PC Sampling ...49
4.1 Introduction ...49
4.2 Overview of the PC Sampling Feature ...49

4.2.1 PC Sampling in Wait State ...50
4.2.2 PC Sampling a MT Processor ...50

Chapter 5 EJTAG Processor Core Extensions ..51
5.1 Overview ...51
5.2 Debug Mode Execution ..51

5.2.1 Debug Mode Instruction Set ...52
5.2.2 Debug Mode Address Space ...52
5.2.3 Debug Mode Handling of Processor Resources ...56
5.2.4 CP0 and dseg Segment Hazards ...58

5.3 Debug Exceptions ...60
5.3.1 Debug Exception Priorities ...60
5.3.2 Debug Exception Vector Location ..61
5.3.3 General Debug Exception Processing ...61
5.3.4 Debug Breakpoint Exception ..62
5.3.5 Debug Instruction Break Exception ..63
5.3.6 Debug Data Break Load/Store Exception ...63
5.3.7 Debug Data Break Load/Store Imprecise Exception ..63
5.3.8 Debug Single Step Exception ...64
5.3.9 Debug Interrupt Exception ..67

5.4 Debug Mode Exceptions ...68
5.4.1 Exceptions Taken in Debug Mode ..68
5.4.2 Exceptions on Imprecise Errors ..69
5.4.3 Debug Mode Exception Processing ..69

5.5 Interrupts and NMIs ..70
5.5.1 Interrupts ...70
5.5.2 NMIs ...71

5.6 Reset and Soft Reset of Processor ...71
5.6.1 EJTAGBOOT Feature ..71
5.6.2 Reset from Probe ...71
5.6.3 Processor Reset by Probe through Test Access Port ..71
5.6.4 Reset Occurred Indication through Test Access Port ...72
5.6.5 Soft Reset Enable ..72
5.6.6 Reset of Other Debug Features ...72

5.7 EJTAG Instructions ...72
5.7.1 DERET Instruction ...74

EJTAG Specification, Revision 3.10 iii

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers ...75
5.8.1 Debug Register (CP0 Register 23, Select 0) ...75
5.8.2 Debug Exception Program Counter Register (CP0 Register 24, Select 0) ...83
5.8.3 Debug Exception Save Register (CP0 Register 31, Select 0) ...83

Chapter 6 EJTAG Test Access Port ..85
6.1 TAP Overview ..85
6.2 TAP Signals ..86

6.2.1 Test Clock Input (TCK) ..86
6.2.2 Test Mode Select Input (TMS) ...86
6.2.3 Test Data Input (TDI) ...87
6.2.4 Test Data Output (TDO) ...87
6.2.5 Test Reset Input (TRST*) ...87

6.3 TAP Controller ..87
6.3.1 Test-Logic-Reset State ..88
6.3.2 Capture-IR State ..88
6.3.3 Shift-IR State ..88
6.3.4 Update-IR State ...89
6.3.5 Capture-DR State ..89
6.3.6 Shift-DR State ...89
6.3.7 Update-DR State ...89

6.4 Instruction Register and Special Instructions ..89
6.4.1 ALL Instruction ..91
6.4.2 EJTAGBOOT and NORMALBOOT Instructions ..91
6.4.3 FASTDATA Instruction ...91

6.5 TAP Data Registers ...92
6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE) ...93
6.5.2 Implementation Register (TAP Instruction IMPCODE) ..94
6.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA) ..96
6.5.4 Address Register (TAP Instruction ADDRESS or ALL) ...99
6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL) ...99
6.5.6 Fastdata Register (TAP Instruction FASTDATA) ...105
6.5.7 PCsample Register (PCSAMPLE Instruction) ...106
6.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)107

6.6 Examples of Use ...107
6.6.1 TAP Operation ..108
6.6.2 ManufID Value ...108
6.6.3 Rocc Bit Usage ...108
6.6.4 EJTAG Memory Access Through Processor Access ..109

Chapter 7 On-Chip Interfaces ...113
7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals ..113
7.2 Optional TRST* Pin ..113
7.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins ..113
7.4 Connecting Multi-Core Test Access Port (TAP) Controllers ...114

Chapter 8 Off-Chip and Probe Interfaces ..115
8.1 Logical Signals ..115

8.1.1 Test Access Port Signals ...116
8.1.2 Debug Interrupt Signal ..117
8.1.3 System Reset Signal ..117
8.1.4 Voltage Sense for I/O Signal ..117

8.2 AC Timing Characteristics ..118
8.2.1 Test Access Port Timing ...118
8.2.2 Debug Interrupt Timing ..119
8.2.3 System Reset Timing ..120

iv EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.2.4 Voltage Sense for I/O (VIO) Timing ..120
8.3 DC Electrical Characteristics ..121
8.4 Mechanical Connector ..122
8.5 Target System PCB Design ...122

8.5.1 Electrical Connection ..123
8.5.2 Layout Considerations ..124

8.6 Probe Requirements and Recommendations ...124
8.6.1 Target System Power-Up with Probe Attached ..124
8.6.2 Hot Plug in of Probe ...125
8.6.3 TDO Level when 3-Stated ..125
8.6.4 RST* Drive by Open Collector ...125
8.6.5 Changing TMS and TDI ...125
8.6.6 Mechanical Connector ..125

Appendix A Differences for R3k Privileged Environments ...127
A.1 EJTAG Processor Core Extensions ...127

A.1.1 SYNC Instruction ..127
A.1.2 Debug Exception Vector Location ..127
A.1.3 SYNC Instruction Substitute ...127
A.1.4 CP0 Register Numbers for Debug and DEPC Registers ...127

A.2 Hardware Breakpoints ...128
A.2.1 Instruction Breakpoint Registers ...128
A.2.2 Conditions for Matching Instruction Breakpoints ..128
A.2.3 ASID Field in IBCn Register ..128
A.2.4 Data Breakpoint Registers ..128
A.2.5 Conditions for Matching Data Breakpoints ..129
A.2.6 ASID Field in DBCn Register ..129

A.3 EJTAG Test Access Port ...129

Appendix B Terminology ..131

Appendix C Functional Clarifications from Old EJTAG 2.5 ..133

Appendix D Multithreaded and Multi-Core Debug ..135
D.0.1 Debug_Int_i ..136

Appendix E Revision History ...141

EJTAG Specification, Revision 3.10 v

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1-1: Setup of Debug System without EJTAG...2
Figure 1-2: Setup of Debug System with EJTAG ..3
Figure 1-3: Test Access Port (TAP) to internal connections..3
Figure 1-4: Simplified Block Diagram of EJTAG Components ..6
Figure 2-1: DCR Register Format ..16
Figure 3-1: Instruction Breakpoint Overview ..20
Figure 3-2: Data Breakpoint Overview ..20
Figure 3-3: IBS Register Format ..32
Figure 3-4: IBAn Register Format ...33
Figure 3-5: IBMn Register Format...34
Figure 3-6: IBASIDn Register Format ...35
Figure 3-7: IBCn Register Format..35
Figure 3-8: DBS Register Format...37
Figure 3-9: DBAn Register Format ..39
Figure 3-10: DBMn Register Format ...40
Figure 3-11: DBASIDn Register Format ...40
Figure 3-12: DBCn Register Format ..41
Figure 3-13: DBVn Register Format ..44
Figure 3-14: Data Break on Store with Value Compare ..47
Figure 3-15: Data Break on Store with Value Compare ..47
Figure 4-1: TAP Register PCsample Format..49
Figure 5-1: Virtual Address Spaces with Debug Mode Segments ...53
Figure 5-2: Example 1: Single-stepping one thread TC0 with non-single-stepping thread TC1.......................................66
Figure 5-3: Example 2: Single-stepping two threads TC0 and TC1 ..66
Figure 5-4: Example 3: Single-stepping two threads TC0 and TC1 with other threads TC2 and TC366
Figure 5-5: Debug Register Format..76
Figure 5-6: DEPC Register Format ..83
Figure 5-7: DESAVE Register Format ..83
Figure 6-1: Test Access Port (TAP) Overview ..86
Figure 6-2: TAP Controller State Diagram ..88
Figure 6-3: TDI to TDO Path when in Shift-IR State ..89
Figure 6-4: TDI to TDO Path for Selected Data Register(s) when in Shift-DR State ...89
Figure 6-5: TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected...91
Figure 6-6: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected91
Figure 6-7: Device ID Register Format ...93
Figure 6-8: Implementation Register Format ..94
Figure 6-9: Data Register Format ..96
Figure 6-10: Address Register Format ..99
Figure 6-11: EJTAG Control Register Format ..100
Figure 6-12: Fastdata Register Format ...105
Figure 6-13: PCsample Register Format ...107
Figure 6-14: Bypass Register Format...107
Figure 6-15: TAP Operation Example ...108
Figure 6-16: Write Processor Access Example ..110
Figure 6-17: Read Processor Access Example ...111
Figure 7-1: Daisy-chaining of multi-core EJTAG TAP controllers ...114
Figure 8-1: Signal Flow between Chip, Target System PCB, and Probe...116
Figure 8-2: Test Access Port Signals Timing...118
Figure 8-3: Debug Interrupt Signal Timing..119
Figure 8-4: System Reset Signal Timing..120

vi EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Figure 8-5: Voltage Sense for I/O Signal Timing ..120
Figure 8-6: EJTAG Connector Mechanical Dimensions..122
Figure 8-7: Target System Electrical EJTAG Connection ...123
Figure 8-8: Target System Layout for EJTAG Connection ...124
Figure 8-9: Debug_Int_i Register Format ...136
Figure 8-10: Reset Register Format ..137
Figure 8-11: Cold Reset Register Format ..137
Figure 8-12: NMI Register Format ..138
Figure 8-13: Debug Interrupt Register Format ..138
Figure D-1: An Example Implementation ..139

EJTAG Specification, Revision 3.10 vii

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: EJTAG TAP Instructions ..3
Table 1-2: Overview of Coprocessor 0 Registers for EJTAG..8
Table 1-3: Overview of Debug Control Register as Memory-Mapped Register for EJTAG...8
Table 1-4: Overview of Instruction Hardware Breakpoint Registers...8
Table 1-5: Overview of Data Hardware Breakpoint Registers...9
Table 1-6: Overview of Test Access Port Registers...10
Table 1-7: Register Field Notations ...13
Table 2-1: DCR Register Field Descriptions..16
Table 3-1: Instruction Breakpoint Register Summary..21
Table 3-2: Data Breakpoint Register Summary ...21
Table 3-3: Instruction Breakpoint Condition Parameters...22
Table 3-4: Data Breakpoint Condition Parameters ..24
Table 3-5: BYTELANE at Unaligned Address for 32-bit Processors ...27
Table 3-6: BYTELANE at Unaligned Address for 64-bit Processors ...27
Table 3-7: Behavior on Precise Exceptions from Data Breakpoints ..29
Table 3-8: Rules for Update of BS Bits on Precise Exceptions from Data Breakpoints..29
Table 3-9: Rules for Update of BS Bits on Data Triggerpoints ...31
Table 3-10: Instruction Breakpoint Register Mapping...32
Table 3-11: IBS Register Field Descriptions..32
Table 3-12: IBAn Register Field Descriptions ...34
Table 3-13: IBMn Register Field Descriptions ..34
Table 3-14: IBASIDn Register Field Descriptions ..35
Table 3-15: IBCn Register Field Descriptions ...36
Table 3-16: Data Breakpoint Register Mapping ..37
Table 3-17: DBS Register Field Descriptions ..38
Table 3-18: DBAn Register Field Descriptions ...39
Table 3-19: DBMn Register Field Descriptions...40
Table 3-20: DBASIDn Register Field Descriptions ...41
Table 3-21: DBCn Register Field Descriptions..42
Table 3-22: DBVn Register Field Descriptions ...44
Table 5-1: Presence of the dseg Segment...53
Table 5-2: Physical Address and Cache Attribute for dseg, dmseg and drseg...54
Table 5-3: Access to dmseg Segment Address Range ...54
Table 5-4: Access to drseg Segment Address Range ...55
Table 5-5: SYNC Instruction References...57
Table 5-6: Execution Hazards ..58
Table 5-7: Hazard Clearing Instructions ..59
Table 5-8: Priority of Non-Debug and Debug Exceptions ...60
Table 5-9: Debug Exception Vector Location..61
Table 5-10: Exception Handling in Debug Mode ..68
Table 5-11: Coprocessor 0 Registers for EJTAG...75
Table 5-12: Debug Register Field Descriptions ...76
Table 5-13: DEPC Register Field Description ...83
Table 5-14: DESAVE Register Field Descriptions ..84
Table 6-1: TAP Instruction Overview..90
Table 6-2: EJTAG TAP Data Registers ...92
Table 6-3: Device ID Register Field Descriptions ...93
Table 6-4: Implementation Register Field Descriptions ..95
Table 6-5: Data Register Field Descriptions ..96
Table 6-6: Data Register Contents for 32-bit Processors ...97

viii EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table 6-7: Data Register Contents for 64-bit Processors ...98
Table 6-8: Address Register Field Descriptions...99
Table 6-9: EJTAG Control Register Field Descriptions ..100
Table 6-10: Combinations of ProbTrap and ProbEn..105
Table 6-11: Fastdata Register Field Description ..105
Table 6-12: Operation of the FASTDATA access ...106
Table 6-13: PCsample Register Field Descriptions..107
Table 6-14: Bypass Register Field Description..107
Table 6-15: ManufID Field Value Examples ...108
Table 6-16: Information Provided to Probe at Processor Access...109
Table 8-1: Test Access Port Signals Overview ..116
Table 8-2: Debug Interrupt Signal Overview...117
Table 8-3: System Reset Signal Overview...117
Table 8-4: Voltage Sense for I/O Signal Overview..117
Table 8-5: Test Access Port Signals Timing Values ..118
Table 8-6: Debug Interrupt Signal Timing Values...119
Table 8-7: System Reset Signal Timing Value ..120
Table 8-8: Voltage Sense for I/O Signal Timing Value ...120
Table 8-9: DC Electrical Characteristics ..121
Table 8-10: EJTAG Connector Pinout ...122
Table A-1: Debug Exception Vector Location for R3k Privileged Environment Processors ..127
Table A-2: Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors...........................128
Table A-3: ASID Field in IBCn Register ...128
Table A-4: Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors128
Table A-5: ASID Field in DBCn Register ...129
Table D-1: sMCBU Register Memory Map...135
Table D-2: MCBU Debug_Int Register Memory Map ..135
Table 8-11: Debug_Int_i Register Field Descriptions..136
Table 8-12: Reset Register Field Descriptions ...137
Table 8-13: Cold Reset Register Field Descriptions ..137
Table 8-14: NMI Register Field Descriptions ..138
Table 8-15: Debug Interrupt Register Field Descriptions ..138
Table E-1: Revision History ...141

EJTAG Specification, Revision 3.10 1

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

The EJTAG System

This specification describes the behavior and organization of on-chip EJTAG hardware resources as seen by software
and by external agents. Software and firmware components of an EJTAG-based debugging environment are outside the
scope of this document, as is the underlying physical implementation of EJTAG features.

This chapter contains the following sections:

• Section 1.1, "Introduction to EJTAG"

• Section 1.2, "Historical Perspective"

• Section 1.3, "EJTAG Capabilities"

• Section 1.4, "EJTAG Components and Options"

• Section 1.5, "EJTAG-Specific Coprocessor 0 Registers"

• Section 1.6, "Memory-Mapped EJTAG Registers"

• Section 1.7, "Memory-Mapped EJTAG Memory Segment"

• Section 1.8, "EJTAG Test Access Port Registers"

• Section 1.9, "The Implications of Multiprocessing and Multithreading for EJTAG"

• Section 1.10, "Related Documents"

• Section 1.11, "Notations and Conventions"

Comments or questions on the EJTAG Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

1.1 Introduction to EJTAG

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance tuning capabilities
to MIPS® microprocessors and to system-on-a-chip components having MIPS processor cores. It exploits the
infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external interface, and
extends the MIPS instruction set and privileged resource architectures to provide a standard software architecture for
integrated system debugging.

1.2 Historical Perspective

Emulating and debugging embedded hardware and software in a real-world environment remains one of the most
difficult tasks facing designers of embedded systems today. Embedded microprocessor cores are growing more complex,
have increasingly higher performance, and use larger software programs than ever before. To meet the challenge,

2 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

embedded systems engineers and programmers must have advanced tools to perform the required levels of in-circuit
emulation and debugging.

The MIPS architecture has historically provided a set of primitives for debugging software and systems that is consistent
with the “RISC” philosophy of integrated hardware/software architecture, providing functionality at a minimum cost in
silicon. The base philosophy of integrated MIPS32®/MIPS64® Instruction Set Architecture (ISA) and MIPS16e™
Application Specific Extension (ASE), includes:

• A breakpoint instruction, BREAK, whose execution causes a specific exception.

• A set of trap instructions, whose execution causes a specific exception when certain register value criteria are
satisfied.

• A pair of optional Watch registers that can be programmed to cause a specific exception on a load, store, or
instruction fetch access to a specific 64-bit doubleword in virtual memory.

• An optional TLB-based MMU that can be programmed to trap on any access, or more specifically, on any store to a
page of memory.

All of these mechanisms assume software support in the form of an operating system, or at least a software monitor, that
can modify program memory to insert breakpoints, manipulate the system coprocessor to set watchpoints and change
virtual memory page protection, handle the exceptions produced, and communicate with a user. Additional external
hardware tools can supplement these basic mechanisms, such as logic analyzers and in-circuit emulators (ICEs) for
additional control and information about program execution. Figure 1-1 shows a possible setup for the debug of an
embedded system.

Figure 1-1 Setup of Debug System without EJTAG

While this model of debug works well for many sorts of system, it has the following shortcomings when the system to
be debugged is a highly-integrated design:

• System-On-a-Chip (SOC) component design no longer provides an external interface to the processor pin-out or
system bus, making the use of logic analyzers and ICEs difficult to impossible.

• Debugging based on software breakpoints or the insertion of trap-on-condition instructions assumes that programs
reside in RAM. It is impractical for fully ROM-based systems and assumes support in the O/S for these techniques.

• For consumer electronic applications, a communication port like Ethernet or RS-232 serves no purpose beyond
software debug and adds disproportionately to the cost and size of the design.

• Similarly, the ROM necessary to support a debug software monitor on a consumer electronic application could add
unacceptable costs.

One alternative to ICE is a specially-packaged device that is a bond-out of the chip. But this solution has the
disadvantage of adding to overall product development cost. It also adds the extra requirement of a specially-designed
PCB that is needed to access the signals available only on the development chip.

Debug Host

Logic
Analyzer CPU

Peripheral
I/O Device

Debugger
ROM

Program
RAM or
FLASH

System PrototypeCPU Pinout or
System Bus

RS-232 or
Ethernet

> set break at 0x3
> resume

running....

1.2 Historical Perspective

EJTAG Specification, Revision 3.10 3

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

On-Chip Debug (OCD) provides a solution for all these issues, and the EJTAG Debug Solution defines an advanced and
scalable feature-set for OCD that allows debugging while executing CPU code at full speed.

One could say that OCD puts the ICE functionality on the chip. Although OCD does add a little extra die area for features
that are only required during development, the die area is minimal. More importantly, with development time and overall
time-to-market becoming increasingly critical, the trade-off between die area and time seems reasonable.

Having the debug solution on-chip also makes it possible to use it for software upgrades, and field testing, and for
diagnostics in the final product.

EJTAG supplements the MIPS Architecture in dealing with these problems. A processor or system-on-a-chip
implementing EJTAG can be tied into a JTAG scan chain and comprehensively debugged using an external EJTAG
probe connected to the system’s JTAG TAP interface, as shown in Figure 1-2.

Figure 1-2 Setup of Debug System with EJTAG

EJTAG uses the five-pin interface defined in IEEE 1149.1 JTAG, which forms the Test Access Port (TAP). The five
pins (TRST, TCK, TMS, TDI, and TDO) can be reused to limit pin count if the TAP is on-chip for some other purpose.

Figure 1-3 Test Access Port (TAP) to internal connections.

This EJTAG interface through the TAP is a serial communications channel with frequencies up to 40 MHz on TCK. The
TAP Controller uses the TMS pin, which determines if instruction or data registers should be accessed in the shift path
between TDI and TDO. The TRST signal is used for reset of the TAP.

A number of TAP instructions are defined in EJTAG that allow access to corresponding EJTAG registers, as listed in
Table 1-1.

Table 1-1 EJTAG TAP Instructions

EJTAG Instructions Description of register usage

IDCODE Device Identification Register with manufacturer, part number, and version
ID for the specific chip.

IMPCODE Implementation Register indicating implemented EJTAG features in this
specific chip.

ADDRESS EJTAG Address Register used to access the on-chip address bus.

> set break at 0x3
> resume

running....

TAP access

Debug host
EJTAG probe

Ethernet
RS-232

etc.
JTAG TAP
interface

CPU
with
EJTAG

SOC ASIC/ASSP

Other
System
Logic

System Prototype

JTAG scan
chain

TAP Controller

Instruction, data &
control registers

TRST
TMS

TCK

TDO

TDI

TAP
PORT

4 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

The size of the EJTAG Address and Data Registers depends on the specific implementation, but usually they are at least
32 bits. The size of the Device ID, Implementation, and EJTAG Control Registers is 32 bits; these registers allow the
user to do debug setup and provide important status information during the debug session. For exact descriptions and
size of these registers see Section 6.4 “Instruction Register and Special Instructions” on page 89.

1.3 EJTAG Capabilities

1.3.1 Debug Exception and Debug Mode

To allow inspection of the CPU state at any time in the execution flow, a debug exception with priority over all other
exceptions is introduced.

When a debug exception occurs, the CPU goes into Debug Mode, a special mode with no restrictions on access to
coprocessors, memory areas, etc., and where usual exceptions like address error and interrupt are masked.

The debug exception handler is executed in Debug Mode and provided by the debug system. It can be executed from the
probe through a processor access, or may also reside in the application code if the developer chooses to use a debug task
in the application.

An overall requirement is that debugging be non-intrusive to the application so execution of the application can be
continued after the needed debug operations. However, loss of real-time operation is inevitable when the debug
exception handler is executed. The system designer may chose to indicate debug mode by a signal to certain hardware
modules to freeze them when executing the debug exception handler.

EJTAG provides a standard debug I/O interface, enabling the use of traditional MIPS debug facilities on
system-on-a-chip components. In addition, EJTAG provides the following new capabilities for software and system
debug.

DATA EJTAG Data Register used to access the on-chip data bus.

CONTROL EJTAG Control Register used for setup and status information.

ALL Access to EJTAG Address, Data and Control registers in one chain.

EJTAGBOOT Causes processor reset followed by a debug exception.

NORMALBOOT Causes processor reset followed by execution of the reset handler.

FASTDATA Access to the Data and FastData registers.

TCBCONTROLA Access to the control register TCBControlA in the Trace Control Block
(TCB).

TCBCONTROLB Access to the other control register TCBControlB in the TCB.

TCBDATA Provides access to the registers specified by the TCBCONTROLBREG field.

TCBCONTROLC Access to the another control register TCBControlC in the TCB.

PCSAMPLE Access the PCsample register.

BYPASS One-bit register with no operation.

Table 1-1 EJTAG TAP Instructions

EJTAG Instructions Description of register usage

1.3 EJTAG Capabilities

EJTAG Specification, Revision 3.10 5

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.3.2 Off-board EJTAG Memory

EJTAG allows a MIPS processor in Debug Mode to reference instructions or data that are not resident on the system
under test. This EJTAG memory is mapped to the processor as if it were virtual memory in the kseg3 segment, and
references to it are converted into transactions on the TAP interface. Both instructions and data can be accessed in
EJTAG memory, which allows debugging of systems without requiring the presence of a ROM monitor or debugger
scratchpad RAM. It also provides a communications channel between debug software executing on the processor and
an external debugging agent.

The EJTAG probe polls the EJTAG Control Register through the TAP, and a bit in this register indicates when a
processor access is pending. The physical address of the transaction is then available in the EJTAG Address Register,
and the transaction size and read/write indication are available in the EJTAG Control Register. The EJTAG Data
Register is then accessed either to get data from a write or to provide data for a read. Finally the EJTAG Control Register
is updated to indicate that the processor access is done.

Going through this sequence requires on order of 200 TCK periods for access to 32-bit address and data registers. With
a 40 MHz TCK, the access time is in the range of 5 µs, resulting in a bandwidth in the range of 800 KB/s for instruction
or data transfers. However, the servicing may be optimized for instruction stuffing since the address depends on the
provided instructions and could thus be predicted to some extent. In addition, the FASTDATA feature of the TAP
controller permits fast download or upload of data between target memory and debug memory.

1.3.3 Debug Breakpoint Instruction

EJTAG introduces a new breakpoint instruction, SDBBP, which differs from the MIPS32 and MIPS64 BREAK
instruction in that the resulting exception, like the single-step and hardware breakpoint debug exceptions described
below, places the processor in Debug Mode and can fetch its associated handler code from EJTAG memory.

1.3.4 Hardware Breakpoints

EJTAG defines various types of hardware breakpoints for interrupting the CPU at certain transactions on the CPU buses.
The debug exception happens before the bus transaction causing the exception alters any memory or CPU state, e.g., a
fetched instruction with a break is not executed, or a data load/store transaction is not allowed to change the register file
or the memory.

Hardware breaks on instructions have the advantage over software debug breaks in that it is possible to set them in any
address area. Furthermore, if memory cannot be altered by inserting SDBBP codes, the hardware breaks can still be used.
Hardware data breakpoints allow breaks on load/store operations.

EJTAG implements two kinds of breaks:

• Instruction breaks, in which a break may be set on an instruction fetch from a specific virtual address

• Data breaks, in which a break may be set on a load/store reference from a specific virtual address, which additionally
can be qualified by a data value.

There may be up to 15 break channels of each type implemented, and each break channel may be programmed with
address, address mask, ASID, and reference type.

1.3.5 Single-Step Execution

EJTAG provides support for single-step execution of programs and operating systems, without requiring that the code
reside in RAM.

6 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

1.4 EJTAG Components and Options

EJTAG hardware support consists of several distinct components: extensions to the MIPS processor core, the EJTAG
Test Access Port, the Debug Control Register, and the Hardware Breakpoint Unit. Figure 1-4 shows the relationship
between these components in an EJTAG implementation. Some components and features are optional, and are
implemented based on the needs of an implementation.

Figure 1-4 Simplified Block Diagram of EJTAG Components

1.4.1 EJTAG Processor Core Extensions

A MIPS processor or core supporting EJTAG must support EJTAG-specific instructions, additional system coprocessor
(CP0) registers and vectoring to Debug Exceptions, which puts the processor in a special Debug Mode of execution, as
described in Chapter 5 on page 51.

EJTAG processor core extensions are required in any EJTAG implementation, with the following
implementation-dependent options:

• The single-step execution feature is optional. The presence or absence of single step execution capability is indicated
to debug software via the CP0 Debug register.

• The debug interrupt request from the TAP via the DINT probe signal or through an implementation-dependent
internal signal is optional.

• The Test Access Port (TAP) is optional.

• The Hardware Breakpoint Unit (HBU) is optional.

• The Debug Control Register (DCR) is optional. Note that it is required if either the TAP or the HBU is implemented.

• The PC Sampling feature of EJTAG is optional.

Processor

MMU

Cache
Controller

Hardware
Breakpoint

(TLB)
Bus Interface

Debug Control
Interrupt and NMI

PC
ADDR

Debug
exception

control etc.

ASID
TYPE
BYTELANE
DATA

EJTAG
TAP TAP

Memory

DINT

System
Interface

dmseg

Probe enable indication

Debug exception control, debug interrupt request etc.

Debug interrupt request

Unit (BIU)

and
Coprocessor 0

Register (DCR)

Non-EJTAG features Required EJTAG features Optional EJTAG features

Unit

access
bus

drseg
access
bus

1.5 EJTAG-Specific Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 7

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.4.2 EJTAG Test Access Port

The EJTAG Test Access Port (TAP) provides a standard TAP interface to the EJTAG system. It is necessary for all
TAP-based EJTAG capabilities for host-based debugging and processor access to external debug memory.

The TAP is optional. Implementation without a TAP implicitly disallows the EJTAG memory and TAP system access
capabilities, but provides the remaining EJTAG services (Debug Mode, single-step, software and hardware breakpoints)
while executing from RAM or ROM. Refer to Chapter 6 on page 85 for more information on the TAP.

Implementation without a TAP also disallows the PC Sampling feature.

The presence or absence of off-board EJTAG memory is indicated to debug software via the Debug Control Register.

1.4.3 Debug Control Register

The Debug Control Register (DCR) is a memory-mapped register that can be implemented as part of either the processor
core or an external logic block. It indicates the availability and status of EJTAG features. The memory-mapped region
containing the DCR is available to software only in Debug Mode.

Implementation of the DCR is optional, but the DCR must be implemented if either the EJTAG TAP or EJTAG hardware
breakpoints are implemented. The presence or absence of the DCR is indicated in the CP0 Debug register. Refer to
Chapter 2 on page 15 for more information on the DCR.

1.4.4 Hardware Breakpoint Unit

The Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and data hardware
breakpoints. The memory-mapped region containing the hardware breakpoint registers is accessible to software only in
Debug Mode.

EJTAG hardware breakpoint support, as described in Chapter 3 on page 19, is optional, and can be implemented with
the following functionality:

• From zero to 15 independent instruction hardware breakpoints

• From zero to 15 independent data hardware breakpoints

• Breakpoint address comparisons for instruction and data hardware breakpoints optionally qualified with a
comparison of the MMU ASID

• Data hardware breakpoints optionally qualified with a data value comparison

The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR.

The number of breakpoints and the availability of optional qualifiers is indicated to debug software in the instruction and
data breakpoint status registers.

1.5 EJTAG-Specific Coprocessor 0 Registers

This section summarizes the registers and special memory that are used for the EJTAG debug solution. More detailed
information regarding mandatory and optional registers and memory locations is described in the relevant chapter.

8 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

Table 1-2 summarizes the Coprocessor 0 (CP0) registers. These registers are accessible by the debug software executed
on the processor; they provide debug control and status information. General information about the debug CP0 registers
is found in Section 5.8, "EJTAG Coprocessor 0 Registers" on page 75.

1.6 Memory-Mapped EJTAG Registers

The memory-mapped EJTAG registers are located in the debug register segment (drseg), which is a sub-segment of the
debug segment (dseg). They are accessible by the debug software when the processor is executing in Debug Mode. These
registers provide both miscellaneous debug control and control of hardware breakpoints. General information about the
debug segment and registers is found in Section 5.2.2 on page 52 and Section 5.2.2.2 on page 55.

1.6.1 Debug Control Register

Table 1-3 summarizes the Debug Control Register (DCR), which provides miscellaneous debug control.

1.6.2 Instruction Hardware Breakpoint Registers

Table 1-4 summarizes the instruction hardware breakpoint registers, which are controlled through a number of
memory-mapped registers. Certain registers are provided for each implemented instruction hardware breakpoint, as
indicated with an “n”. General information about the instruction hardware breakpoint registers is found in Section
3.6 on page 31.

Table 1-2 Overview of Coprocessor 0 Registers for EJTAG

Register Name
Register

Mnemonic Functional Description Reference

Debug Debug Debug indications and controls for the processor, including
information about recent debug exception.

See Section
5.8.1 on page 75

Debug Exception
Program Counter DEPC Program counter at last debug exception or exception in

Debug Mode.
See Section
5.8.2 on page 83

Debug Exception Save DESAVE Scratchpad register available for the debug handler. See Section
5.8.3 on page 83

Table 1-3 Overview of Debug Control Register as Memory-Mapped Register for EJTAG

Register Name
Register

Mnemonic Functional Description Reference

Debug Control Register DCR Indicates available EJTAG memory, and controls enabling
and disabling of interrupts and NMI in Non-Debug Mode.

See Chapter 2 on
page 15

Table 1-4 Overview of Instruction Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Instruction Breakpoint
Status IBS Indicates number of instruction hardware breakpoints and

status on a previous match.
See Section
3.6.1 on page 32

Instruction Breakpoint
Address (n) IBAn Address to compare for breakpoint n. See Section

3.6.2 on page 33

1.7 Memory-Mapped EJTAG Memory Segment

EJTAG Specification, Revision 3.10 9

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.6.3 Data Hardware Breakpoint Registers

Table 1-5 summarizes the data hardware breakpoint registers, which are controlled as a number of memory-mapped
registers. Certain registers are provided for each implemented data hardware breakpoint, as indicated with an “n”.
General information about the data hardware breakpoint registers is found in Section 3.7 on page 37.

1.7 Memory-Mapped EJTAG Memory Segment

The processor’s memory-mapped EJTAG memory is located in the debug memory segment (dmseg), which is a
sub-segment of the debug segment (dseg). It is accessible by debug software when the processor is executing in Debug
Mode. The EJTAG probe handles all accesses to this segment through the Test Access Port (TAP), whereby the
processor has access to dedicated debug memory even if no debug memory was originally located in the system. General
information about the debug segment and memory is found in Section 5.2.2 on page 52 and Section 5.2.2.1 on page 54.

Instruction Breakpoint
Address Mask (n) IBMn Mask for address comparison for breakpoint n. See Section

3.6.3 on page 34

Instruction Breakpoint
ASID (n) IBASIDn ASID value to compare for breakpoint n. See Section

3.6.4 on page 34

Instruction Breakpoint
Control (n)

IBCn Control of breakpoint n: comparison of ASID and gener-
ated event on match.

See Section
3.6.5 on page 35

Table 1-5 Overview of Data Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Data Breakpoint Status DBS Indicates number of data hardware breakpoints and status
on a previous match.

See Section
3.7.1 on page 37

Data Breakpoint Address
(n) DBAn Address to compare for breakpoint n. See Section

3.7.2 on page 39

Data Breakpoint Address
Mask (n) DBMn Mask for address comparison for breakpoint n. See Section

3.7.3 on page 39

Data Breakpoint
ASID (n) DBASIDn ASID value to compare for breakpoint n. See Section

3.7.4 on page 40

Data Breakpoint
Control (n) DBCn

Control of breakpoint n: match on load/store, data bytes,
access to data bytes, comparison of ASID, and generated
event on match.

See Section
3.7.5 on page 41

Data Breakpoint
Value (n) DBVn Data value to match for breakpoint n. See Section

3.7.6 on page 43

Table 1-4 Overview of Instruction Hardware Breakpoint Registers (Continued)

Register Name
Register

Mnemonic Functional Description Reference

10 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

1.8 EJTAG Test Access Port Registers

The probe accesses EJTAG Test Access Port (TAP) registers (shown in Table 1-6) through the TAP, so the processor can
not access these registers. These registers allow specific control of the target processor through the TAP. General
information about the TAP registers is found in Section 6.5 on page 92.

1.9 The Implications of Multiprocessing and Multithreading for EJTAG

The MIPS® MT ASE allows a processor to implement multiple VPEs (Virtual Processing Elements). Theoretically, as
far as applications are concerned, this view of the hardware (which must be supported by system software), is no
different from that where there are multiple physical processors present. MIPS MT also allows multiple thread contexts
within a VPE. See the MIPS MT specification for details.

Table 1-6 Overview of Test Access Port Registers

Register Name
Register

Mnemonic Functional Description Reference

Device ID (none) Identifies device and accessed processor in the device. See Section
6.5.1 on page 93

Implementation (none) Identifies main debug features implemented and accessible
through the TAP.

See Section
6.5.2 on page 94

Data (none) Data register for processor accesses used to support the
EJTAG memory.

See Section
6.5.3 on page 96

Address (none) Address register for processor access used to support the
EJTAG memory.

See Section
6.5.4 on page 99

EJTAG Control ECR Control register for most EJTAG features used through the
TAP.

See Section
6.5.5 on page 99

Bypass (none) Provides a one-bit shift path through the TAP. See Section
6.5.8 on page 107

Fastdata (none) Provides a one-bit tag in front of the data register to capture
the processor access pending bit for fast data transfer.

See Section
6.5.8 on page 107

TCBContolA (none) Used by the Trace Control Block to hold control bits for
tracing.

See the PDtrace and
TCB specification
document

TCBControlB (none) Used by the Trace Control Block to hold control bits for
tracing.

See the PDtrace and
TCB specification
document

TCBData (none) Used by the Trace Control Block to access data from
on-chip trace memory if present

See the PDtrace and
TCB specification
document

TCBControlC (none) Used by the Trace Control Block to hold control bits for
tracing

See the PDtrace and
TCB specification
document

PCsample (none) Used by the PC Sampling logic to write out the PC sample
and associated information

See Section
6.5.7 on page 106
and Chapter 4, “PC
Sampling,” on page
49.

1.10 Related Documents

EJTAG Specification, Revision 3.10 11

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

EJTAG visibility is on a per-VPE or per-processor basis. That is, each debug unit implemented in the system exposes a
TAP controller to the external probe hardware. The probe software must be aware of the number of daisy-chained debug
units and their order so that it can communicate correctly to the right debug unit.

Note that by the MIPS MT ASE specification, an implementation with multiple VPEs and hence multiple debug units,
most of the EJTAG hardware is physically not shared between the VPEs. For example, each VPE has its own copy of
the Debug Register, Debug Control Register, TAP controller, and TAP registers. But the hardware breakpoint registers
may either be shared or not shared by the VPEs. The TAP controllers are daisy-chained.

The other sections in this document that describe changes for the MIPS MT ASE are:

• Debug Exception in the presence of MIPS MT (see Section 5.2 on page 51).

• Single-Step control bit in the Debug register (see Section 5.8 on page 75 and Section 5.3.8 on page 64).

• Modifications to the Instruction and Data breakpoints matching conditions (see Section 3.3 on page 22).

• Modifications to the Instruction and Data Hardware Breakpoint registers for MIPS MT (see Section 3.6.5 on page
35, Section 3.7.4 on page 40, and Section 3.7.5 on page 41).

• Modification to indicate whether the Instruction and Data Hardware Breakpoints are shared or not shared across the
VPEs (see Section 3.6.1 on page 32 and Section 3.7.1 on page 37).

• A bit added to the DCR (VPED), to indicate whether the current VPE is disabled or enabled.

• A bit added to the Debug register to allow MIPS MT thread contexts (TCs) to be taken off-line during debug (see
Section 5.8.1 on page 75).

1.10 Related Documents

The following documents are useful in understanding this specification.

• IEEE Std. 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture

• MIPS32® Architecture for Programmers, Volumes I-IV

• MIPS64® Architecture for Programmers, Volumes I-IV

• The PDtrace™ Interface and Trace Control Block Specification (MD00439)

• MIPS32® Architecture for Programmers Volume IV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture (MD00378)

1.11 Notations and Conventions

This section defines notations and conventions that are used throughout this document.

1.11.1 Compliance

Throughout this document, compliance levels are indicated for specific features. Features are defined as Required,
Optional, or Recommended.

Features defined as required are required of all processors claiming compatibility with the EJTAG architecture.

Features defined as optional provide a standardization that might or might not be appropriate for a particular EJTAG
implementation. If such a feature is implemented, it must be implemented as described in this document for a processor
to claim compatibility with the EJTAG architecture.

12 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

In some cases, there are features within features that have different levels of compliance. For example, if there is an
optional field within a required register, the register must be implemented, but the field does not have to be implemented,
depending on the needs of the implementation. Similarly, if there is a required field within an optional register, if the
register is implemented, it must have the specified field.

Features defined as recommended should be implemented unless there is an overriding need not to do so.

1.11.2 UNPREDICTABLE and UNDEFINED Operations

These definitions of UNPREDICTABLE and UNDEFINED are similar to the descriptions in the MIPS32 and MIPS64
specifications. They are included here for those readers who are not familiar with these documents.

The terms UNPREDICTABLE and UNDEFINED describe the behavior of the processor in certain cases. UNDEFINED
behavior or operations can occur only as the result of executing instructions in a privileged mode (in Kernel Mode or
Debug Mode, or with the CP0 usable bit set in the Status register). Unprivileged software can never cause UNDEFINED
behavior or operations. Conversely, both privileged and unprivileged software can cause UNPREDICTABLE results or
operations.

1.11.2.1 UNPREDICTABLE

UNPREDICTABLE results can vary from implementation to implementation, instruction to instruction, or as a function
of time in the same implementation or instruction. Software can never depend on results that are UNPREDICTABLE.
An UNPREDICTABLE operation might or might not cause a result to be generated. If it does generate a result, the result
is UNPREDICTABLE. UNPREDICTABLE operations can cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• UNPREDICTABLE results must not depend on any data source (memory or internal state) that is inaccessible in the
current processor mode.

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or an internal state that is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in User Mode
must not access memory or internal state that is only accessible in Kernel Mode, Debug Mode, or in another process.

• UNPREDICTABLE operations must not halt or hang the processor.

1.11.2.2 UNDEFINED

UNDEFINED operations or behavior can vary from implementation to implementation, instruction to instruction, or as
a function of time on the same implementation or instruction. UNDEFINED operations or behavior can vary from
nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior
can cause data loss.

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is no
exit other than powering down the processor). The assertion of any reset signal must restore operation to a deterministic
state.

1.11 Notations and Conventions

EJTAG Specification, Revision 3.10 13

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

1.11.3 Register Field Notations

Table 1-7 defines the notations used to describe the read/write properties of the registers in this document. The notations
below are similar to those in the MIPS32 and MIPS64 specifications, with addition of R/W0 and R/W1.

1.11.4 Value Notations

The following conventions are used for numeric values in this document:

• Decimal values are written as standard base 10 numbers.

• Hexadecimal values are prefaced with “0x”.

• Binary numbers are appended with “2“.

For example, the following numbers are equivalent: 13 = = 0xD = = 11012.

1.11.5 Address Notations

Except where addresses are obviously 32 bits by context (as for a R3k privileged environment), addresses in this
document are shown as 64 bits. For 32-bit implementations, ignore the upper 32 bits of the address.

Addresses (ADDR) are usually marked in hexadecimal notation as 0xADDR.

Table 1-7 Register Field Notations

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W

A field in which all bits are readable and writable by software and potentially by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before the
first read will return a predictable value. This operation should not be confused with the formal definition of
UNDEFINED behavior.

R/W0 Similar to the R/W interpretation, except a software write of value 1 to this bit is ignored.

R/W1 Similar to the R/W interpretation, except a software write of value 0 to this bit is ignored.

R

A field that is either static or updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero or to
the appropriate state, respectively, on power-up.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software can write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.

If the Reset State of this field is “Undefined”,
software reads of this field result in an
UNPREDICTABLE value except after a hardware
update done under the conditions specified in the
description of the field.

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zeros.

If the Reset State of this field is “Undefined”,
software must write this field with zero before it is
guaranteed to read as zero.

14 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 The EJTAG System

EJTAG Specification, Revision 3.10 15

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Debug Control Register

Compliance Level: Optional, but requires EJTAG processor core extensions. If this register is not implemented then
other features that depend on bits in this register behave as if these bits are present and have the reset value.

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the register is
32 bits for 32-bit processors, and 64 bits for 64-bit processors. The DCR is located in the drseg segment at offset 0x0000.

The Debug Control Register (DCR) provides the following key features:

• Interrupt and NMI control when in Non-Debug Mode

• NMI pending indication

• Availability indicator of instruction and data hardware breakpoints

• Availability of the PC sample feature and the sample period

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both reset
(hard reset) and soft reset.

The DataBrk and InstBrk bits within the DCR indicate the types of hardware breakpoints implemented. Debug software
is expected to read hardware breakpoint registers for additional information on the number of implemented breakpoints.
Refer to Chapter 3 on page 19 for descriptions of the hardware breakpoint registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit is a global
interrupt enable used along with several other interrupt enables that enable specific mechanisms. The NMI interrupt can
be disabled in Non-Debug Mode using the DCR’s NMIE bit; a pending NMI is indicated through the NMIpend bit.
Pending interrupts are indicated in the Cause register, and pending NMIs are indicated in the DCR register NMIpend bit,
even when disabled. Hardware and software interrupts and NMIs are always disabled in Debug Mode. See Section 5.5
on page 70 for more information.

The optional SRstE bit allows masking of soft resets. A soft reset can be applied to the system based on different events,
referred to as sources. It is implementation dependent which soft reset sources in a system can be masked by the SRstE
bit. Soft reset masking can be applied to a soft reset source only if that source can be efficiently masked in the system.
The result is no reset at all for any part of the system, if masked. If only a partial soft reset is possible, then that soft reset
source is not to be masked, because a “half” soft reset might cause the system to fail or hang without warning. There is
no automatic indication of whether the SRstE bit is effective, so the user must consult system documentation.

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this bit, the probe
can indicate to the debug software running on the CPU if it expects to service dmseg segment accesses. See Section
6.5.5 on page 99 for more information.

16 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Debug Control Register

Figure 2-1 shows the format of the DCR register; Table 2-1 describes the DCR register fields. The reset values in Table
2-1 take effect on both hard resets and soft resets.

Figure 2-1 DCR Register Format

31 30 29 28 18 17 16 15 10 9 8 6 5 4 3 2 1 0
32-bit Processor 0 EN

M
0 Data

Brk
Inst
Brk

0 PCS PCR 0 IntE NMI
E

NMI
pend

SRs
tE

Pro
b

En

63 30 29 28 18 17 16 15 10 9 8 6 5 4 3 2 1 0
64-bit Processor 0 EN

M
0 Data

Brk
Inst
Brk

0 PCS PCR 0 IntE NMI
E

NMI
pend

SRs
tE

Pro
b

En

Table 2-1 DCR Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

ENM 29

Endianess in which the processor is running in kernel and
Debug Mode:

R Preset Required

DataBrk 17

Indicates if data hardware breakpoint is implemented:

R Preset Required

InstBrk 16

Indicates if instruction hardware breakpoint is
implemented:

R Preset Required

PCS 9

Indicates if the PC Sampling feature is implemented.

R Preset Required

PCR 8:6

PC Sampling rate. Values 0 to 7 map to values 25 to 212

cycles, respectively. That is, a PC sample is written out
every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles
respectively. The external probe or software is allowed to
set this value to the desired sample rate.

R/W 0 Required if
PCS is 1

Encoding Meaning

0 Little endian

1 Big endian

Encoding Meaning

0 No data hardware breakpoint
implemented

1 Data hardware breakpoint implemented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No PC Sampling implemented

1 PC Sampling implemented

EJTAG Specification, Revision 3.10 17

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

IntE 4

Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

R/W 1 Required

NMIE 3

Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

R/W 1 Required

NMIpend 2

Indication for pending NMI:

R 0 Required

SRstE 1

Controls soft reset enable:

Bit is read-only (R) and reads as zero if not implemented.

R/W 1 Optional

ProbEn 0

Indicates value of the ProbEn value in the ECR register:

Bit is read-only (R) and reads as zero if not implemented.

R

Same
value as
ProbEn
in ECR

Required if
EJTAG TAP is

present,
otherwise not
implemented

0
MSB:30,

28:18,
15:10, 5

Must be written as zeros; return zeros on reads. 0 0 Reserved

Table 2-1 DCR Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

Encoding Meaning

0 NMI disabled

1 NMI enabled

Encoding Meaning

0 No NMI pending

1 NMI pending

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation

1 Soft reset is fully enabled

Encoding Meaning

0 No access should occur to the dmseg
segment

1 Probe services accesses to the dmseg
segment

18 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Debug Control Register

EJTAG Specification, Revision 3.10 19

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

Hardware Breakpoints

This chapter describes the optional instruction and data hardware breakpoints. It contains the following sections:

• Section 3.1, "Introduction"

• Section 3.2, "Overview of Instruction and Data Breakpoint Registers"

• Section 3.3, "Conditions for Matching Breakpoints"

• Section 3.4, "Debug Exceptions from Breakpoints"

• Section 3.5, "Breakpoints Used as Triggerpoints"

• Section 3.6, "Instruction Breakpoint Registers"

• Section 3.7, "Data Breakpoint Registers"

• Section 3.8, "Recommendations for Implementing Hardware Breakpoints"

• Section 3.9, "Breakpoint Examples"

The general description in this chapter covers processors with R4k privileged environments. Differences for processors
with R3k privileged environments are described in Appendix A on page 127.

3.1 Introduction

Hardware breakpoints compare addresses and data of executed instructions, including data load/store accesses.
Instruction breakpoints can be set even on addresses in ROM areas, and data breakpoints can cause debug exceptions on
specific data accesses. Instruction and data hardware breakpoints are alike in many aspects, and are described in parallel
in the following sections. When the term “breakpoint” is used in this chapter, then the reference is to a “hardware
breakpoint”, unless otherwise explicitly noted.

The breakpoints provide the following key features:

• From zero to 15 instruction breakpoints can be implemented to cause debug exceptions on executed instructions,
both in ROM and RAM. Bit masking is provided for virtual address compares, and masking of compares with ASID
(optional) is also provided.

• From zero to 15 data breakpoints can be implemented to cause debug exceptions on data accesses. Bit masking is
provided for virtual address compares, masking of compares with ASID (optional) is provided, optional data value
compares allows masking at byte level, and qualification on byte access and access type is possible.

• Registers for setup and control are memory mapped in the drseg segment, accessible in Debug Mode only.

• Breakpoints have several implementation options to ease integration with various microarchitectures.

Hardware breakpoints require the implementation of the Debug Control Register (DCR).

Several additional options are possible for breakpoints, as described in the following subsections.

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both reset
(hard reset) and soft reset.

20 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

3.1.1 Instruction Breakpoint Features

Figure 3-2 shows an overview of the instruction breakpoint feature. The feature compares the virtual address (PC) and
the ASID of the executed instructions with each instruction breakpoint, applying masking on address and ASID. When
an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or a trigger is generated, and an
internal bit in an instruction breakpoint register is set to indicate that a match occurred. If the processor implements the
MIPS MT ASE, then a match for the TC (Thread Context Id) may also be enabled and required.

Figure 3-1 Instruction Breakpoint Overview

3.1.2 Data Breakpoint Features

Figure 3-2 shows an overview of the data breakpoint feature. The feature compares the load or store access type (TYPE),
the virtual address of the access (ADDR), the ASID, the accessed bytes (BYTELANE), and data value (DATA) with
each data breakpoint, applying masks and/or qualifications on the access properties. If the processor implements the
MIPS MT ASE, then a match for the TC (Thread Context Id) may also be enabled and required.

Figure 3-2 Data Breakpoint Overview

When an enabled data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in a data
breakpoint register is set to indicate that a match occurred. The match is either precise (the debug exception or trigger
occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or trigger occurs later
in the program flow).

3.2 Overview of Instruction and Data Breakpoint Registers

From zero to 15 instruction and data breakpoints can be implemented independently. Implementation of any breakpoint
implies that the Debug Control Register (DCR) is implemented.

The InstBrk and DataBrk bits in the DCR register indicate whether there are zero or 1 to 15 implementations of a
breakpoint type. If no breakpoints of a specific type are implemented, then none of the registers associated with this
breakpoint type are implemented.

If any (1 to 15) breakpoints of a specific type are implemented, then the breakpoint status register associated with that
breakpoint type is implemented. The instruction and data break status registers indicate the number of breakpoints for
each corresponding type. The number of additional registers depends on the number of implemented breakpoints for the
respective breakpoint type.

Instruction
Hardware
Breakpoint

Debug Exception

Trigger Indication
ASID

PC

TC (for MIPS MT)

Data
Hardware
Breakpoint

TYPE

ASID
Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE

TC (for MIPS MT)

3.2 Overview of Instruction and Data Breakpoint Registers

EJTAG Specification, Revision 3.10 21

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Registers for ASID compares are only implemented if indicated in the corresponding breakpoint status register.

Section 3.2.1, "Overview of Instruction Breakpoint Registers" and Section 3.2.2, "Overview of Data Breakpoint
Registers" provide overviews of the instruction and data breakpoint registers, respectively. All registers are memory
mapped in the drseg segment. All registers are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

3.2.1 Overview of Instruction Breakpoint Registers

Table 3-1 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides implementation
indication and status for instruction breakpoints in general. The 1 to 15 implemented breakpoints are numbered 0 to 14,
respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n”.

Register addresses are shown in Section 3.6 on page 31.

3.2.2 Overview of Data Breakpoint Registers

Table 3-2 lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indication
and status for data breakpoints in general. The 1 to 15 implemented breakpoints are numbered 0 to 14, respectively, for
registers and breakpoints. The specific breakpoint number is indicated by “n”. The registers for data value compares are
only implemented if the value compares for the data breakpoints are implemented, which occurs when either the
NoLVmatch bit or the NoSVmatch bit in the DBS is 0.

Table 3-1 Instruction Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level

IBS Instruction Breakpoint Status See Section
3.6.1 on page 32

Required if any instruction
breakpoints are implemented,
optional otherwise.

IBAn Instruction Breakpoint Address n See Section
3.6.2 on page 33 Required with instruction breakpoint

n, optional otherwise.
IBMn Instruction Breakpoint Address Mask n See Section

3.6.3 on page 34

IBASIDn Instruction Breakpoint ASID n See Section
3.6.4 on page 34

Required with instruction breakpoint
n, optional otherwise. Not
implemented if ASIDsup bit in IBS is
0 (zero).

IBCn Instruction Breakpoint Control n See Section
3.6.5 on page 35

Required with instruction breakpoint
n, optional otherwise.

Table 3-2 Data Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level

DBS Data Breakpoint Status See Section
3.7.1 on page 37

Required if any data breakpoints are
implemented, optional otherwise.

DBAn Data Breakpoint Address n See Section
3.7.2 on page 39 Required with data breakpoint n,

optional otherwise.
DBMn Data Breakpoint Address Mask n See Section

3.7.3 on page 39

22 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Register addresses are shown in Section 3.7 on page 37.

3.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data access.
These conditions are described in the following subsections. A breakpoint only matches for instructions executed in
Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described in Section 3.4 on page 28 and/or a trigger
indication as described in Section 3.5 on page 31. The BE and/or TE bits in the IBCn or DBCn registers enable the
breakpoints for breaks and triggers, respectively.

It is implementation dependent whether or not a breakpoint stalls the processor in order to evaluate the match expression;
for example, if required for timing reasons or in order to wait on a scheduled load to return for evaluation of a data
breakpoint with a data value compare. In some cases, stalling is avoided with imprecise data breakpoints, as described
in Section 3.4.2 on page 29.

3.3.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the instruction
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instruction
breakpoint is also evaluated on addresses usually causing an Address Error exception, a TLB exception, or other
exceptions. It is thereby possible to cause a Debug Instruction Break exception on the destination address of a jump, even
if a jump to that address would cause an Address Error exception. The breakpoint is not evaluated on instructions from
speculative fetches or execution.

A match of an instruction breakpoint depends on a number of parameters, shown in Table 3-3. The fields in the
instruction breakpoint registers are in the form REGFIELD.

DBASIDn Data Breakpoint ASID n See Section
3.7.4 on page 40

Required with data breakpoint n,
optional otherwise. Not implemented
if ASIDsup bit in DBS is 0 (zero).

DBCn Data Breakpoint Control n See Section
3.7.5 on page 41

Required with data breakpoint n,
optional otherwise.

DBVn Data Breakpoint Value n See Section
3.7.6 on page 43

Required with data breakpoint n,
optional otherwise. Only
implemented with value compares,
shown in DBS.

Table 3-3 Instruction Breakpoint Condition Parameters

Parameter Description Width

ASID ASID field in EntryHi CP0 register. 8 bits

Table 3-2 Data Breakpoint Register Summary (Continued)

Register
Mnemonic Register Name and Description Reference Compliance Level

3.3 Conditions for Matching Breakpoints

EJTAG Specification, Revision 3.10 23

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

The PC, IBAnIBA, and IBMnIBM fields are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

The equation that determines the match is shown below with “C”-like operators. In the equation, 0 means all bits are 0’s,
and ~0 means all bits are 1’s. The widths are similar to the widths of the parameters. The match equation is IB_match,
and is dependent on whether MIPS16e is supported or not.

If there is no support for MIPS16e then the IB_match equation is:

IB_match =
(!IBCnTCuse || (TC = = IBCnTC)) &&
(! IBCnASIDuse || (ASID = = IBASIDnASID)) &&
((IBMnIBM | ~ (PC ^ IBAnIBA)) = = ~0) (EQ 1)

If MIPS16e is supported then the IB_match equation is shown below, in which case the ISAmode bit is compared with
bit 0 of IBAnIBA instead of compare with bit 0 in PC:

IB_match =
(!IBCnTCuse || (TC = = IBCnTC)) &&

IBCnASIDuse

Use ASID value in compare for instruction breakpoint n:

1 bit

IBASIDnASID Conditional Instruction breakpoint n ASID value for comparing. 8 bits

PC Virtual address of instruction boundary or target for jump/branch. 32 / 64 bits

ISAmode

Used only when MIPS16e ISA support is implemented. It indicates the ISA mode for
the executed instruction or the mode at the target of a jump/branch:

1 bit

IBAnIBA Instruction breakpoint n address for compare with conditions. 32 / 64 bits

IBMnIBM

Instruction breakpoint n address mask condition:

32 / 64 bits

IBCnTCuse

Thread Context (TC) value used in compare for instruction breakpoint n:

1 bit

IBCnTC TC id value 8 bits max

Table 3-3 Instruction Breakpoint Condition Parameters (Continued)

Parameter Description Width

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 32-bit MIPS instruction

1 MIPS16e instruction

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

24 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

(! IBCnASIDuse || (ASID = = IBASIDnASID)) &&
((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) = = ~0) (EQ 2)

The IB_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all 64 bits are
compared between the PC and the IBAnIBA register.

The match indication for instruction breakpoints is always precise; that is, it is indicated on the instruction causing the
IB_match to be true.

It is implementation dependent for an instruction breakpoint to match when the memory system does not ever respond
to the fetch or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
instruction breakpoint generating either a debug exception or a trigger.

3.3.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the access address of
every data access due to load/store instructions (including loads/stores of coprocessor registers) and the address causing
address errors upon data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or CACHE
instructions. It is implementation dependent whether an SC or SCD instruction causes a data breakpoint if all conditions
would cause a match, but the SC or SCD instruction would fail because the LLbit is 0.

The concept “data bus” is used in the following to denote the bytes accessed and the data value transferred in a load/store
operation. In this notation data bus referees to the naturally-aligned memory word (for 32-bit processors) or doubleword
(for 64-bit processors) containing the accessed address referred to as ADDR. This notation is independent of the actual
width of the processor bus, e.g., the “data bus” width of a 64-bit processor is 64, even if that processor has a 32-bit
processor bus.

A match of the data breakpoint depends on a number of parameters, shown in Table 3-4. The fields in the data breakpoint
registers are in the form REGFIELD.

Table 3-4 Data Breakpoint Condition Parameters

Reference Description Width

TYPE Data access type is either load or store. (no width)

DBCnNoSB

Controls whether condition for data breakpoint is fulfilled on a store access:

1 bit

DBCnNoLB

Controls whether condition for data breakpoint is fulfilled on a load access:

1 bit

ASID ASID field in EntryHi CP0 register. 8 bits

Encoding Meaning

0 Condition can be fulfilled on store access

1 Condition is never fulfilled on store access

Encoding Meaning

0 Condition can be fulfilled on load access

1 Condition is never fulfilled on load access

3.3 Conditions for Matching Breakpoints

EJTAG Specification, Revision 3.10 25

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

DBCnASIDuse

ASID value used in compare for data breakpoint n:

1 bit

DBASIDnASID Conditional Data breakpoint n ASID value for comparison. 8 bits

ADDR

With one exception, virtual address of data access, effective address. The exception is
the LUXC1 and SUXC1 instructions in which the lower three bits of the effective
address are ignored (forced to zero for the operation). In this case, ADDR is the effective
address with bits 2:0 forced to zero.

32 / 64 bits

DBAnDBA Data breakpoint n address for compare with conditions. 32 / 64 bits

DBMnDBM

Conditional Data breakpoint n address mask:

32 / 64 bits

BYTELANE
Byte lane access indication, where BYTELANE[0] is 1 only if the byte at bits [7:0] of
the data bus is accessed, BYTELANE[1] is 1 only if the byte at bits [15:8] of the data
bus is accessed, etc.

4 / 8 bits

DBCnBAI

Determines whether access is ignored to specific bytes. BAI[0] controls ignore of access
to the byte at bits [7:0] of the data bus, BAI[1] ignores access to byte at bits [15:8] of
the data bus, etc.:

4 / 8 bits

DATA Data value from the data bus. 32 / 64 bits

DBVnDBV Conditional Data breakpoint n data value for compare. 32 / 64 bits

DBCnBLM

Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks byte
at bits [7:0] of the data bus, BLM[1] masks byte at bits [15:8], etc.:

4 / 8 bits

DBCnTCuse

Thread Context (TC) value used in compare for data breakpoint n:

1 bit

DBCnTC TC id value 8 bits max

Table 3-4 Data Breakpoint Condition Parameters (Continued)

Reference Description Width

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

Encoding Meaning

0 Condition depends on access to corresponding byte

1 Access for corresponding byte is ignored

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

26 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

The ADDR, DBAnDBA, DBMnDBM, DATA, and DBVnDBV fields are 32 bits wide for 32-bit processors and 64 bits wide
for 64-bit processors. The BYTELANE, DBCnBLM, and DBCnBAI fields are four bits wide for 32-bit processors and
eight bits wide for 64-bit processors. The width is indicated as “N” in the equations below.

The match equations are shown below with “C”-like operators. In the equation, 0 means all bits are 0’s, and ~0 means
all bits are 1’s. The bit widths are similar to the widths of the parameters.

DB_match is the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match equations
in the DB_match equation are defined below):

DB_match =
(!DBCnTCuse || (TC = = DBCnTC)) &&
(((TYPE = = load) && ! DBCnNoLB) || ((TYPE = = store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match) (EQ 3)

DB_addr_match is defined as:

DB_addr_match =
(! DBCnASIDuse || (ASID = = DBASIDnASID)) &&
((DBMnDBM | ~ (ADDR ^ DBAnDBA)) = = ~0) &&
((~ DBCnBAI & BYTELANE) != 0) (EQ 4)

The DB_addr_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all 64
bits are compared between the ADDR and the DBAnDBA field. Please note the special case used for ADDR for the
LUXC1 and SUXC1 instructions as described in Table 3-4.

DB_no_value_compare is defined as:

DB_no_value_compare =
((DBCnBLM | DBCnBAI | ~ BYTELANE) = = ~0) (EQ 5)

If a data value compare is indicated on a breakpoint, then DB_no_value_compare is false, and if there is no data value
compare then DB_no_value_compare is true. Note that a data value compare is a run-time property of the breakpoint if
(DBCnBLM | DBCnBAI) is not ~0, because DB_no_value_compare then depends on BYTELANE provided by the
load/store instructions.

If a data value compare is required, then the data value from the data bus is compared and masked with the registers for
the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =
((DATA[7:0] = = DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] = = DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
......
((DATA[8*N-1:8*N-8] = = DBVnDBV[8*N-1:8*N-8]) ||
! BYTELANE[N-1] || DBCnBLM[N-1] || DBCnBAI[N-1]) (EQ 6)

Data breakpoints depend on endianess, because values on the byte lanes are used in the equations. Thus it is required
that the debug software programs the breakpoints accordingly to endianess.

It is implementation dependent for a data breakpoint to match when the memory system does not ever respond to the
data access or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
data breakpoint generating a debug exception or trigger.

3.3.2.1 Data Breakpoints in case of Unaligned Address

Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if an effective
address of 0x01 is used as source of a Load Halfword (LH) instruction). The ADDR used in the comparison is the

3.3 Conditions for Matching Breakpoints

EJTAG Specification, Revision 3.10 27

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

effective address. The BYTELANE value is defined according to Table 3-5 for a 32-bit processor and to Table 3-6 for a
64-bit processor.

With the above well-defined values of BYTELANE, the behavior is well-defined for data breakpoints without value
compares on operations with unaligned addresses. The BLM field in the DBCn register can be used to avoid value
compares if all BLM bits are set to 1.

If the data breakpoint depends on a value compare, then loads will cause an Address Error exception, and for stores the
data value (DATA) is UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint on a
store, but an implementation can choose never to indicate a match on data breakpoints depending on value compare if
having unaligned address.

If a debug exception is taken on the store then the debug handler can investigate the processor state and thereby determine
if the address was unaligned and UNPREDICTABLE store data for the memory access thereby caused the debug
exception. If a debug exception is not taken for the store, then an Address Error exception is taken. So, in both cases it
is possible for debug software to detect the bug. The BLM field in the DBCn register can be used to avoid compare on
UNPREDICTABLE data, in case all of the BLM bits are set to 1.

If the data breakpoint is used as a triggerpoint (see Section 3.5 on page 31) then a BS bit might be set after a compare
with UNPREDICTABLE data; however, an Address Error exception occurs in this case thereby making it possible to
detect the bug.

Table 3-5 BYTELANE at Unaligned Address for 32-bit Processors

Size

ADDR BYTELANE[3:0]

[2] [1] [0] Little Endian Big Endian

Halfword
x 0 x 00112 11002

x 1 x 11002 00112

Word x x x 11112

‘x’ denotes don’t care

Table 3-6 BYTELANE at Unaligned Address for 64-bit Processors

Size

ADDR BYTELANE[7:0]

[2] [1] [0] Little Endian Big Endian

Halfword

0 0 x 000000112 110000002

0 1 x 000011002 001100002

1 0 x 001100002 000011002

1 1 x 110000002 000000112

Word
0 x x 000011112 111100002

1 x x 111100002 000011112

Doubleword x x x 111111112

‘x’ denotes don’t care

28 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

3.3.2.2 Match for Data Breakpoint with Value Compare on Bus or Cache Error

If a data value compare is required to evaluate a data breakpoint, the DB_no_value_compare equation is false (see
Section 3.3.2 on page 24). However, if a bus or cache error occurs on the load, then there is no valid data to use in the
compare. This case has two possibilities:

• The match will fail.

• The match will compare on invalid data, and then indicate a pending bus or cache error through the DBusEP or
CacheEP bits in the Debug register, if a debug exception is taken. This occurrence might cause a trigger indication to
be set on the compare with invalid data.

A bus or cache error on a store does not affect the data breakpoint compare.

Refer to Section 3.8.3 on page 44 for recommendations on implementing data breakpoint compares on invalid data.

3.3.2.3 Precise Match for Data Breakpoints

A precise match for a data breakpoint occurs when the match equation can be fully evaluated at the time the load/store
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_match
equation to be true.

Matches on data breakpoints without data value compares are always precise. Accesses using data value compares are
either imprecise or precise depending on the implementation and specific access.

3.3.2.4 Imprecise Match for Data Breakpoints

An imprecise match for a data breakpoint occurs when the match equation cannot be fully evaluated at the time the
load/store instruction is executed. This case occurs when the processor is not stalled on a scheduled load and a data
breakpoint must compare on the data value returned by the load. If the breakpoint matches, then the DB_match equation
is true later in the execution flow rather than at the same time as load/store instruction that caused the load/store access
to match.

Only data breakpoints with value compares can be imprecise, in which case the breakpoints can be imprecise for all or
some of those accesses depending on the implementation.

3.4 Debug Exceptions from Breakpoints

This section describes how to set up instruction and data breakpoints to generate debug exceptions when the match
conditions are true.

3.4.1 Debug Exception Caused by Instruction Breakpoint

The BE bit in the IBCn register must be set for an instruction breakpoint to be enabled. A Debug Instruction Break
exception occurs when the IB_match equation is true (see Section 3.3.1 on page 22). The corresponding BS bit in the
IBS register is set when the breakpoint generates the debug exception. Note that the BE bit alone enables the break point
exception, irrespective of whether or not the TE bit is set (see Section 3.5, "Breakpoints Used as Triggerpoints").

The Debug Instruction Break exception is precise, so the DEPC register and DBD bit in the Debug register (see Section
5.8 on page 75) point to the instruction that caused the IB_match equation to be true.

3.4 Debug Exceptions from Breakpoints

EJTAG Specification, Revision 3.10 29

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

The instruction receiving the debug exception only updates the debug related registers. That instruction will not cause
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an instruction
receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby the
instruction is executed. Debug software must disable the breakpoint when returning to the instruction, otherwise the
Debug Instruction Break exception will reoccur. An alternative is for debug software to emulate the instruction(s) in
software and change the DEPC accordingly.

3.4.2 Debug Exception by Data Breakpoint

The BE bit in the DBCn register must be set for a data breakpoint to be enabled. A debug exception occurs when the
DB_match condition is true (see Section 3.3.2 on page 24). A matching data breakpoint generates either a precise or an
imprecise debug exception. Note that the BE bit alone enables the break point exception, irrespective of whether or not
the TE bit is set (see Section 3.5, "Breakpoints Used as Triggerpoints").

Refer to Section 3.8.4 on page 45 for additional information on precise and imprecise debug exceptions.

3.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception

A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In this case, the
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match equation
(see Section 3.3.2 on page 24) to be true, and the corresponding BS bit in the DBS register is set. Details about behavior
of the instruction causing the debug exception is shown in Table 3-7.

Thus in the case a data breakpoint with data value compare is set up on a load instruction, then the load does occur from
the external memory, since the data value is required to evaluate the match condition, but the destination register is not
updated, so the loaded value is simply discarded.

The rules shown in Table 3-8 describe update of the BS bits when several data breakpoints match the same access and
generate a debug exception.

Table 3-7 Behavior on Precise Exceptions from Data Breakpoints

Instruction and
Data Breakpoint

Load/Store
Instruction Execution

 Destination
Register External Memory System Access

Store wo/w value match

Not completed

Not updated1

1. This applies to the Store Conditional Word/Doubleword (SC/SCD) instructions

Store to memory is not committed

Load without value match
Not updated2

2. This includes side effects like for the Load Linked Word/Doubleword (LL/LLD) instructions

Load from memory does not occur

Load with value match Load from memory does occur

Table 3-8 Rules for Update of BS Bits on Precise Exceptions from Data Breakpoints

Instruction

Breakpoints That Matches... Update of BS Bits for Matching Data Breakpoints

Without Value
Compare

With Value
Compare Without Value Compare With Value Compare

Load / Store One or more None BS bits set for all (No matching breakpoints)

30 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Any BS bit set prior to the match and debug exception is kept set, since only debug software can clear the BS bits.

The debug handler usually returns to the instruction that caused the Debug Data Break Load/Store exception, whereby
the instruction is re-executed. This re-execution results in a repeated load from system memory after a data breakpoint
with a data value compare on a load, because the load occurred previously in order to allow evaluation of the breakpoint
as described above. Memory-mapped devices with side effects on loads must allow such reloads, or debug software
should alternatively avoid setting data breakpoints with data value compares on the address of such devices. Debug
software must disable breakpoints when returning to the instruction, otherwise the Debug Data Break Load/Store
exception will reoccur. An alternative is for debug software to emulate the instruction in software and change the DEPC
accordingly.

3.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match. In
this case, the DEPC register and DBD bit in the Debug register point to an instruction later in the execution flow rather
than at the load/store instruction that caused the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destination
register and completes the access to the external memory system. Therefore this load/store instruction is not re-executed
on return from the debug handler, because the DEPC register and DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding data
accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first match
(for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug Mode.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed before the BS bits and DDBLImpr/DDBSImpr bits are accessed for read or write.
This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS bits.

Load One or more One or more BS bits set for all

Unchanged BS bits since load
of data value does not occur,
so match of the breakpoint
cant be determined

Load None One or more (No matching breakpoints) BS bits set for all

Store One or more One or more BS bits set for all
Optional to either set BS bits
for all, or change none of the
BS bits

Store None One or more (No matching breakpoints) BS bits set for all

Table 3-8 Rules for Update of BS Bits on Precise Exceptions from Data Breakpoints (Continued)

Instruction

Breakpoints That Matches... Update of BS Bits for Matching Data Breakpoints

Without Value
Compare

With Value
Compare Without Value Compare With Value Compare

3.5 Breakpoints Used as Triggerpoints

EJTAG Specification, Revision 3.10 31

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.5 Breakpoints Used as Triggerpoints

Software can set up both instruction and data breakpoints such that a matching breakpoint does not generate a debug
exception, but sends an indication through the BS bit only. But note that if the BE bit is set, then a debug exception will
be generated, even if the TE bit is set. The TE bit in the IBCn or DBCn register controls whether an instruction or data
breakpoint, respectively, is used as a triggerpoint. Triggerpoints are evaluated for matches under the same criteria as
breakpoints.

The BS bit in the IBS or DBS register is set for a triggerpoint when the respective IB_match condition (see Section
3.3.1 on page 22) or DB_match condition (see Section 3.3.2 on page 24) is true.

For the BS bit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception must
occur on the instruction.

The BS bit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data Break
Load/Store exception with address match only occurred on the load/store instruction. For exceptions with equal or lower
priority than the Debug Data Break Load/Store exception with address match only, the BS bits are still set for a matching
triggerpoint. For example, the BS bit is set even if a TLB or Bus Error exception occurred on the load/store instruction.
Data triggerpoints with value compares require the data value to be valid for the BS bit to be set, which is not the case
if, for example, a TLB or Bus Error exception occurs on a load instruction. However, for stores, the trigger may compare
on UNPREDICTABLE data as described in Section 3.3.2.1 on page 26.

The rules for update of the BS bits are shown in Table 3-9.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

Note that trigger indications by BS may be set based on compare with UNPREDICTABLE data, as described in (see
Section 3.3.2.1 on page 26).

A triggerpoint match can be indicated on an optional internal signal or chip pin.

3.6 Instruction Breakpoint Registers

This section describes the instruction breakpoint registers for MIPS32 and MIPS64 processors, and other R4k privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the
instruction breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered 0 to

Table 3-9 Rules for Update of BS Bits on Data Triggerpoints

Instruction Without/With Value Compare BS Bits Update for Triggerpoint

Load / Store Without value compare
BS bit set if no exception with higher priority than the Debug
Data Break Load/Store exception, with address match only,
occurred on the instruction.

Load With value compare
BS bit set if no exception with higher priority than the Debug
Data Break Load exception, with address and data value match,
occurred on the instruction.

Store With value compare

BS bit is set if no exception occurred on the instruction, and is
optional to be if an exception with equal or lower priority than the
Debug Data Break Store exception, with address match only,
occurred on the instruction, with the requirement that either all
the relevant BS bits are set, or none are changed.

32 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

14, respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n”. The registers and their
respective addresses offsets are shown in Table 3-10.

3.6.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Required if any instruction breakpoints are implemented, optional otherwise.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. It is located at drseg segment offset 0x1000. The ASIDsup bit applies to all instruction breakpoints.

Figure 3-3 shows the format of the IBS register; Table 3-11 describes the IBS register fields.

Figure 3-3 IBS Register Format

Table 3-10 Instruction Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + 0x100 * n IBAn Instruction Breakpoint Address n

0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n

0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n

0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n

31 30 29 28 27 24 23 16 15 14 0
32-bit Processor 0 ASI

Dsu
p

0 BCN 0 IBP
shar

e

BS[14:0]

63 31 30 29 28 27 24 23 16 15 14 0
64-bit Processor 0 ASI

Dsu
p

0 BCN 0 IBP
Tsh
are

BS[14:0]

Table 3-11 IBS Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

ASIDsup 30

Indicates if ASID compare is supported in instruction
breakpoints:

ASID support indication does not guarantee a
TLB-type MMU, because the same breakpoint
implementation can be used with processors having
all different types of MMUs.

R Preset Required

Encoding Meaning

0 No ASID compare

1 ASID compare (IBASIDn register
implemented)

3.6 Instruction Breakpoint Registers

EJTAG Specification, Revision 3.10 33

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.6.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Address n (IBAn) register has the virtual address used in the condition for instruction
breakpoint n. It is located at drseg segment offset 0x1100 + 0x100 * n.

Figure 3-4 shows the format of the IBAn register; Table 3-12 describes the IBAn register field.

Figure 3-4 IBAn Register Format

BCN 27:24

Number of instruction breakpoints implemented:

R Preset Required

IBPshare 15

Determines whether the Instruction breakpoints are
shared across the different VPEs of the processor, or
are implemented per-VPE.

R Preset

Required in
MIPS MT is
implemented.

Otherwise
Reserved.

BS[14:0] 14:0

Break Status (BS) bit for breakpoint n is at BS[n],
where n is 0 to 14. A bit is set to 1 when the condition
for its corresponding breakpoint has matched.

The number of BS bits implemented corresponds to
the number of breakpoints indicated by the BCN
field.

Debug software is expected to clear the bits before
use, because reset does not clear these bits.

Bits not implemented are read-only (R) and read as
zeros.

R/W0 Undefined

Required for
bits at

implemented
breakpoints,
other bits not
implemented

0
MSB:31,

29:28,
23:16

Must be written as zeros; return zeros on read. 0 0 Reserved

31 0
32-bit Processor IBAn

63 0
64-bit Processor IBAn

Table 3-11 IBS Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Reserved

1-15 Number of instructions breakpoints

Encoding Meaning

0 Not shared

1 Shared across VPEs

34 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

3.6.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition for
instruction breakpoint n. The address that is masked is in the IBAn register. The IBMn register is located at drseg
segment offset 0x1108 + 0x100 * n.

Figure 3-5 shows the format of the IBMn register; Table 3-13 describes the IBMn register field.

Figure 3-5 IBMn Register Format

3.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Required with instruction breakpoint n if the ASIDsup bit in the IBS register is 1, optional
otherwise.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. It is located at drseg segment offset 0x1110 + 0x100 * n.

Table 3-12 IBAn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

IBA MSB:0 Instruction breakpoint virtual address for condition. R/W Undefined Required

31 0
32-bit Processor IBMn

63 0
64-bit Processor IBMn

Table 3-13 IBMn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

IBM MSB:0

Instruction breakpoint address mask for condition:

R/W Undefined Required

Encoding Meaning

0 Corresponding address bit
compared

1 Corresponding address bit masked

3.6 Instruction Breakpoint Registers

EJTAG Specification, Revision 3.10 35

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Figure 3-6 shows the format of the IBASIDn register; Table 3-14 describes the IBASIDn register fields. The width of the
ASID field for the compare is 8 bits. It is identical to the width of the ASID field in the EntryHi register used with the
TLB-type MMU.

Figure 3-6 IBASIDn Register Format

3.6.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint n: triggerpoint,
breakpoint, ASID value inclusion. This register is located at drseg segment offset 0x1118 + 0x100 * n.

Figure 3-7 shows the format of the IBCn register; Table 3-14 describes the IBCn register fields.

Figure 3-7 IBCn Register Format

31 12 11 8 7 0
32-bit Processor 0 VPE ASID

63 12 11 8 7 0
64-bit Processor 0 VPE ASID

Table 3-14 IBASIDn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined Required

VPE 11:8

This field indicates the value of the VPE id to use for
comparison and is used only if VPEuse in IBCn
register is 1 and the breakpoints are shared across
VPEs. If the breakpoints are not shared, then these
bits read zero, and writes are ignored.

R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

0 MSB:12 Must be written as zeros; return zeros on read. 0 0 Reserved

31 24 23 22 21 4 3 2 1 0
32-bit Processor TC ASI

D
use

TC
use

0 VPE
use

TE 0 BE

63 32 31 24 23 22 21 4 3 2 1 0
64-bit Processor 0 TC ASI

D
use

TC
use

0 VPE
use

TE 0 BE

Encoding Meaning

0 Do not use VPE value in compare

1 Use VPE value in compare

36 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Table 3-15 IBCn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

TC 31:24

The value of TC (thread context) to match in the
comparison to determine if the instruction break is to
be taken. This comparison is effective only if the
TCuse bit is set to 1. Otherwise this TC value is
ignored.

R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

ASIDuse 23

Use ASID value in compare for instruction
breakpoint n:

Debug software should only set the ASIDuse if a
TLB in the implementation is used by the application
software.

This bit is read-only and reads as zero, if not
implemented.

R/W Undefined

Required if
ASIDsup in

IBS register is
1, otherwise

not
implemented

TCuse 22

Use TC value in comparison for instruction
breakpoint n. If TC is not used in the comparison,
then the comparison is restricted to the match all TCs
in the current VPE if the breakpoints are not shared.
If the breakpoints are shared, then they can match all
TCs in the processor unless VPEuse is set. R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

VPEuse 17

Use VPE value in comparison for instruction
breakpoint n. This field is used only if the
breakpoints are shared across the VPEs of a MT core,
that is, the IBPshare bit is set in register IBP.

If the breakpoints are not shared, then these bits read
zero, and writes are ignored.

R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

TE 2

Use instruction breakpoint n as triggerpoint:

R/W 0 Required

BE 0

Use instruction breakpoint n as breakpoint:

R/W 0 Required

0 21:4, 1 Must be written as zeros; return zeros on read. 0 0 Reserved

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

Encoding Meaning

0 Do not use it as triggerpoint

1 Use it as triggerpoint

Encoding Meaning

0 Do not use it as breakpoint

1 Use it as breakpoint

3.7 Data Breakpoint Registers

EJTAG Specification, Revision 3.10 37

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7 Data Breakpoint Registers

This section describes the data breakpoint registers for MIPS32 and MIPS64 processors, and other R4k privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the data
breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered 0 to 14,
respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n”. The registers and their
respective addresses offsets are shown in Table 3-16.

3.7.1 Data Breakpoint Status (DBS) Register

Compliance Level: Required if any data breakpoints are implemented, optional otherwise.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints. It
is located at drseg segment offset 0x2000. The ASIDsup, NoSVmatch, and NoLVmatch fields apply to all data
breakpoints.

Figure 3-8 shows the format of the DBS register; Table 3-17 describes the DBS register fields.

Figure 3-8 DBS Register Format

Table 3-16 Data Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

31 30 29 28 27 24 23 16 15 14 0
32-bit Processor 0 ASI

D
sup

NoSV
match

NoL
Vmat

ch

BCN 0 DB
Psh
are

BS[14:0]

63 31 30 29 28 27 24 23 16 15 14 0
64-bit Processor 0 ASI

D
sup

NoSV
match

NoL
Vmat

ch

BCN 0 DB
Psh
are

BS[14:0]

38 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Table 3-17 DBS Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

ASIDsup 30

Indicates if ASID compare is supported in data
breakpoints:

ASID support indication does not guarantee a
TLB-type MMU, because the same breakpoint
implementation can be used with processors having
all different types of MMUs.

R Preset Required

NoSVmatch 29

Indicates if a value compare on a store is supported in
data breakpoints:

R Preset Required

NoLVmatch 28

Indicates if a value compare on a load is supported in
data breakpoints:

R Preset Required

BCN 27:24

Number of data breakpoints implemented:

R Preset Required

DBPshare 15

Determines whether the Data breakpoints are shared
across the different VPEs of the processor, or are
implemented per-VPE.

R Preset

Required if
MIPS MT is
implemented,

otherwise
Reserved.

Encoding Meaning

0 No ASID compare

1 ASID compare (DBASIDn register
implemented)

Encoding Meaning

0 Data value and address in condition
on store

1 Address compare only in condition
on store

Encoding Meaning

0 Data value and address in condition
on load

1 Address compare only in condition
on load

Encoding Meaning

0 Reserved

1-15 Number of data breakpoints

Encoding Meaning

0 Not shared

1 Shared across VPEs

3.7 Data Breakpoint Registers

EJTAG Specification, Revision 3.10 39

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Address n (DBAn) register has the virtual address used in the condition for data breakpoint n. This
register is located at drseg segment offset 0x2100 + 0x100 * n.

Figure 3-9 shows the format of the DBAn register; Table 3-18 describes the DBAn register field.

Figure 3-9 DBAn Register Format

3.7.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condition for data
breakpoint n. The address that is masked is in the DBAn register. The DBMn register is located at drseg segment offset
0x2108 + 0x100 * n.

BS[14:0] 14:0

Break Status (BS) bit for breakpoint n is at BS[n],
where n is 0 to 14. The bit is set to 1 when the
condition for its corresponding breakpoint has
matched.

The number of BS bits implemented corresponds to
the number of breakpoints indicated by the BCN bit.

Debug software is expected to clear the bits before
use, since these are not cleared by reset.

Bits not implemented are read-only (R) and read as
zeros.

R/W0 Undefined

Required for
bits at

implemented
breakpoints,
other bits not
implemented

0 MSB:31,
23:16 Must be written as zeros; return zeros on read. 0 0 Reserved

31 0
32-bit Processor DBAn

63 0
64-bit Processor DBAn

Table 3-18 DBAn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DBA MSB:0 Data breakpoint virtual address for condition R/W Undefined Required

Table 3-17 DBS Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

40 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Figure 3-10 shows the format of the DBMn register; Table 3-19 describes the DBMn register field.

Figure 3-10 DBMn Register Format

3.7.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Required with data breakpoint n if the ASIDsup bit in the DBS register is 1, optional otherwise.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n. It is
located at drseg segment offset 0x2110 + 0x100 * n.

Figure 3-11 shows the format of the DBASIDn register; Table 3-20 describes the DBASIDn register fields. The width of
the ASID field for the compare is 8 bits. It is identical to the width of the ASID field in the EntryHi register used with
the TLB-type MMU.

Figure 3-11 DBASIDn Register Format

31 0
32-bit Processor DBMn

63 0
64-bit Processor DBMn

Table 3-19 DBMn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DBMn MSB:0

Data breakpoint address mask for condition:

R/W Undefined Required

31 20 19 16 15 8 7 0
32-bit Processor 0 VPE TCval ASID

63 20 19 16 15 8 7 0
64-bit Processor 0 VPE TCval ASID

Encoding Meaning

0 Corresponding address bit
compared

1 Corresponding address bit masked

3.7 Data Breakpoint Registers

EJTAG Specification, Revision 3.10 41

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Control n (DBCn) register what constitutes data breakpoint n: triggerpoint, breakpoint, ASID value
inclusion, load/store access fulfillment, ignore byte access, byte lane mask. This register is located at drseg segment
offset 0x2118 + 0x100 * n.

For description of “data bus” notation see Section 3.3.2 on page 24.

Figure 3-12 shows the format of the DBCn register; Table 3-21 describes the DBCn register fields.

Figure 3-12 DBCn Register Format

Table 3-20 DBASIDn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

VPE 11:8

This field indicates the value of the VPE id to use for
comparison and is used only if VPEuse in DBCn
register is 1 and the breakpoints are shared across
VPEs. If the breakpoints are not shared, then these
bits read zero, and writes are ignored.

R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

TCval 15:8

Value of the thread context that caused the Data
Breakpoint is jammed into these bits since the data
breaks are imprecise. Software can examine these
bits to determine which thread context actually
caused the data break.

R/W Undefined

Required if
MIPS MT is
implemented,

otherwise
Reserved.

ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined Required

0 MSB:20 Must be written as zeros; return zeros on read. 0 0 Reserved

31 24 23 22 21 18 17 14 13 12 11 8 7 4 3 2 1 0
32-bit Processor TC ASI

D
use

TC
use

0 BAI[7:0] No
SB

No
LB

0 BLM[7:0] VPE
use

TE 0 BE

63 32 31 24 23 22 21 14 13 12 11 4 3 2 1 0
64-bit Processor 0 TC ASI

D
use

TC
use

BAI[7:0] No
SB

No
LB

BLM[7:0] VPE
use

TE 0 BE

Encoding Meaning

0 Do not use VPE value in compare

1 Use VPE value in compare

42 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Table 3-21 DBCn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

TC 31:24

The value of TC (thread context) to match in the
comparison to determine if the data break is to be
taken. This comparison is effective only if the TCuse
bit is set to 1. Otherwise this TC value is ignored.

R/W Undefined

Required in
MIPS MT is
implemented.

Otherwise
Reserved.

ASIDuse 23

Use ASID value in compare for data breakpoint n:

Debug software should only set the ASIDuse if a
TLB in the implementation is used by the application
software.

This bit is read-only and reads as zero, if not
implemented.

R/W Undefined

Required if
ASIDsup in

DBS reg. is 1,
otherwise not
implemented

TCuse 22

Use TC value in comparison for data breakpoint n.

R/W Undefined

Required if
ASIDsup in

DBS reg. is 1,
otherwise not
implemented

BAI[7:0] 21:14

Byte access ignore. Each bit of this field determines
whether a match occurs on an access to a specific
byte of the database (BAI[0] controls matching for
data bus bits 7:0; BAI[1] controls matching for data
bus bits 15:8, etc.)., with the polarity of each bit, as
follows:

A match depends on a reference accessing one or
more of the non-ignored bytes. No matches will
occur if all bytes are ignored.

Debug software must adjust for endianess when
programming this field.

BAI[7:4] are read-only (R) and read as zeros for
32-bit processors.

R/W Undefined

Required for
byte lanes in

implementatio
n, otherwise

not
implemented

NoSB 13

Controls whether condition for data breakpoint is
ever fulfilled on a store access:

R/W Undefined Required

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

Encoding Meaning

0 Condition depends on access to
corresponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition can be fulfilled on store
access

1 Condition is never fulfilled on store
access

3.7 Data Breakpoint Registers

EJTAG Specification, Revision 3.10 43

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.7.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Required with data breakpoint n if data value compare is supported (indicated by either NoSVmatch
or NoLVmatch bits in DBS being 0), optional otherwise.

NoLB 12

Controls whether condition for data breakpoint is
ever fulfilled on a load access:

R/W Undefined Required

BLM[7:0] 11:4

Byte lane mask for value compare on data
breakpoint. BLM[0] masks byte at bits [7:0] of the
data bus, BLM[1] masks byte at bits [15:8], etc.:

Debug software must adjust for endianess when
programming this field.

BLM[7:4] are unimplemented for 32-bit processors.
BLM[7:0] are unimplemented if value compare is not
implemented, which is the case when NoSVmatch
and NoLVmatch bits in DBS are both 1. Bits are
read-only (R) and read as zeros if not implemented.

R/W Undefined

Required for
byte lanes in

implementatio
n and if value

compare,
otherwise not
implemented

VPEuse 17

Use VPE value in comparison for instruction
breakpoint n. This field is used only if the
breakpoints are shared across the VPEs of a MT core,
that is, the DBPshare bit is set in register DBP.

If the breakpoints are not shared, then these bits read
zero, and writes are ignored.

R/W Undefined

Required if
MIPS MT is
implemented.

Otherwise
Reserved.

TE 2

Use data breakpoint n as triggerpoint:

R/W 0 Required

BE 0

Use data breakpoint n as breakpoint:

R/W 0 Required

0 21:18,11:
8, 3, 1 Must be written as zeros; return zeros on read. 0 0 Reserved

Table 3-21 DBCn Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Condition can be fulfilled on load
access

1 Condition is never fulfilled on load
access

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Do not use it as triggerpoint

1 Use it as triggerpoint

Encoding Meaning

0 Do not use it as breakpoint

1 Use it as breakpoint

44 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is located at
drseg segment offset 0x2120 + 0x100 * n.

Figure 3-13 shows the format of the DBVn register; Table 3-22 describes the DBVn register field.

Figure 3-13 DBVn Register Format

3.8 Recommendations for Implementing Hardware Breakpoints

This section provides useful information for implementing instruction and data breakpoints.

3.8.1 Number of Instruction Breakpoints Without Single Stepping

If hardware single stepping is not implemented, then at least two instruction breakpoints are required. Four instruction
hardware breakpoints are recommended.

3.8.2 Data Breakpoints with Data Value Compares

Data breakpoints should be implemented with data value compares. Also, data value compares should be implemented
even if it is not possible to break on loads with precise data value compares. Refer to Section 3.8.4 on page 45 for more
information on precise exceptions.

3.8.3 Data Breakpoint Compare on Invalid Data

Data breakpoints should only compare on valid data, meaning they only generate debug exceptions based on valid data
in the compare. This does also apply to compare on store data for a store to an unaligned address. For example, no debug
exception should be generated for a bus error on a load that has a pending data breakpoint to compare on the data returned
by the load.

However, in some cases, the indication of invalid data is late relative to the data, for example, for a cache error as a result
of a complex error detection. In this case, data breakpoints can indicate a debug exception because the data was believed
to be valid at the time of the compare, and the pending error is then indicated to the debug handler through the DBusEP
or CacheEP bit in the Debug register, because the error occurred after the debug exception.

31 0
32-bit Processor DBVn

63 0
64-bit Processor DBVn

Table 3-22 DBVn Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DBV MSB:0

Data breakpoint data value for condition.

Debug software must adjust for endianess when
programming this field.

R/W Undefined Required

3.9 Breakpoint Examples

EJTAG Specification, Revision 3.10 45

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

However, for bus errors due to external events, the bus error indication usually is available when the compare in the data
breakpoint would take place. Thus it is possible to avoid a debug exception.

3.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

Data breakpoints are recommended to generate precise debug exceptions, if possible in the implementation. Thus the
DEPC register and DBD bit in the Debug register point to the load/store that caused the debug exception to occur. This
instruction can then be re-executed when execution resumes after the debug handler. However, data breakpoints are
allowed to cause imprecise debug exceptions when the breakpoint is set up with data value compares; for example, if
data breakpoints with compares on loaded data values cannot be made precise due to a non-blocking load. In this case,
the DEPC register and DBD bit in the Debug register point to an instruction in the execution flow after the load/store
that caused the imprecise debug exception. The BS bit can be updated when the match is detected, even though a debug
exception is not taken until later due to internal stalls (for example, a nulled instruction in the pipeline at the time the
match is detected). It is implementation specific as to which cases a data breakpoint can cause an imprecise debug
exception. It is recommended that the data breakpoints cause imprecise matches in as few cases as possible.

In a processor implementing the MIPS MT ASE, since instructions from multiple thread contexts may be interleaved in
the pipeline, imprecise data breakpoints is a bother since the thread taking the breakpoint exception may not be the thread
that caused the breakpoint. Hence, it is required that in a processor implementing MIPS MT, the hardware must jam the
value of the TC that caused the breakpoint in the TCval bits of the corresponding DBASIDn register. This must be done
irrespective of whether or not the data breakpoint exception is implemented as a precise or an imprecise debug exception,
for a consistent software implementation.

Implementations can require imprecise debug exceptions from data breakpoints on loads with value compares in a
specific address range, if re-execution of a load in this range is not acceptable. This case is possible if the load has side
effects such as removing an entry on a queue. Imprecise debug exceptions for value compares ensure that the destination
register is properly updated with the loaded value, whereby re-execution of the load is avoided.

3.9 Breakpoint Examples

This section provides several examples of instruction and data breakpoint uses.

3.9.1 Instruction Breakpoint Examples

This section provides examples that illustrate using an instruction break.

3.9.1.1 Instruction Break in Small Range of Instructions with ASID

This example shows how to set up an instruction breakpoint to break on the fetch of any one of the four instructions in
the virtual address range shown below:

0x0000 0010 J L1 // ASID = 0x5
0x0000 0014 NOP
0x0000 0018 J L2
0x0000 001C NOP

The break registers must be set up as follows:

• IBA0 = 0x0000 0010

• IBM0 = 0x0000 000C

• IBC0: BE=1, ASIDuse=1, ASID = 0x5, other bits zero

46 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

Note that IBA0 has the starting address, and IBM0 has the address mask.

3.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

In this example, instruction breakpoint 0 needs to be set up to break on the range 0x0000 0030 to 0x0000 0036, which
starts with the second part of an extended MIPS16e instruction:

0x0000 002e EXT // (1st part of MIPS16e inst.)
0x0000 0030 ADD // (2nd part)
0x0000 0032 SUB
0x0000 0034 SUB
0x0000 0036 SUB

The break registers must be set up as follows:

• IBA0 = 0x0000 0031

• IBM0 = 0x0000 0006

• IBC0: BE = 1, ASIDuse = 0, other bits zero

The CPU does not take a debug exception when fetching the second part of the ADD instruction, because it does not
constitute a whole instruction. The first break is on the SUB instruction at 0x0000 0032.

3.9.2 Data Breakpoint

This section provides three examples of data breakpoints.

3.9.2.1 Data Break on Load Access with ASID

This example shows how to perform a break on data breakpoint 0 when the CPU loads data 0xAAAA 0000 from
memory location 0x0000 0100 in ASID=0x7:

LW $2, 0x100($0) // ASID = 0x7

The break registers must be set up as follows:

• DBA0 = 0x0000 0100

• DBM0 = 0x0

• DBV0 = 0xAAAA 0000

• DBC0: BE = 1, NoLB = 0, NoSB = 1, BLM = 0, BAI = 0, ASIDuse = 1, ASID = 0x7, other bits zero

In this example, DBA0 contains the breakpoint address; DBM0 has the address mask; DBV0 has the data value; and
DBC0 indicates a breakpoint condition might be fulfilled on a load but not on a store, there is a value compare for a
corresponding byte, and an ASID is used.

3.9.2.2 Data Break on Store(s) to Halfword in Memory

This example shows a break on data breakpoint 0 when the CPU stores data in a specific halfword in memory. Stores to
the other halfword at the same address can be ignored. The data word is illustrated in Figure 3-14; the halfword for bits

3.9 Breakpoint Examples

EJTAG Specification, Revision 3.10 47

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

31:16 is shaded. The store instructions shown in Figure 3-14 alter the shaded halfword and cause a break if the breakpoint
registers are set up as shown below.

Figure 3-14 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:

• DBA0 = 0x0000 0200

• DBM0 = 0

• DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 11112, BAI = 00112, ASIDuse = 0, other bits zero

3.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

In this example, the most significant halfword in a given memory range is altered, and the most significant part of the
halfword is written a certain value. The data word is illustrated below; the halfword for bits 31:16 is shaded. The store
instructions shown in Figure 3-15 alter the shaded halfword and cause a break if the breakpoint registers are set up as
shown below.

Figure 3-15 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:

• DBA0 = 0x0000 0200

• DBM0 = 0x0000 00FC

• DBV0 = 0xAA00 0000

• DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 01112, BAI = 00112, ASIDuse = 0, other bits zero

3 2

Break on Memory Address 0x0000 0200 bit 31:16, Little Endian

31 0

SW $2, 0x0000 0200 bytes_valid = 11112
SH $2, 0x0000 0202 bytes_valid = 11002
SB $2, 0x0000 0202 bytes_valid = 01002
SB $2, 0x0000 0203 bytes_valid = 10002

Break on Memory Address range 0x0000 0200 - 0x0000 02FC
 Write to bits 31:16, bits 31:24 with value 0xAA, Little Endian

SW $2, 0x0000 0220 $2=0xAAXX XXXX bytes_valid = 11112
SH $2, 0x0000 0242 $2=0xXXXX AAXX bytes_valid = 11002
SB $2, 0x0000 0282 $2=0xXXXX XXXX bytes_valid = 01002
SB $2, 0x0000 02F3 $2=0xXXXX XXAA bytes_valid = 10002
‘X’ denotes undefined value.

3 2
31 0

48 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 Hardware Breakpoints

EJTAG Specification, Revision 3.10 49

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 49

PC Sampling

This chapter describes the optional PC sampling feature of EJTAG which is being introduced in the 3.1 version of the
EJTAG specification. It contains the following sections:

• Section 4.1, "Introduction"

• Section 4.2, "Overview of the PC Sampling Feature"

4.1 Introduction

It is often useful for program profiling and analysis purposes to sample the value of the PC periodically. This information
can be used for statistical profiling of the program akin to gprof. This information is also very useful for detecting
hot-spots in the code. In a multi-threaded environment, this information can be used to detect thread behavior and verify
thread scheduling mechanisms in the absence of the PDtrace facility. The rest of this chapter describes the PC sampling
feature. The PC sampling feature is optional within EJTAG. But EJTAG and the TAP controller must be implemented
if PC Sampling is required. When implemented, PC sampling cannot be turned on or off, that is, the PC value is
continually sampled.

4.2 Overview of the PC Sampling Feature

The presence or absence of the PC Sampling feature is available in the Debug Control register as bit 15 (PCS). As
mentioned already, if PC sampling is implemented, then the PC values are constantly sampled at the requested rate. The
sampled PC values are written into a TAP register. The old value in the TAP register is overwritten by a new value even
if this register has not be read out by the debug probe. The sample rate is specified in a manner similar to the PDtrace
synchronization period, with three bits. These bits in the Debug Control register are 8:6 and called PCSR (PC Sample
Rate). These three bits take the value 25 to 212 similar to SyncPeriod. Note that the processor samples PC even when it
is asleep, that is, in a WAIT state. This permits an analysis of the amount of time spent by a processor in WAIT state
which may be used for example to revert to a low power mode during the non-execution phase of a real-time application.
See Chapter 2, “Debug Control Register,” on page 15 for a description of the bits specified here in the Debug Control
register.

The sampled values includes a new data bit, the PC, the ASID of the sampled PC as well as the Thread Context id if the
processor implements the MIPS MT ASE. Figure shows the format of the sampled values in the TAP register PCsample.
The new data bit is used by the probe to determine if the PCsample register data just read out is new or already been read
and must be discarded.

Figure 4-1 TAP Register PCsample Format

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor continues
to sample the PC value even when it is in Debug mode.

Some of the lower sample periods can be too small with respect to the time needed to read out the sampled value. That
is, it might take 41 clock ticks to read a sample, while the smallest sample period is 32, hence the processor might

48 41 40 33 32 1 0
TC (for MIPS MT
processors only)

ASID PC Ne
w

50 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 PC Sampling

overwrite the sample before it has been full read out. Hence, the sample rate must be set to some appropriate value to
get a reasonable reading of the sampled PC values.

4.2.1 PC Sampling in Wait State

When the processor is in a WAIT state to save power for example, an external agent might want to know how long it
stays in the WAIT state. But counting cycles to update the PC sample value is a waste of power. Hence, when in a WAIT
state, the processor must simply switch the New bit to 1 each time it is set to 0 by the probe hardware. Hence, the external
agent or probe reading the PC value will detect a WAIT instruction for as long as the processor remains in the WAIT
state. When the processor leaves the WAIT state, then counting is resumed as before.

4.2.2 PC Sampling a MT Processor

In a multi-VPE implementation of a processor with MIPS MT, each VPE has its own TAP controller and will
independently sample the PC of the instructions executing in that VPE of the processor. In the context of a VPE, PC
sampling is not enabled for a VPE until that VPE is enabled. If there are no active TCs on a given VPE then no new PC
samples at available at the TAP controller PCsample register.

EJTAG Specification, Revision 3.10 51

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5

EJTAG Processor Core Extensions

This chapter describes the behavior for processors that support EJTAG. It contains the following sections:

• Section 5.1, "Overview"

• Section 5.2, "Debug Mode Execution"

• Section 5.3, "Debug Exceptions"

• Section 5.4, "Debug Mode Exceptions"

• Section 5.5, "Interrupts and NMIs"

• Section 5.6, "Reset and Soft Reset of Processor"

• Section 5.7, "EJTAG Instructions"

• Section 5.8, "EJTAG Coprocessor 0 Registers"

5.1 Overview

The extensions for EJTAG provide the following major features:

• Debug Mode, associated exceptions and dedicated debug vector

• Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception Return)

• CP0 registers: Debug, DEPC and DESAVE

• Memory-mapped debug segment (dseg) (optional)

• Interrupt and NMI control from Debug Control Register (DCR) (optional)

• Single step (optional)

• Debug interrupt request signal (optional)

Note that some of the features are optional.

The general description in this chapter covers MIPS32 and MIPS64 processors, implying an R4k-like privileged
environment. Differences for processors with R3k privileged environments are described in Appendix A.

5.2 Debug Mode Execution

Debug Mode is entered only through a debug exception. It is exited as a result of either execution of a DERET instruction
or application of a reset or soft reset.

When the processor is operating in Debug Mode it has access to the same resources, instructions, and CP0 registers as
in Kernel Mode. Restrictions on Kernel Mode access (non-zero coprocessor references, access to extended addressing
controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some additional capabilities
as described in this chapter.

52 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as Non-Debug Mode.
Debug software can determine if the processor is in Non-Debug Mode or Debug Mode through the DM bit in the Debug
register.

A debug exception in a processor implementing the MIPS MT ASE will cause all other TCs (Thread Contexts) in the
processor, except the one executing the exception handler, to be suspended from concurrent execution until the DERET.
Debug mode execution takes priority over all other TC scheduling rules in MIPS MT. A TC which is otherwise not
permitted to issue instructions, due to a Halted, non-Activated (see the MIPS MT specification) or OffLine state (see
section 5.8.1) may still be used to service a debug exception.

When a MIPS MT processor is operating in Debug Mode, it has access to the same resources and capabilities as if the
VPE in Debug Mode had the MVP bit of the VPEConf0 register set, allowing access to all VPEs of the processor.

The ability of an OffLine MIPS MT TC to execute in Debug mode makes it possible for EJTAG-based debuggers to
allow other TCs and/or other VPEs to continue executing while a particular TC has been stopped for debugging. The
Debug exception handler can cause the TC to put itself, and/or other TCs, in an OffLine state, then execute a DERET.
On exiting Debug mode, the processor will resume normal scheduling of “on-line” TCs, but the OffLine ones will remain
frozen until released by, e.g. service of a subsequent DINT Debug exception.

It is not a requirement in EJTAG, but it is left as an implementation option in multiprocessor/multicore systems whether
or not a global debug state is defined and can be set by the debugger to suspend other processors when one of the
processors in a multi-core system encounters debug exception. Similarly, implementation can also trigger re-starting of
other processors when the one in debug mode executes a DERET. See Appendix <TBD> for a description of this
mechanism.

5.2.1 Debug Mode Instruction Set

The full native ISA of the processor is accessible in Debug Mode.

Coprocessor loads and stores to the dseg segment are not supported. The operation of the processor is UNDEFINED if
a coprocessor load or store to dseg is executed in Debug Mode. Refer to Section 5.2.2 on page 52 for more information
on the dseg address space.

5.2.2 Debug Mode Address Space

Debug Mode access to unmapped address space is identical to that of Kernel Mode. Mapped areas are accessible as in
Kernel Mode, but only if a valid translation is immediately provided by the MMU.

This is because a memory access that would cause a TLB-type exception when tried from Kernel Mode, would, when
tried from Debug Mode, cause re-entry into Debug Mode through an exception (see Section 5.4 on page 68). Memory
accesses usually causing TLB-type exception are therefore not handled by the usual memory management routines if
these memory accesses are made while in Debug Mode.

Updating and handling of cached areas is the same as that in Kernel Mode.

In addition, an optional uncached and unmapped debug segment dseg (EJTAG area) appears in the address range
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF3F FFFF. The dseg segment thereby appears in the kseg part of the
compatibility segment, and access to kseg is possible with the dseg segment provided as described in Section 5.2.2.1 on
page 54 and Section 5.2.2.2 on page 55. Coprocessor loads and stores to the dseg segment are not allowed, as described
in Section 5.2.1 on page 52.

The dseg segment is implemented only if the Debug Control Register (DCR) is included in the implementation. Refer
to Chapter 5 on page 51 for more on the DCR. The implementation-dependent value of the NoDCR bit in the Debug

5.2 Debug Mode Execution

EJTAG Specification, Revision 3.10 53

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

register (see Section 5.8.1 on page 75) indicates the presence of the dseg segment as shown in Table 5-1. If the dseg
segment is not present, then all transactions from the processor in Debug Mode go to the Kernel Mode address space.
Debug software must check the DebugNoDCR bit before trying to access the dseg segment.

Conditions for access to the dseg segment are described in Section 5.2.2.2 on page 55 and Section 5.2.2.1 on page 54.
Figure 5-1 shows the layout of the virtual address space.

Figure 5-1 Virtual Address Spaces with Debug Mode Segments

Table 5-1 Presence of the dseg Segment

NoDCR bit in Debug Register dseg Presence

0 dseg Present

1 No dseg

0x4000 0000 0000 0000

0x8000 0000 0000 0000

64-bit Virtual Memory 32-bit Compatibility Address

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 00000

0xFFFF FFFF C000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF 8000 0000

0x0000 0000 7FFF FFFF

0x0000 0000 0000 0000

0xC000 0000 0000 0000

xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3

Kernel
Unmapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

User
Mapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped

User
Mapped

231-byte Compatibility Segment

231-byte Compatibility Segment

User
Mapped

Kernel
Unmapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

Debug
Unmapped
Uncached

0xFFFF FFFF FF3F FFFF

dseg

0xFFFF FFFF FF20 0000

Debug Mode Segment

The dseg appears at an address
range also used for access to kseg.
However, kseg is still available
when in Debug Mode.

54 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG registers) segment. The
dmseg segment is used when the probe services the memory segment. The drseg segment is used when the
memory-mapped debug registers are accessed. Table 5-2 shows the subdivision and attributes for the segments.

The SYNC instruction, followed by appropriate spacing (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed to ensure that an access to the dseg segment is committed (for example, after writing
to the dseg segment and before leaving Debug Mode). This procedure ensures that locations in the dseg segment are fully
updated for Non-Debug Mode, otherwise behavior of the processor is UNDEFINED.

5.2.2.1 Access to dmseg (EJTAG memory) Address Range

Table 5-3 shows the behavior of processor accesses in Debug Mode to the dmseg segment from
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF2F FFFF.

From Table 5-3, when ProbEn equals 0 for dmseg segment accesses, debug software accessed the dmseg segment when
the ProbEn bit was 0, indicating that there is no probe available to service the request. Debug software must read the
state of the ProbEn bit in the DCR register before attempting to reference the dmseg segment. However, accessing the
dmseg segment while ProbEn is 0 can occur because there is an inherent race between the debug software sampling the
ProbEn bit as 1 and the probe clearing it to 0. The probe can therefore not assume that a reference to the dmseg segment

Table 5-2 Physical Address and Cache Attribute for dseg, dmseg and drseg

Segment
Name

Subsegment
Name Virtual Address Reference Address

Cache
Attribute

dseg

dmseg
0xFFFF FFFF FF20 0000

to
0xFFFF FFFF FF2F FFFF

Because the dseg segment is serviced
exclusively by the EJTAG features, there
are no physical address per se. Instead the
lower 21 bits of the virtual address select
the appropriate reference in either EJTAG
memory or registers.

References are not mapped through the
TLB, nor do the accesses appear on the
external system memory interface.

Uncached

drseg
0xFFFF FFFF FF30 0000

to
0xFFFF FFFF FF3F FFFF

Table 5-3 Access to dmseg Segment Address Range

NoDCR bit in
Debug Register Transaction

ProbEn bit in
DCR register

LSNM bit in
Debug Register Access

1 x (Not present) 0 (read-only) Kernel Mode address space

0

Fetch

1 x dmseg

0 x See comments below regarding
behavior when ProbEn is 0

Load/Store

1
0 dmseg

1 Kernel Mode address space

0

1 Kernel Mode address space

0 See comments below regarding
behavior when ProbEn is 0

‘x’ denotes don’t care

5.2 Debug Mode Execution

EJTAG Specification, Revision 3.10 55

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

never occurs if the ProbEn bit is dynamically cleared to 0. If debug software references the dmseg segment when ProbEn
is 0, the reference hangs until it is satisfied by the probe.

There are no timing requirements with respect to transactions to the dmseg segment, which the probe services. Therefore
a system watchdog must be disabled during dseg segment transactions, so accesses can take any amount of time without
being terminated.

The protocol for accesses to the dmseg segment does not allow a transaction to be aborted once started, except by a reset
or soft reset.

Transactions of all sizes are allowed to the dmseg segment.

Merging is allowed for accesses to the dmseg segment, whereby for example two byte accesses can be merged to one
halfword access, and debug software is thus required to allow merging. However, merging must only occur for accesses
which can be combined into legal processors accesses, since processor access can only indicate accesses which can occur
due to a single load/store, thus not for example accesses to only first and last bytes of a word. The SYNC instruction,
followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section 5.2.4 on page 58) can be
executed to ensure that earlier accesses to the dmseg segment are committed thus will not be merged with later accesses.

The processor can do speculative fetching from the dmseg segment whereby it can fetch doublewords even if an
instruction that is not required in the execution flow is thereby fetched. For example if the DERET instruction is fetched
as the first word of a doubleword, then the instruction in the second word is not executed. For details, refer to architecture
description covering speculative fetching from uncached area in general.

If the TAP is not present in the implementation, then the operation of the processor is UNDEFINED if the dmseg
segment is accessed.

5.2.2.2 Access to drseg (EJTAG Registers) Address Range

Table 5-4 shows the behavior of processor accesses in Debug Mode to the drseg segment from 0xFFFF FFFF FF30 0000
to 0xFFFF FFFF FF3F FFFF.

Instruction fetches from the drseg segment are not allowed. The operation of the processor is UNDEFINED if the
processor tries to fetch from the drseg segment.

When the NoDCR bit is 0 in the Debug register it indicates that the processor is allowed to access the entire drseg
segment, therefore a response occurs to all transactions in the drseg segment.

The DCR register, at offset 0x0000 in the drseg segment, is always available if the dseg segment is present. Debug
software is expected to read the DCR register to determine what other memory-mapped registers exist in the drseg
segment. The value returned in response to a read of any unimplemented memory-mapped register is
UNPREDICTABLE, and writes are ignored to any unimplemented register in the drseg segment.

Table 5-4 Access to drseg Segment Address Range

NoDCR bit in
Debug Register Transaction

LSNM bit in
Debug Register Access

1 x 0 (read-only) Kernel Mode address space

0

Fetch x Operation of the processor is UNDEFINED at fetch

Load/Store
0 drseg segment (see comments below the table)

1 Kernel Mode address space

‘x’ denotes don’t care

56 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

The allowed transaction size is limited for the drseg segment. Only word size transactions are allowed for 32-bit
processors, and only doubleword size transactions are allowed for 64-bit processors. Operation of the processor is
UNDEFINED for other transaction sizes.

5.2.3 Debug Mode Handling of Processor Resources

Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in Kernel Mode.
Some identical cases are described in the following subsections for emphasis.

In addition, see the following related sections for more information:

• Section 5.4, "Debug Mode Exceptions" covering exception handling in Debug Mode.

• Section 5.5, "Interrupts and NMIs" for handling in both Debug and Non-Debug Modes.

• Section 5.6, "Reset and Soft Reset of Processor" for handling in both Debug and Non-Debug Modes.

5.2.3.1 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Unusable
exception in Kernel Mode (see Section 5.4.1 on page 68). Therefore Debug Mode software cannot reference
Coprocessors 1 through 2 without first setting the respective enable in the Status register.

5.2.3.2 Random Register

For TLB-based MMU implementations, the Random register (CP0 register 1, select 0) optionally can be frozen in Debug
Mode, whereby execution with and without debug exceptions are identical with respect to TLB exception handling.

If the values that the Random register provides cannot be identical in behavior to the case where debug exceptions do
not occur, then freezing the Random register has no effect, because execution with and without debug exceptions will
not be identical. Stalls when entering Debug Mode (for example, due to pending scheduled loads resolved at context
save in the debug handler) can make it impossible in some implementations to ensure that the Random register will
provide the same set of values when running with and without debug exceptions.

There is no bit to indicate or control if the Random register is frozen in Debug Mode, so the user must consult system
documentation.

5.2.3.3 Count Register

The Count register (CP0 register 9) operation in Debug Mode depends on the state of the CountDM bit in the Debug
register (see Section 5.8.1 on page 75). The Count Register has three possible configurations, depending on the
implementation:

• Count register runs in Debug Mode the same as in Non-Debug Mode

• Count register is stopped in Debug Mode but is running in Non-Debug Mode

• The CountDM bit controls the Count register behavior in Debug Mode whereby it can be either running or stopped

Stopping of the Count register in Debug Mode is allowed in order to prevent generation of an interrupt at every return
to Non-Debug Mode, if the debug handler takes so long to execute that the Count/Compare registers request an interrupt.
In this case, system timing behavior might not be the same as if no debug exception occurred.

5.2 Debug Mode Execution

EJTAG Specification, Revision 3.10 57

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.2.3.4 WatchLo/WatchHi Registers

The WatchLo/WatchHi registers (CP0 Registers 18 and 19) are inhibited from matching any instruction executed in
Debug Mode.

5.2.3.5 CacheErr Register

The MIPS32 and MIPS64 architecture specifications state that operation of the CacheErr register is implementation
dependent, so the CacheErr register handling described in the EJTAG Architecture is a recommendation only. Debug
software can therefore not depend on the CacheErr register being implemented as recommended below.

The recommendation is that a CacheErr shadow register captures information presented when a cache error is indicated,
and holds this information until a later update of the CacheErr register when a Cache Error exception occurs. The
CacheErr shadow register is updated at “cache error indication AND (in Non-Debug Mode OR (in Debug Mode AND
the IEXI bit is set))”. The CacheErr shadow register is not updated when in Debug Mode and the IEXI bit is cleared,
but a cache error in this case only occurs due to an instruction executed in Debug Mode, if proper debug handler entry
code is used. The CacheErr register is only updated at a Cache Error exception, thus not at a Debug Mode Cache Error
exception.

If the CacheErr register value is to be correct for a cache error deferred through Debug Mode, then no cache errors may
occur when in Debug Mode and the IEXI bit is set. The debug handler must therefore ensure the entry and exit code,
executed with IEXI is set, can not cause cache errors, otherwise the CacheErr register contents presented to Non-Debug
Mode is invalid.

5.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair

A DERET instruction does not clear the LLbit (see Section 5.7.1 on page 74), neither does the occurrence of a debug
exception. Loads and stores to uncacheable locations that do not match the physical address of the previous LL
instruction do not affect the result of the SC instruction. The value of the LLbit is not directly visible by software.

5.2.3.7 SYNC Instruction Behavior

The SYNC instruction is used to request the hardware to commit certain operations before proceeding. For example, a
SYNC is required to remove memory hazards on reference to the dseg segment. Also, the SYNC instruction ensures that
status bits in the Debug register and the hardware breakpoint registers are fully updated before the debug handler
accesses them and before Debug Mode is exited. Similarly, a SYNC combined with appropriate spacing (see Section
5.2.4 on page 58) is used to remove Coprocessor 0 (CP0) hazards.

The SYNC instruction must provide specific behavior as described in Table 5-5.

The SYNC instruction must be executed before leaving Debug Mode in order to commit all accesses to the dseg segment,
for example to commit accesses to set up hardware breakpoints.

Table 5-5 SYNC Instruction References

Behavior Section References

Commit accesses to the dseg segment See Section 5.2.2 on page 52

Update the DDBLImpr and DDBSImpr bits in the Debug register See Section 5.3.7 on page 63 and
Section 5.8.1 on page 75

Update the BS bits in the IBS and DBS registers in drseg See Section 3.4.2 on page 29

Update the IBusEP, DBusEP, CacheEP, and MCheckP bits in the Debug register See Section 5.4.2 on page 69 and
Section 5.8.1 on page 75

58 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

It may be required to remove hazards in relation to the SYNC instruction as described in Section 5.2.4 on page 58.

Other requirements of the SYNC instruction are described in the MIPS32 and MIPS64 Architecture specifications.

5.2.4 CP0 and dseg Segment Hazards

Because resources controlled via Coprocessor 0 and EJTAG memory and registers in the dseg segment affect the
operation of various pipeline stages of the processor, manipulation of these resources may produce results that are not
detectable by subsequent instructions for some number of execution cycles. When no hardware interlock exists between
one instruction that causes an effect that is visible to a second instruction, a CP0 or dseg segment hazard exists.

In Release 1 of the MIPS32 and MIPS64 Architectures, hazards were relegated to implementation-dependent
cycle-based solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an
insufficient and error-prone practice that must be addressed with a firm compact between hardware and software. As
such, new instructions have been added to Release 2 of the Architecture which act as explicit barriers that eliminate
hazards. To the extent that it was possible to do so, the new instructions have been added in such a way that they are
backward-compatible with existing MIPS processors.

5.2.4.1 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. In Table 5-6 below, the final column lists the “typical” spacing required in implementations of Release 1
of the Architecture to allow the consumer to eliminate the hazard. The “typical” value shown in these tables represent
spacing that is in common use by operating systems today. An implementation of Release 1 of the Architecture which
requires less spacing to clear the hazard (including one which has full hardware interlocking) should operate correctly
with an operating system which uses this hazard table. An implementation of Release 1 of the Architecture which
requires more spacing to clear the hazard incurs the burden of validating kernel code against the new hazard
requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than one,
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this reason
that MIPS Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruction.
Table 5-6 lists execution hazards related to EJTAG.

Table 5-6 Execution Hazards

Producer → Consumer Hazard On

“Typical”
Spacing
(Cycles)

SYNC → DERET dseg memory
locations 2

SYNC → Load / Store

BS bits in the
IBS and DBS
registers in
drseg

2

5.2 Debug Mode Execution

EJTAG Specification, Revision 3.10 59

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Dependencies from the SYNC instruction as producer takes effect since specific updates of the dseg segment and
resolving of pending imprecise exception indications are triggered by the SYNC instruction. This is described in Section
5.2.3.7 on page 57.

Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. There are no instruction hazards that are specific to EJTAG.

5.2.4.2 Hazard Clearing Instructions

Table 5-7 lists the instructions designed to eliminate hazards.

5.2.4.3 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for
compatibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with
both Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions. These
encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date the MIPS
architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or JR.HB instructions

SYNC → MFC0 Debug

DebugDDBSImpr,
DebugDDBLImpr,
DebugIBusEP,
DebugDBusEP,
DebugCacheEP,
DebugMCheckP

2

MTC0 DEPC → DERET DEPC 2

MTC0 Debug → DERET Debug 2

MTC0
Debug[LSNM] → Load / Store in dseg Debug[LSNM] 3

MTC0
Debug[IEXI] → Instructions that can cause an

imprecise exception Debug[IEXI] 3

Table 5-7 Hazard Clearing Instructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

Table 5-6 Execution Hazards

Producer → Consumer Hazard On

“Typical”
Spacing
(Cycles)

60 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

can be included in existing software for backward and forward compatibility. See the JALR.HB and JR.HB instructions
for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on
processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

The SSNOP and EHB instructions are fully described in the MIPS32 and MIPS64 Architecture for Programmers,
Volume II.

5.3 Debug Exceptions

This section describes issues related to debug exceptions. Debug exceptions bring the processor from Non-Debug Mode
into Debug Mode. Implementations need only support those debug exceptions that are applicable to that implementation.

Exceptions can occur in Debug Mode, and these are denoted as debug mode exceptions. These exceptions are handled
differently from exceptions that occur in Non-Debug Mode, which are described in Section 5.4 on page 68.

5.3.1 Debug Exception Priorities

Table 5-8 lists the exceptions that can occur in Non-Debug Mode in order of priority, from highest to lowest. The table
also categorizes each exception with respect to type (debug or non-debug). Each debug exception has an associated status
bit in the Debug register (indicated in the table in parentheses). Refer to Section 5.8.1 on page 75 for more information.

Table 5-8 Priority of Non-Debug and Debug Exceptions

Priority Exception Type of Exception

Highest Reset
Non-debug

Soft reset

Debug Single Step

DebugDebug Interrupt; by external signal (DINT), from EjtagBrk in TAP, or through use
of EJTAG Boot.

Debug Data Break Load/Store Imprecise (DDBLImpr/DDBSImpr)

Nonmaskable Interrupt (NMI)

Non-debug
Machine Check

Interrupt

Deferred Watch

Debug Instruction Break Debug

Watch on instruction fetch

Non-debug

Address error on instruction fetch

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

5.3 Debug Exceptions

EJTAG Specification, Revision 3.10 61

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

The specific implementation determines which exceptions can occur and the priority of asynchronous exceptions, such
as interrupts.

5.3.2 Debug Exception Vector Location

The same debug exception vector location is used for all debug exceptions. The ProbTrap bit in the EJTAG Control
Register (ECR) in the optional Test Access Port (TAP) determines the vector location.

If the TAP is not implemented, then the debug exception vector location is as if ProbTrap is 0.

5.3.3 General Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in a branch delay slot. The value loaded into the DEPC register is either
the current PC (if the instruction is not in the delay slot of a branch) or the PC of the branch or jump (if the instruction
is in the delay slot of a branch or jump).

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are updated
appropriately depending on the debug exception.

• DExcCode field in the Debug register is undefined.

• Halt and Doze bits in the Debug register are updated appropriately.

• IEXI bit is set to inhibit imprecise exceptions in the start of the debug handler.

Debug Breakpoint; execution of SDBBP instruction Debug

Other execution-based exceptions Non-debug

Debug Data Break on Load/Store address match only
or Debug Data Break on Store address+data value match Debug

Watch on data access

Non-debug

Address error on data access

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Debug

Table 5-9 Debug Exception Vector Location

ProbTrap bit in ECR register Debug Exception Vector Address

0 0xFFFF FFFF BFC0 0480

1 0xFFFF FFFF FF20 0200 in dmseg

Table 5-8 Priority of Non-Debug and Debug Exceptions (Continued)

Priority Exception Type of Exception

62 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

• DM bit in the Debug register is set to 1.

• The processor begins fetching instructions from the debug exception vector.

The value loaded into the DEPC register represents the restart address from the debug exception and does not need to
be modified by the debug exception handler software. Debug software need only look at the DBD bit in the Debug
register if it wishes to identify the address of the instruction that actually caused a precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register indicate the
occurrence of distinct debug exceptions, except when a Debug Data Break Load/Store Imprecise exception occurs (see
Section 5.3.7 on page 63). Note that occurrence of an exception while in Debug mode will clear these bits. The handler
can thereby determine whether a debug exception or an exception in Debug Mode occurred.

Also note that multiple cause bits may be set, but the priority of the debug exception or interrupt dictates the order in
which they are handled. For example, since DSS is the highest priority Debug exception, if it occurs, it will always be
taken first. Then, after it DERETS, other debug exceptions can be taken. For example, assume that the processor is in
single-step mode in a branch delay slot, and waiting to go past the delay slot to enter the DSS exception. At the branch
delay slot, it could get a DINT or other lower priority Debug exception. In this case, it would not take the lower
exception, but enter Debug Mode past the delay slot. The entry into Debug Mode will clear the DINT. It would process
the single-step exception and DERET to normal non-debug mode. Note that in practice, not many cores set multiple
cause bits in the Debug register since the highest priority debug exception is taken, and the others are cleared on entry
to Debug Mode as already specified.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

The overall exception processing flow happens in hardware before setting PC to point to the debug exception vector is
shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← BranchInstructionPC
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← DebugExceptionType
DebugDExcCode ← UNPREDICTABLE
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugIEXI ← 1
DebugDM ← 1
if ECRProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
else

PC ← 0xFFFF FFFF BFC0 0480
endif

5.3.4 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of the DEPC register and
the DBD bit in the Debug register indicate that the SDBBP instruction caused the debug exception.

Debug Register Debug Status Bit Set

DBp

5.3 Debug Exceptions

EJTAG Specification, Revision 3.10 63

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.3.5 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed instruction.
The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hardware
breakpoint match. This exception can only occur if instruction hardware breakpoints are implemented (see Chapter 3 on
page 19).

Debug Register Debug Status Bit Set

DIB

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.3.6 Debug Data Break Load/Store Exception

A Debug Data Break Load/Store exception occurs when a data hardware breakpoint matches the load/store address of
an executed load/store instruction. The DEPC register and DBD bit in the Debug register indicate the load/store
instruction that caused the data hardware breakpoint to match, as this is a precise debug exception. The load/store
instruction that caused the debug exception has not completed (it has not updated the destination register or memory
location), and the instruction therefore is executed on return from the debug handler. This exception can only occur if
data hardware breakpoints with precise data breaks are implemented (see Chapter 3 on page 19).

Debug Register Debug Status Bit Set

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.3.7 Debug Data Break Load/Store Imprecise Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches a load/store
access of an executed load/store instruction, if it is not possible to take a precise debug exception on the instruction. This
case occurs when a data hardware breakpoint was set up with a value compare, and a load access did not return data until
after the load instruction had left the pipeline as for non-blocking loads. The DEPC register and the DBD bit in the Debug
register indicate an instruction later in the execution flow instead of the load/store instruction that caused the data
hardware breakpoint to match. The DDBLImpr/DDBSImpr bits in the Debug register indicate that a Debug Data Break
Load/Store Imprecise exception occurred. The instruction that caused the Debug Data Break Load/Store Imprecise
exception will have completed. It updates its destination register, and is not executed on return from the debug handler.

64 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

This exception can only occur if data hardware breakpoints with imprecise data breakpoints are implemented (see
Chapter 3 on page 19).

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug exception if the
load/store transaction that made the data hardware breakpoint match did not complete until after another debug exception
occurred. In this case, the other debug exception was the cause of entering Debug Mode, so the DEPC register and the
DBD bit in Debug register point to this instruction. DDBLImpr/DDBSImpr are set concurrently with the status bit for
that debug exception.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed in Debug Mode before the DDBLImpr and DDBSImpr bits in the Debug register
and the BS bits for the data hardware breakpoint are read in order to ensure that all imprecise breaks are resolved and
the bits are fully updated. A match of the data hardware breakpoint is indicated in DDBLImpr/DDBSImpr so the debug
handler can handle this together with the debug exception.

This scheme ensures that all breakpoints matching due to code executed before the debug exception are indicated by the
DDBLImpr, DDBSImpr, and BS bits for the following debug handler. Matches are neither queued nor do they cause
debug exceptions at a later point. A debug exception occurring later than the debug exception handler is therefore caused
by code executed in Non-Debug Mode after the debug exception handler.

Debug Register Debug Status Bit Set

DDBLImpr for a load instruction or DDBSImpr for a store instruction

Additional State Saved

None

Entry Vector Used

Debug exception vector

5.3.8 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken a single
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting of a
jump/branch instruction and the instruction in the associated delay slot. The SSt bit in the Debug register enables Debug
Single Step exceptions. They are disabled on the first execution step after a DERET.

The DEPC register points to the instruction on which the Debug Single Step exception occurred, which is also the next
instruction to execute when returning from Debug Mode. The debug software can examine the system state before this
instruction is executed. Thus the DEPC will not point to the instruction(s) that have just executed in the execution step,
but rather the instruction following the execution step. The Debug Single Step exception never occurs on an instruction
in a jump/branch delay slot, because the jump/branch and the instruction in the delay slot are always executed in one
execution step; thus the DBD bit in the Debug register is never set for a Debug Single Step exception.

Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if a non-debug exception occurs
(other than reset or soft reset), a Debug Single Step exception is taken on the first instruction in the non-debug exception
handler. The non-debug exception occurs during the execution step, and the instruction(s) that received a non-debug
exception counts as the execution step.

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
causes a Debug Breakpoint exception with the DEPC register pointing to the SDBBP instruction. Also, returning to an
instruction (not jump/branch) just before the SDBBP instruction causes a Debug Single Step exception with the DEPC
register pointing to the SDBBP instruction.

5.3 Debug Exceptions

EJTAG Specification, Revision 3.10 65

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority over all exceptions,
except resets and soft resets.

Debug Single Step exception is only possible when the NoSSt bit in the Debug register is 0 (see Section 5.8.1 on page
75).

In an core that implements the MIPS MT ASE, the SSt bit is instantiated per TC. If the SSt bit of the TC is set, a Debug
exception will be taken by that TC after any non-Debug mode instruction is executed. Other TCs with SSt cleared are
scheduled and issue instructions normally according to the scheduling policy in force. Global single-step operation of a
VPE can be achieved by setting SSt for all TCs for the specified VPE.

When the single-step exception bit is set for multiple TCs, then the preferred behavior applies it to each TC
independently and independent of the scheduling policy. This has implications for the software observable instruction
execution completion order. Three examples are shown in Figure 5-2, Figure 5-3, and Figure 5-4. In Figure 5-2 there are
two threads TC0 and TC1, and thread TC0 has its SSt bit set but thread TC1 does not have its SSt bit set. In Figure 5-3,
there are two threads and both their SSt bits are set. In Figure 5-4, there are four threads, and two threads have their SSt
bits set and the other two do not. The figures show the observed instruction completion order for each of the cases. The
notation used is TC#.Instn#.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

66 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Figure 5-2 Example 1: Single-stepping one thread TC0 with non-single-stepping thread TC1

Figure 5-3 Example 2: Single-stepping two threads TC0 and TC1

Figure 5-4 Example 3: Single-stepping two threads TC0 and TC1 with other threads TC2 and TC3

0.0 - DSS
0.x - dexc
0.x - DERET
1.0 - completes

0.1 - DSS
0.x - dexc
0.x - DERET
1.1 - completes
0.1 - completes

0.0 - completes

...

0.0 - DSS
0.x - dexc handler
0.x - DERET
1.0 - DSS
1.x - dexc handler
1.x - DERET
0.0 - completes
1.0 - completes
0.1 - DSS
0.x - dexc handler
0.x - DERET
...

0.0 - DSS
0.x - dexc handler
0.x - DERET
1.0 - completes
2.0 - DSS
2.x - dexc handler
2.x - DERET
3.0 - completes
0.0 - completes
1.1 - completes
2.0 - completes
3.1 - completes
0.1 - DSS
0.x - dexc handler
0.x - DERET
1.2 - completes
...

5.3 Debug Exceptions

EJTAG Specification, Revision 3.10 67

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.3.9 Debug Interrupt Exception

The Debug Interrupt exception is an asynchronous debug exception that is taken as soon as possible, but with no specific
relation to the executed instructions. The DEPC register and the DBD bit in the Debug register reference the instruction
at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor is in Debug Mode, and pending requests are cleared when the
processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

A debug interrupt restarts the pipeline if stopped by a WAIT instruction and the processor clock is restarted if it was
stopped due to a low-power mode.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

The possible sources for debug interrupts depend on the implementation. The following sources can cause Debug
Interrupt exceptions:

• The DINT signal from the probe

The optional DINT signal from the probe can request a debug interrupt on a low (0) to high (1) transition. The
DINTsup bit in the Implementation register in the Test Access Port (TAP) indicates whether the DINT signal from
the probe to the target processor is implemented (see Section 6.5.2 on page 94). The timing requirements for the
DINT signal are shown in Section 8.2.2 on page 119.

The DINT signal can be synchronized to the processor clock domain before edge detection while still observing the
required timing of the DINT signal. If the CPU clock speed or clocking scheme is such that the required timing does
not leave enough time for synchronization or clock wake-up, then the DINT pulse is extended by the target system in
the processor.

The EjtagBrk bit in the EJTAG Control register provides similar functionality similar to DINT from the probe, but
with higher latency.

• The EjtagBrk Bit in the EJTAG Control Register

The EjtagBrk bit in the EJTAG Control register requests a Debug Interrupt exception when set (see Section 6.5.5 on
page 99).

• A debug boot by EJTAGBOOT

The EJTAGBOOT feature allows a debug interrupt to be requested immediately after a reset or soft reset has
occurred, and before the first instruction is fetched from the reset exception vector (see Section 5.6.1 on page 71 and
Section 6.4.2 on page 91).

• An implementation-specific debug interrupt signal to the processor

Through the availability of an optional debug interrupt request signal to the processor system, an external device can
request a Debug Interrupt exception, for example, when a signal goes from deasserted to asserted.

68 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.4 Debug Mode Exceptions

The handling of exceptions generated in Debug Mode, other than through resets and soft resets, differs from those
exceptions generated in Non-Debug Mode in that only the Debug and DEPC registers are updated. All other CP0
registers are unchanged by an exception taken in Debug Mode. The exception vector is equal to the debug exception
vector (see Section 5.3.2 on page 61), and the processor stays in Debug Mode.

Reset and soft reset are handled as when occurring in Non-Debug Mode (see Section 5.6 on page 71).

5.4.1 Exceptions Taken in Debug Mode

Only some Non-Debug Mode exception events cause exceptions while in Debug Mode. Remaining events are blocked.
Exceptions occurring in Debug Mode have the same relative priorities as the Non-Debug Mode exceptions for the same
exception event. These exceptions are called Debug Mode <Non-Debug Mode exception name>. For example, a Debug
Mode Breakpoint exception is caused by execution of a BREAK instruction in Debug Mode, and a Debug Mode Address
Error exception is caused by an address error due to an instruction executed in Debug Mode.

Table 5-10 lists all the Debug Mode exceptions with their corresponding non-debug exception event names, priorities,
and handling.

Table 5-10 Exception Handling in Debug Mode

Priority Event in Debug Mode Debug Mode Handling

Highest Reset Reset and soft reset handled as for
Non-Debug Mode, see Section 5.6 on
page 71.Soft reset

Debug Single Step

Blocked
Debug Interrupt

Debug Data Break Load/Store Imprecise

NMI

Machine Check Re-enter Debug Mode

Interrupt

Blocked
Deferred Watch

Debug Instruction Break, DIB

Watch on instruction fetch

Address error on instruction fetch

Re-enter Debug Mode

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Debug Breakpoint; execution of SDBBP instruction Re-enter Debug Mode as for execution of
the BREAK instruction

Other execution-based exceptions Re-enter Debug Mode

5.4 Debug Mode Exceptions

EJTAG Specification, Revision 3.10 69

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

The specific implementation determines which exceptions can occur. Exceptions that are blocked in Debug Mode are
simply ignored, not causing updates in any state.

Handling of the exceptions causing Debug Mode re-enter are described below.

5.4.2 Exceptions on Imprecise Errors

Exceptions on imprecise errors are possible in Debug Mode due to a bus error on an instruction fetch or data access,
cache error, or machine check.

The IEXI bit in the Debug register blocks imprecise error exceptions on entry or re-entry into Debug Mode. They can
be re-enabled by the debug exception handler once sufficient context has been saved to allow a safe re-entry into Debug
Mode and the debug handler.

Pending exceptions due to instruction fetch bus errors, data access bus errors, cache errors, and machine checks are
indicated and controlled by the IBusEP, DBusEP, CacheEP and MCheckP bit in the Debug register.

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed in Debug Mode before the IBusEP, DBusEP, CacheEP, and MCheckP bits are read
in order to ensure that all pending causes for imprecise errors are resolved and all bits are fully updated.

Those bits required to handle the possible imprecise errors in an implementation are implemented as R/W, otherwise
they are read only.

5.4.3 Debug Mode Exception Processing

All exceptions that are allowed in Debug Mode (except for reset and soft reset) have the same basic processing flow:

• The DEPC register is loaded with the PC at which execution will be restarted and the DBD bit is set appropriately in
the Debug register. The value loaded into the DEPC register is either the current PC (if the instruction is not in the
delay slot of a branch or jump) or the PC of the branch or jump if the instruction is in the delay slot of a branch or
jump).

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are all cleared to
differentiate from debug exceptions where at least one of the bits are set.

Debug Data Break Load/Store address match only or
Debug Data Break Store address+data value match Blocked

Watch on data access

Address error on data access

Re-enter Debug Mode

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Blocked

Table 5-10 Exception Handling in Debug Mode (Continued)

Priority Event in Debug Mode Debug Mode Handling

70 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

• The DExcCode field in the Debug register is updated to indicate the type of exception that occurred.

• The Halt and Doze bits in the Debug register are UNPREDICTABLE.

• The IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

• The DM bit in the Debug register is unchanged, leaving the processor in Debug Mode.

• The processor is started at the debug exception vector, specified in Section 5.3.2 on page 61.

The value loaded into the DEPC register represents the restart address for the exception; typically debug software does
not need to modify this value at the location of the debug exception. Debug software need not look at the DBD bit in the
Debug register unless it wishes to identify the address of the instruction that actually caused the exception in Debug
Mode.

It is the responsibility of the debug handler to save the contents of the Debug, DEPC, and DESAVE registers before
nested entries into the handler at the debug exception vector can occur. The handler returns to the debug exception
handler by a jump instruction, not a DERET, in order to keep the processor in Debug Mode.

The cause of the exception in Debug Mode is indicated through the DExcCode field in the Debug register, and the same
codes are used for the exceptions as those for the ExcCode field in the Cause register when the exceptions with the same
names occur in Non-Debug Mode, with addition of the code 30 (decimal) with the mnemonic CacheErr for cache errors.

No other CP0 registers or fields are changed due to the exception in Debug Mode.

The overall processing flow for exceptions in Debug Mode is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← BranchInstructionPC
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← 0
DebugDExcCode ← DebugExceptionType
DebugHalt ← UNPREDICTABLE
DebugDoze ← UNPREDICTABLE
DebugIEXI ← 1
if ECRProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
else

PC ← 0xFFFF FFFF BFC0 0480
endif

5.5 Interrupts and NMIs

Interrupts and NMIs are handled for EJTAG-compliant processors as described in the following subsections.

5.5.1 Interrupts

Interrupts are requested through either asserted external hardware signals or internal software-controllable bits. Interrupt
exceptions are disabled when any of the following conditions are true:

• The processor is operating in Debug Mode

5.6 Reset and Soft Reset of Processor

EJTAG Specification, Revision 3.10 71

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

• The Interrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (see Section 2-1, "DCR Register
Field Descriptions" on page 16)

• A non-EJTAG related mechanism disables the interrupt exception

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

5.5.2 NMIs

An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator holds the NMI
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:

• The Processor is operating in Debug Mode

• The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared, see Section 2-1, "DCR Register Field
Descriptions" on page 16

If an asserting edge on the NMI signal to the processor is detected while NMI exception is disabled, then the NMI request
is held pending and is deferred until NMI exceptions are no longer disabled.

A pending NMI is indicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

5.6 Reset and Soft Reset of Processor

This section covers the handling of issues with respect to resets and soft resets. For EJTAG features, there are no
difference between a reset and a soft reset occurring to the processor; they behave identically in both Debug Mode and
Non-Debug Mode. References to reset in the following therefore refers to both reset (hard reset) and soft reset.

5.6.1 EJTAGBOOT Feature

The EJTAGBOOT feature allows a debug interrupt to be requested as a result of a reset, whereby a Debug Interrupt
exception is taken after reset, and before any of the instructions from the reset exception vector are executed.

The debug exception handler is in this case provided by the probe through the dmseg segment, even if no instructions
can be fetched from the Reset exception handler.

Control and details of EJTAGBOOT are described in Section 6.4.2 on page 91.

5.6.2 Reset from Probe

While asserted, the RST* signal from the probe is required to generate a reset or soft reset to the system. The SRstE bit
in the Debug Control Register does not mask this source. See Section 8.1.3 on page 117 for more information.

5.6.3 Processor Reset by Probe through Test Access Port

The PrRst bit in the EJTAG Control register can optionally cause a reset depending on the implementation. If a reset
occurs, then all parts of the system are reset, because partial resets are not allowed.

72 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.6.4 Reset Occurred Indication through Test Access Port

The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the event to the probe.

Refer to Section 6.5.5 on page 99 for more information on the EJTAG Control Register.

5.6.5 Soft Reset Enable

The optional Soft Reset Enable (SRstE) bit in the Debug Control Register (DCR) can mask the soft reset signal outside
the processor. Because SRstE masks the soft reset signal before it arrives at the processor, there is no masking of soft
reset within the processor itself.

5.6.6 Reset of Other Debug Features

The operation of processor resets and soft resets also apply to resets of the following:

• Debug Control Register (DCR), see Chapter 2 on page 15

• Hardware Breakpoint, see Chapter 3 on page 19

• Test Access Port (TAP) EJTAG Control Register, see Chapter 6 on page 85

5.7 EJTAG Instructions

The SDBBP and DERET instructions are added to the processor’s instruction set as part of the required EJTAG features.
These instructions are described on the next two pages.

5.7 EJTAG Instructions

EJTAG Specification, Revision 3.10 73

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

SDBBP Instruction

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

A Reserved Instruction Exception is signaled if EJTAG is not implemented.

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException() /* See Section 5.3.3 on page 61 */

else
SignalDebugModeBreakpointException() /* See Section 5.4.3 on page 69 */

endif

Exceptions:

Debug Breakpoint exception
Debug Mode Breakpoint exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

15 11 10 5 4 0

RR

11101
code

SDBBP

00001

MIPS16e
Format

5 6 5

Software Debug Breakpoint SDBBP

74 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

5.7.1 DERET Instruction

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode, the operation of the processor is UNDE-
FINED otherwise.

The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch or jump instruc-
tion.

Operation:if DebugDM = 1 then
DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPCPCWIDTH-1..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
else

UNDEFINED
endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET

5.8 EJTAG Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 75

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8 EJTAG Coprocessor 0 Registers

The Coprocessor 0 registers for EJTAG are shown in Table 5-11. Each register is described in more detail in the
following subsections.

The CP0 instructions MTC0, MFC0, DMTC0, and DMFC0 work with the three EJTAG CP0 registers as per the MIPS32
and MIPS64 Architecture specifications.

Operation of the processor is UNDEFINED if the Debug, DEPC, or DESAVE registers are written from Non-Debug
Mode. The value of the Debug, DEPC, or DESAVE registers is UNPREDICTABLE when read from Non-Debug Mode,
unless otherwise explicitly stated in the individual register description. However, for test purposes, the implementations
can allow writes to and reads from the registers from Non-Debug Mode.

To avoid pipeline hazards, there must be an appropriate spacing, refer to Section 5.2.4 on page 58, between the update
of the Debug and DEPC registers by MTC0/DMTC0 and use of the new value. This applies for example to modification
of the LSNM bit of the Debug register and a load/store affected by that bit.

In a processor implementing the MIPS MT ASE, each of the Coprocessor 0 EJTAG registers described above is
instantiated per VPE. The exception is the SSt and OffLine bits in the Debug register which is instantiated per-TC.

5.8.1 Debug Register (CP0 Register 23, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also controls
single stepping. This register indicates low-power and clock states on debug exceptions, debug resources, and other
internal states.

Only the DM bit and the EJTAGver field are valid when read from the Debug register in Non-Debug Mode; the value
of all other bits and fields is UNPREDICTABLE.

The following bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

• DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr are updated on both debug exceptions and on
exceptions in Debug Modes

• DExcCode is updated on exceptions in Debug Mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in Debug Mode. In the
situation where the processor is awakened from sleep or doze state by a hardware interrupt or other external event,
and a debug exception is taken instead (for example, if single-stepping a WAIT instruction), the state of the Halt and
Doze bits should be as if the hardware interrupt had not occurred. That is, these bits should indicate that the state of
the processor was in Halt or Doze respectively before the exception, ignoring that the interrupt time might be
between halt/doze and the debug exception.

Table 5-11 Coprocessor 0 Registers for EJTAG

Register
Number Sel

Register
Name Function Reference

Compliance
Level

23 0 Debug Debug indications and controls for the processor. See Section
5.8.1 on page 75 Required

24 0 DEPC Program counter at last debug exception or
exception in Debug Mode.

See Section
5.8.2 on page 83 Required

31 0 DESAVE Debug exception save register. See Section
5.8.3 on page 83 Required

76 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

• DBD is updated on both debug and on exceptions in Debug Modes

The SYNC instruction, followed by appropriate spacing, (as described in Section 5.2.3.7 on page 57 and Section
5.2.4 on page 58) must be executed to ensure that the DDBLImpr, DDBSImpr, IBusEP, DBusEP, CacheEP, and
MCheckP bits are fully updated. This instruction sequence must be used both in the beginning of the debug handler
before pending imprecise errors are detected from Non-Debug Mode, and at the end of the debug handler before pending
imprecise errors are detected from Debug Mode. The IEXI bit controls enable/disable of imprecise error exceptions.

Figure 5-5 shows the format of the Debug register; Table 5-12 describes the Debug register fields.

Figure 5-5 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
32/64-bit
Processor

DBD DM No
DCR

LSNM Doze Halt Count
DM

IBus
EP

M
CheckP

Cach
eEP

DBus
EP

IEXI DDB
S

Impr

DDB
L

Impr

EJTAGver
[2:1]

15 14 10 9 8 7 6 5 4 3 2 1 0
EJTA
Gver
[0]

DExcCode NoSSt SSt OffLine 0 DINT DIB DDB
S

DDB
L

DBp DSS

Table 5-12 Debug Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DBD 31

Indicates whether the last debug exception or
exception in Debug Mode occurred in a branch or
jump delay slot:

R Undefined Required

DM 30

Indicates that the processor is operating in Debug
Mode:

R 0 Required

NoDCR 29

Indicates whether the dseg segment is present:

R Preset Required

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 Processor is operating in Non-Debug
Mode

1 Processor is operating in Debug Mode

Encoding Meaning

0 dseg segment is present

1 dseg present is not present

5.8 EJTAG Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 77

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

LSNM 28

Controls access of loads/stores between the dseg
segment and remaining memory when the dseg
segment is present:

Further description in Section 5.2.2 on page 52.

If DCR is not implemented, this bit is read-only (R)
and reads as zero.

R/W 0

Required if
the dseg

segment is
present,

otherwise not
implemented.

See bit 29,
NoDCR.

Doze 27

Indicates that the processor was in a low-power mode
when a debug exception occurred:

See the introduction above for corner cases in setting
the state of this bit. The Doze bit indicates Reduced
Power (RP) and WAIT, and other
implementation-dependent low-power modes.

If the implementation does not support low-power
modes, then this bit always reads as 0.

R Undefined Required

Halt 26

Indicates that the internal processor system bus clock
was stopped when the debug exception occurred:

See the introduction above for corner cases in setting
the state of this bit. Halt indicates WAIT, and other
implementation-dependent events that stop the
system bus clock.

If the implementation does not support a halt state,
then the bit always reads as 0.

R Undefined Required

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Loads/stores in the dseg segment
address range go to the dseg segment

1 Loads/stores in dseg segment address
range go to system memory

Encoding Meaning

0 Processor not in low-power mode when
debug exception occurred

1 Processor in low-power mode when
debug exception occurred

Encoding Meaning

0 Internal system bus clock running

1 Internal system bus clock stopped

78 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

CountDM 25

Controls or indicates the Count register behavior in
Debug Mode. Implementations can have fixed
behavior, in which case this bit is read-only (R), or
the implementation can allow this bit to control the
behavior, in which case this bit is read/write (R/W).

The reset value of this bit indicates the behavior after
reset, and depends on the implementation.

Encoding of the bit is:

If not implemented, this bit is read-only (R) and reads
as zero.

R
or

R/W
Preset Required

IBusEP 24

Indicates if a Bus Error exception is pending from an
instruction fetch. Set when an instruction fetch bus
error event occurs or a 1 is written to the bit by
software. Cleared when a Bus Error exception on an
instruction fetch is taken by the processor. If IBusEP
is set when IEXI is cleared, a Bus Error exception on
an instruction fetch is taken by the processor, and
IBusEP is cleared.

In Debug Mode, a Bus Error exception applies to a
Debug Mode Bus Error exception.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W1 0

Required if
imprecise bus

error can
occur on

instruction
fetch,

otherwise
optional

MCheckP 23

Indicates if a Machine Check exception is pending.
Set when a machine check event occurs or a 1 is
written to the bit by software. Cleared when a
Machine Check exception is taken by the processor.
If MCheckP is set when IEXI is cleared, a Machine
Check exception is taken by the processor, and
MCheckP is cleared.

In Debug Mode, a Machine Check exception applies
to a Debug Mode Machine Check exception.

Note that machine checks due to duplicate TLB
entries must be reported asynchronous with respect to
the instruction that causes them, and these would be
prioritized as “Other execution-based exception” in
Table 5-8. In this case this bit would not be set.

Any asynchronous implementation-dependent
machine check should be reported using EJTAG
priority in Table 5-8.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W1 0

Required if
imprecise
machine

check error
can occur,
otherwise
optional

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Count register stopped in Debug Mode

1 Count register is running in Debug
Mode

5.8 EJTAG Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 79

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

CacheEP 22

Indicates if a Cache Error is pending. Set when a
cache error event occurs or a 1 is written to the bit by
software. Cleared when a Cache Error exception is
taken by the processor. If CacheEP is set when IEXI
is cleared, a Cache Error exception is taken by the
processor, and CacheEP is cleared.

In Debug Mode, a Cache Error exception applies to a
Debug Mode Cache Error exception.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W1 0

Required if
imprecise

cache error
can occur,
otherwise
optional

DBusEP 21

Indicates if a Data Access Bus Error exception is
pending. Set when a data access bus error event
occurs or a 1 is written to the bit by software. Cleared
when a Bus Error exception on data access is taken
by the processor. If DBusEP is set when IEXI is
cleared, a Bus Error exception on data access is taken
by the processor, and DBusEP is cleared.

In Debug Mode, a Bus Error exception applies to a
Debug Mode Bus Error exception.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W1 0

Required if
imprecise bus

error can
occur on data

access,
otherwise
optional

IEXI 20

An Imprecise Error eXception Inhibit (IEXI) controls
exceptions taken due to imprecise error indications.
Set when the processor takes a debug exception or an
exception in Debug Mode occurs. Cleared by
execution of the DERET instruction. Otherwise
modifiable by Debug Mode software.

When IEXI is set, then the imprecise error exceptions
from bus errors on instruction fetches or data
accesses, cache errors, or machine checks are
inhibited and deferred until the bit is cleared.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W 0

Required if
any imprecise
error covered
by MCheckP,

CacheEP,
IBusEP or

DBusEP, can
occur,

otherwise
optional

DDBSImpr 19

Indicates that a Debug Data Break Store Imprecise
exception due to a store was the cause of the debug
exception, or that an imprecise data hardware break
due to a store was indicated after another debug
exception occurred. Cleared on exception in Debug
Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug Data

Break on
Store

Imprecise
exception can

occur,
otherwise
optional

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No match of an imprecise data hardware
breakpoint on store

1 Match of imprecise data hardware
breakpoint on store

80 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

DDBLImpr 18

Indicates that a Debug Data Break Load Imprecise
exception due to a load was the cause of the debug
exception, or that an imprecise data hardware break
due to a load was indicated after another debug
exception occurred. Cleared on exception in Debug
Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug Data

Break on Load
Imprecise

exception can
occur,

otherwise
optional

EJTAGver 17:15

Provides the EJTAG version.

R Preset Required

DExcCode 14:10

Indicates the cause of the latest exception in Debug
Mode.

The field is encoded as the ExcCode field in the
Cause register for those exceptions that can occur in
Debug Mode (the encoding is shown in MIPS32 and
MIPS64 specifications), with addition of code 30
with the mnemonic CacheErr for cache errors and the
use of code 9 with mnemonic Bp for the SDBBP
instruction.

This value is undefined after a debug exception.

R Undefined Required

NoSSt 9

Indicates whether the single-step feature controllable
by the SSt bit is available in this implementation:

A minimum number of hardware instruction
breakpoints must be available if no single-step
feature is implemented in hardware. Refer to Section
3.8.1 on page 44 for more information.

R Preset Required

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No match of an imprecise data hardware
breakpoint on load

1 Match of imprecise data hardware
breakpoint on load

Encoding Meaning

0 Version 1 and 2.0

1 Version 2.5

2 Version 2.6

3 Version 3.1

4-7 Reserved

Encoding Meaning

0 Single-step feature available

1 No single-step feature available

5.8 EJTAG Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 81

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

SSt 8

Controls whether single-step feature is enabled:

If not implemented due to no single-step feature
(NoSSt is 1), this bit is read-only (R) and reads as
zero.

If implemented, then in a processor with MIPS MT,
this bit is instantiated on a per-TC basis.

R/W 0

Required if
single-step
features are
available,

otherwise not
implemented

OffLine 7

In MIPS MT processors, this bit is instantiated on a
per-TC basis and allows a hardware thread context
(TC) to be taken off-line for debug.

In non-MT processors, the OffLine bit, if
implemented, inhibits the fetch and issue of
instructions by the processor as a whole, unless it is
in Debug mode. This allows isolation of processors in
a multi-processor or multi-core system.

Following a DERET with the OffLine bit set, a MIPS
MT processor can be taken out of the off-line state by
a MTTR instruction targeting the off-line TC’s
Debug register, by a DINT Debug exception handler,
or a hardware reset.

Following a DERET with the OffLine bit set, a
non-MT processor can only be taken out of the
off-line state by a DINT Debug exception handler
clearing the OffLine bit, or a hardware reset.

If not implemented, this bit is read-only (R) and reads
as zero.

R/W 0

Required for
processors

implementing
EJTAG and
MIPS MT

ASE.
Otherwise
optional.

DINT 5

Indicates that a Debug Interrupt exception occurred.
Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug

Interrupt
exception can

occur,
otherwise not
implemented

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No enable of single-step feature

1 Single-step feature enabled

Encoding Meaning

0 TC may fetch and issue according to the
rules of MIPS MT

1 TC may only fetch and execute in
Debug mode.

Encoding Meaning

0 No Debug Interrupt exception

1 Debug Interrupt exception

82 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

DIB 4

Indicates that a Debug Instruction Break exception
occurred. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug

Instruction
Break

exception can
occur,

otherwise not
implemented

DDBS 3

Indicates that a Debug Data Break Store exception
occurred on a store due to a precise data hardware
break. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug Data
Break Store

exception can
occur,

otherwise not
implemented

DDBL 2

Indicates that a Debug Data Break Load exception
occurred on a load due to a precise data hardware
break. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined

Required if
Debug Data
Break Load

exception can
occur,

otherwise not
implemented

DBp 1

Indicates that a Debug Breakpoint exception
occurred. Cleared on exception in Debug Mode.

R Undefined Required

DSS 0

Indicates that a Debug Single Step exception
occurred. Cleared on exception in Debug Mode.

This bit is read-only (R) and reads as zero if not
implemented.

On a processor implementing the MIPS MT, this bit
is implemented per-VPE.

R Undefined

Required if
Debug

Single Step
exception can

occur,
otherwise not
implemented

0 6 Must be written as zeros; return zeros on reads. 0 0 Reserved

Table 5-12 Debug Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No Debug Instruction Break exception

1 Debug Instruction Break exception

Encoding Meaning

0 No Debug Data Break Store Exception

1 Debug Data Break Store Exception

Encoding Meaning

0 No Debug Data Break Store Exception

1 Debug Data Break Store Exception

Encoding Meaning

0 No Debug Breakpoint exception

1 Debug Breakpoint exception

Encoding Meaning

0 No debug single-step exception

1 Debug single-step exception

5.8 EJTAG Coprocessor 0 Registers

EJTAG Specification, Revision 3.10 83

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

5.8.2 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after the exception has been serviced. The size of this register is 32 bits for 32-bit processors and 64
bits for 64-bit processors, even with only 32-bit virtual addressing enabled. All bits of the DEPC register are significant
and writable. A DMFC0 from the DEPC register returns the full 64-bit DEPC on 64-bit processors.

Hardware updates this register on debug exceptions and exceptions in Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:
• the virtual address of the instruction that was the direct cause of the exception, or
• the virtual address of the immediately preceding branch or jump instruction, when the exception-causing instruction

is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at
which execution is resumed when returning to Non-Debug Mode.

Figure 5-6 shows the format of the DEPC register; Table 5-13 describes the DEPC register field.

Figure 5-6 DEPC Register Format

5.8.3 Debug Exception Save Register (CP0 Register 31, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple scratchpad register. The
size of this register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a
pre-determined memory area, for example, in the dmseg segment. This register allows the safe debugging of exception
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 5-7 shows the format of the DESAVE register; Table 5-14 describes the DESAVE register field.

Figure 5-7 DESAVE Register Format

31 0
32-bit Processor DEPC

63 0
64-bit Processor DEPC

Table 5-13 DEPC Register Field Description

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DEPC MSB:0 Debug Exception Program Counter R/W Undefined Required

31 0
32-bit Processor DESAVE

63 0
64-bit Processor DESAVE

84 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 5 EJTAG Processor Core Extensions

Table 5-14 DESAVE Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

DESAVE MSB:0 Debug Exception Save contents R/W Undefined Required

EJTAG Specification, Revision 3.10 85

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6

EJTAG Test Access Port

This chapter describes the EJTAG features provided when the optional EJTAG Test Access Port (TAP) is included in the
implementation. The TAP is an optional part of EJTAG, but if implemented then it is required that the DCR is also
implemented, and all features in the TAP described below are required, except for those features explicitly mentioned as
optional.

This chapter contains the following sections:

• Section 6.1, "TAP Overview"

• Section 6.2, "TAP Signals"

• Section 6.3, "TAP Controller"

• Section 6.4, "Instruction Register and Special Instructions"

• Section 6.5, "TAP Data Registers"

• Section 6.6, "Examples of Use"

6.1 TAP Overview

The overall features of the EJTAG Test Access Port (TAP) are:

• Identification of device and EJTAG debug features accessed through the TAP

• dmseg segment memory “emulation” (mapping dmseg segment processor accesses into probe transactions).

• Reset handling allows debug exception immediately after reset

• Debug interrupt request from probe

• Low-power mode indications

• Implementation-dependent processor and peripheral reset

If the TAP is not implemented then other features depending on register values and indications from the TAP should
behave as if these register values and indications have the power-up and reset value.

86 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Figure 6-1 shows an overview of the elements in the TAP.

Figure 6-1 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (TCK), Test Mode (TMS), Test Data In (TDI), Test Data Out
(TDO), and the optional Test Reset (TRST*). TCK and TMS control the state of the TAP controller, which controls
access to the Instruction or selected data register(s). The Instruction register controls selection of data registers. Access
to the Instruction and data register(s) occurs serially through TDI and TDO. The optional TRST* is an asynchronous
reset signal to the TAP.

Access through the TAP does not interfere with the operation of the processor, unless features specifically described to
do so are used.

The description of the EJTAG TAP in this chapter is intended only to cover EJTAG issues related to use of a TAP.
Consult the “IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture” for detailed
information about use of a TAP for other purposes, for example, integration with JTAG boundary scan.

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both reset
(hard reset) and soft reset.

6.2 TAP Signals

The signals TCK, TMS, TDI, TDO, and the optional TRST* make up the interface for the TAP. These signals are
described in detail below. Refer to Chapter 7 on page 113 for the connection of the signals to chip pins.

6.2.1 Test Clock Input (TCK)

TCK is the clock that controls the updating of the TAP controller and the shifting of data through the Instruction or
selected data register(s).

TCK is independent of the processor clock, with respect to both frequency and phase.

6.2.2 Test Mode Select Input (TMS)

TMS is the control signal for the TAP controller. This signal is sampled on the rising edge of TCK.

Instruction Register

Selected Data Register(s)

TDI

TDO

E
JT

A
G

 T
A

P
in

te
rf

ac
e

TCK

TMS

TRST* (optional)

TAP controller

6.3 TAP Controller

EJTAG Specification, Revision 3.10 87

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.2.3 Test Data Input (TDI)

TDI is the test data input to the Instruction or selected data register(s). This signal is sampled on the rising edge of TCK
for some TAP controller states.

6.2.4 Test Data Output (TDO)

TDO is the test data output from the Instruction or data register(s). This signal changes on the falling edge of TCK, or
becomes 3-stated asynchronously when TRST* is driven low.

The off-chip TDO is only driven when data is shifted out, otherwise the off-chip TDO is 3-stated.

The 3-state notation indicates that the TDO off-chip signal is undriven.

6.2.5 Test Reset Input (TRST*)

TRST* is the optional test reset input that asynchronously resets the TAP, with the following immediate effects:

• The TAP controller is put into the Test-Logic-Reset state

• The Instruction register is loaded with the IDCODE instruction

• Any EJTAGBOOT indication is cleared

• The TDO output is 3-stated

TRST* does not reset another part of the TAP or processor. Thus this type of reset does not affect the processor, and the
processor reset is not allowed to have any effect on the above parts of the TAP.

Even though TRST* is an optional signal, the TRST* signal is referred to in the following discussions. If TRST* is not
implemented, then a power-up reset of the TAP must provide the reset functionality similar to a low value on TRST*
during power-up.

6.3 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to Instruction and data registers.

88 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

The state transitions in the TAP controller occur on the rising edge of TCK or when TRST* goes low. The TMS signal
determines the transition at the rising edge of TCK. Figure 6-2 shows the state diagram for the TAP controller.

Figure 6-2 TAP Controller State Diagram

The behavior of the functional states shown in the figure is described below. The non-functional states are intermediate
states in which no registers in the TAP change, and are not described here.

Events in the following subsections are described with relation to the rising and falling edge of TCK. The described
events take place when the TAP controller is in the corresponding state when the clock changes.

The TAP controller is forced into the Test-Logic-Reset state at power-up either by a low value on TRST* or by a
power-up reset circuit.

6.3.1 Test-Logic-Reset State

When the Test-Logic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and any
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the
CPU core.

The TAP controller always reaches this state after five rising edges on TCK when TMS is set to 1.

A low value on TRST* immediately places the TAP controller in this state asynchronous to TCK.

6.3.2 Capture-IR State

In the Capture-IR state, the two LSBs of the Instruction register are loaded with the value 012, and the upper MSBs are
loaded with implementation-dependent values. Both values are loaded on the rising edge of TCK.

6.3.3 Shift-IR State

In the Shift-IR state, the LSB of the Instruction register is output on TDO on the falling edge of TCK. The Instruction
register is shifted one position from MSB to LSB on the rising edge of TCK, with the MSB shifted in from TDI. The

Test-Logic-Reset
TMS=1

Run-Test / Idle

0

Select-DR-Scan10

Capture-DR

0

0

Shift-DR

1

Exit1-DR

0

Pause-DR

1

Exit2-DR

1

Update-DR

0

0

01

1

0

1

Select-IR-Scan

Capture-IR

0

0

Shift-IR

1

Exit1-IR

0

Pause-IR

1

Exit2-IR

1

Update-IR

0

0

01

1

0

1

1
1

6.4 Instruction Register and Special Instructions

EJTAG Specification, Revision 3.10 89

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

value in the Instruction register does not take effect until the Update-IR state. Figure 6-3 shows the shifting direction for
the Instruction register.

Figure 6-3 TDI to TDO Path when in Shift-IR State

The length of the Instruction register is specified in Section 6.4 on page 89.

The value loaded in the Capture-IR state is used as the initial value for the Instruction register when shifting starts; thus
it is not possible to read out the previous value of the Instruction register.

6.3.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising or falling edge of TCK.

6.3.5 Capture-DR State

In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of TCK for shifting out
in the Shift-DR state. The Capture-DR state reads the data, in order to output this read value in the Shift-DR state.

The Instruction register controls the selection of the following data register(s): Bypass, Device ID, Implementation,
EJTAG Control, Address, and Data register(s).

6.3.6 Shift-DR State

In the Shift-DR state, the LSB of the selected data register(s) is output on TDO on the falling edge of TCK. The selected
data register(s) is shifted one position from MSB to LSB on the rising edge of TCK, with TDI shifted in at the MSB.
The value(s) shifted into the register(s) does not take effect until the Update-DR state. Figure 6-4 shows the shifting
direction for the selected data register.

Figure 6-4 TDI to TDO Path for Selected Data Register(s) when in Shift-DR State

The length of the shift path depends on the selected data register(s).

6.3.7 Update-DR State

In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state occurs on the
falling or rising edge of TCK. This update writes the selected register(s).

6.4 Instruction Register and Special Instructions

The Instruction register controls selection of accessed data register(s), and controls the setting and clearing of the
EJTAGBOOT indication.

TDI
Instruction Register

MSB 0 / LSB

TDO

MSB 0 / LSB

TDI TDO
Selected Data Register(s)

90 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

The Instruction register is five or more bits wide when used with EJTAG. Table 6-1 shows the allocation of the TAP
instruction.

The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BYPASS select a single data register, as
indicated in the table. The unused instructions reserved for EJTAG select the Bypass register. The ALL, EJTAGBOOT,
NORMALBOOT, and FASTDATA instructions are described in the following subsections. The instructions that are
related to trace registers in the trace control block (TCB) are described in the Trace Control Block Specification
document.

Any EJTAGBOOT indication is cleared at power-up either by a low value on the TRST* or by a power-up reset circuit,
and the Instruction register is loaded with the IDCODE instruction.

Table 6-1 TAP Instruction Overview

Code Instruction Function

All 0’s (Free for other use) Free for other use, such as JTAG boundary scan

0x01 IDCODE Selects Device Identification (ID) register

0x02 (Free for other use) Free for other use, such as JTAG boundary scan

0x03 IMPCODE Selects Implementation register

0x04 - 0x07 (Free for other use) Free for other use, such as JTAG boundary scan

0x08 ADDRESS Selects Address register

0x09 DATA Selects Data register

0x0A CONTROL Selects EJTAG Control register

0x0B ALL Selects the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Makes the processor take a debug exception after reset

0x0D NORMALBOOT Makes the processor execute the reset handler after reset

0x0E FASTDATA Selects the Data and Fastdata registers

0x0F (EJTAG reserved) Reserved for future EJTAG use

0x10 TCBCONTROLA Selects the control register TCBTraceControl in the Trace Control Block

0x11 TCBCONTROLB Selects another trace control block register

0x12 TCBDATA Used to access the registers specified by the TCBCONTROLBREG field
and transfers data between the TAP and the TCB control register

0x13 TCBCONTROLC Selects another trace control block register

0x14 PCSAMPLE Selects the PCsample register

0x15 - 0x1B (EJTAG reserved) Reserved for future EJTAG use

0x1C - All 1’s (Free for other use) Free for other use, such as JTAG boundary scan

All 1’s BYPASS Select Bypass register

6.4 Instruction Register and Special Instructions

EJTAG Specification, Revision 3.10 91

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.4.1 ALL Instruction

The Address, Data and EJTAG Control data registers are selected at once with the ALL instruction, as shown in Figure
6-5.

Figure 6-5 TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected

6.4.2 EJTAGBOOT and NORMALBOOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether a debug interrupt is requested as a result of a reset.
If EJTAGBOOT is indicated then a debug interrupt is requested at reset, and a Debug Interrupt exception is taken after
the processor is reset, and instead of fetching instructions from the reset exception vector, instructions are fetched from
the debug exception vector. The location of the debug exception vector is controlled by the ProbTrap bit in the Control
register (see Table 6-9 on page 100). The debug exception handler is in this case fetched from the probe through the
dmseg segment. It is possible to take the debug exception and execute the debug handler from the probe even if no
instructions can be fetched from the reset handler. This condition guarantees that the system will not hang at reset when
the EJTAGBOOT feature is used, even if the normal memory system does not work properly.

An internal EJTAGBOOT indication holds information on the action to take at a processor reset, and this is set when the
EJTAGBOOT instruction takes effect in the Update-IR state. The indication is cleared when the NORMALBOOT
instruction takes effect in the Update-IR state, or when the Test-Logic-Reset state is entered, for example, when TRST*
is asserted low. The requirement of clearing the internal EJTAGBOOT indication when the Test-Logic-Reset state is
entered, and not on a TCK clock when in the state, ensures that the indication can be cleared with five clocks on TCK
when TMS is high.

The internal EJTAGBOOT indication is cleared at power-up either by a low value on the TRST* or by a power-up reset
circuit. Thus the processor executes the reset handler after power-up unless the EJTAGBOOT instruction is given
through the TAP.

The Bypass register is selected when the EJTAGBOOT or NORMALBOOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bits in the EJTAG Control register follow the internal EJTAGBOOT indication.
They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug handler
from the probe.

6.4.3 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 6-6.

Figure 6-6 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

TDI
Address register EJTAG Control registerData register

TDO

MSB 0 / LSBMSB 0 / LSB MSB 0 / LSB

TDI Fastdata registerData register TDO

MSB 0 / LSB 0

92 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.5 TAP Data Registers

Table 6-2 summarizes the data registers in the TAP. Complete descriptions of these registers are located in the following
subsections.

Table 6-2 EJTAG TAP Data Registers

Instruction Used
to Access Register

Register
Name Function Reference

Compliance
Level

IDCODE Device ID Identifies device and accessed
processor in the device.

See Section
6.5.1 on page 93 Required

IMPCODE Implementation
Identifies main debug features
implemented and accessible through
the TAP.

See Section
6.5.2 on page 94 Required

DATA, ALL, or
FASTDATA Data Data register for processor access. See Section

6.5.3 on page 96 Required

ADDRESS or ALL Address Address register for processor access. See Section
6.5.4 on page 99 Required

CONTROL or ALL EJTAG Control Control register for most EJTAG
features used through the TAP.

See Section
6.5.5 on page 99 Required

BYPASS,
EJTAGBOOT,
NORMALBOOT, or
unused EJTAG
instructions

Bypass Provides a one bit shift path through
the TAP.

See Section
6.5.8 on page 107 Required

FASTDATA Fastdata

Provides a one bit register whose
value is tagged to the front of the Data
register to capture the value of the
processor access pending (PrAcc) bit
in the EJTAG Control register

See Section
6.4.3 on page 91

Required with
EJTAG

version 02.60
and higher

TCBCONTROLA TCBControlA

Implemented and used in the Trace
Control Block (TCB). Used by
external probe (debugger) software to
control tracing output from the core

See the TCB
documentation

Required with
EJTAG

version 02.60
and higher if
trace logic is
implemented

TCBCONTROLB TCBControlB
Implemented and used in the Trace
Control Block (TCB). Controls
tracing configuration options

See the TCB
documentation

Required with
EJTAG

version 02.60
and higher if
trace logic is
implemented

TCBDATA TCBData Implemented and used in the TCB. See the TCB
documentation

Required with
EJTAG

version 02.60
and higher if
trace logic is
implemented

TCBCONTROLC TCBControlC
Implemented and used in the Trace
Control Block (TCB). Controls
tracing configuration options

See the TCB
documentation

Required with
EJTAG

version 3.10
and higher if
trace logic is
implemented

PCSAMPLE PCsample Implemented and used by the PC
Sampling logic

See Chapter 4, “PC
Sampling,” on
page 49.

Optional
feature

(defined
EJTAG 3.10)

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 93

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

A read of a data register corresponds only to the Capture-DR state of the TAP controller, and a write of the data register
corresponds to the Update-DR state only.

The initial states of these registers are specified with either a reset state or a power-up state. If a reset state is specified,
then the indicated value is applied to the register when a processor reset is applied. If a power-up state is specified, then
the indicated value is applied at power-up reset.

TCK does not have to be running in order for a processor reset to reset the registers.

6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)

Compliance Level: Required with EJTAG TAP feature.

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG. This
register is also defined in IEEE 1149.1. The Device ID register holds a unique number among different devices with
EJTAG compliant processors implemented. It is recommended that the register is also unique amongst different EJTAG
compliant processors in the same device.

Figure 6-7 shows the format of the Device ID register; Table 6-3 describes the Device ID register fields.

Figure 6-7 Device ID Register Format

31 28 27 12 11 1 0
32/64-bit
Processor

Version PartNumber ManufID 1

Table 6-3 Device ID Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Version 31:28

Identifies the version of a specific device.

The value in this field must be unique for particular
values of Manufacturer ID and Part Number values.
The value identifies a specific revision of the design
(such as a sequence of bug fixes within the same
major design). The value is assigned by the design
house.

R Preset Required

Part-
Number 27:12

Identifies the part number of a specific device.

The value in this field must be unique for a particular
Manufacturer ID value.

Design houses which wish to use the MIPS
Technologies, Inc. Manufacturer ID may request
assignment of a group of Part Numbers which are
then managed by that design house. Assignment of
Part Numbers within another Manufacturer ID value
is done by the owner of that Manufacturer ID.

R Preset Required

94 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.5.2 Implementation Register (TAP Instruction IMPCODE)

Compliance Level: Required with EJTAG TAP feature.

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG compliant
processor, mainly those accessible from the TAP.

Figure 6-8 shows the format of the Implementation register; Table 6-4 describes the Implementation register fields.

Figure 6-8 Implementation Register Format

ManufID 11:1

Identifies the manufacturer identity code of a specific
device, which identifies the design house
implementing the processor.

According to IEEE 1149.1-1990 section 11.2, the
manufacturer identity code is a compressed form of a
JEDEC standard manufacturer’s identification code
in the JEDEC Publications 106, which can be found
at:
http://www.jedec.org/

ManufID[6:0] are derived from the last byte of the
JEDEC code with the parity bit discarded.
ManufID[10:7] provide a binary count of the number
of bytes in the JEDEC code that contain the
continuation character (0x7F). When the number of
continuations characters exceeds 15, these four bits
contain the modulo-16 count of the number of
continuation characters.

If the design house does not have a JEDEC Standard
Manufacturer's Identification Code, which is
encoded for use in this field, the design house can
request use of the MIPS Technologies, Inc. assigned
number, or use the number assigned to the core
provider. Use of the MIPS Technologies, Inc. number
requires prior approval of the Director, MIPS
Architecture.

The MIPS Technologies, Inc. Standard
Manufacturer's Identification Code is 0x127.

R Preset Required

1 0 Ignored on write; returns one on read. R 1 Required

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 1 0
32/64-bit
Processor

EJTAGver R4k/
R3k

0 DIN
T

sup

0 ASID
size

0 MIPS
16

0 No
DMA

0 MIPS
32/64

Table 6-3 Device ID Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 95

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table 6-4 Implementation Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

EJTAGver 31:29

Indicates the EJTAG version:

R Preset Required

R4k/R3k 28

Indicates R4k or R3k privileged environment:

R Preset Required

DINTsup 24

Indicates support for DINT signal from probe:

R Preset Required

ASIDsize 22:21

Indicates size of the ASID field:

R Preset Required

MIPS16e 16

Indicates MIPS16e™ ASE support in the
processor:

R Preset Required

NoDMA 14

Indicates no EJTAG DMA support:

R 1 Required

Encoding Meaning

0 Version 1 and 2.0

1 Version 2.5

2 Version 2.6

3 Version 3.1

3-7 Reserved

Encoding Meaning

0 R4k privileged environment

1 R3k privileged environment

Encoding Meaning

0 DINT signal from the probe is not
supported by this processor

1 Probe can use DINT signal to make
debug interrupt on this processor

Encoding Meaning

0 No ASID in implementation

1 6-bit ASID

2 8-bit ASID

3 Reserved

Encoding Meaning

0 No MIPS16e support

1 MIPS16e is supported

Encoding Meaning

0 Reserved

1 No EJTAG DMA support

96 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)

Compliance Level: Required with EJTAG TAP feature.

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the Data
register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The value read in the Data register is valid only if a processor access for a write is pending, in which case the data register
holds the store value. The value written to the Data register is only used if a processor access for a pending read is
finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies that the
Data register is not a memory location where a previously written value can be read afterwards.

Figure 6-9 shows the format of the Data register; Table 6-5 describes the Data register field.

Figure 6-9 Data Register Format

The contents of the Data register are not aligned but hold data as it is seen on a data bus for an external memory system.
Thus the bytes are positioned in the Data register based on access size, address, and endianess.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor access read
can be written with any value by the probe shifting the value into the Data register.

MIPS32/64 0

Indicates 32-bit or 64-bit processor:

See the R4k/R3k bit for indication of privileged
environment.

R Preset Required

0
27:25, 23,
20:17, 15,

13:1
Ignored on writes; return zeros on reads. R 0 Required

31 0
32-bit

Processor
Data

63 0
64-bit

Processor
Data

Table 6-5 Data Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Data MSB:0 Data used by processor access. R/W Undefined Required

Table 6-4 Implementation Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Encoding Meaning

0 32-bit processor

1 64-bit processor

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 97

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Table 6-6 and Table 6-7 show the position of bytes in the Data register for all possible accesses. This positioning depends
on the Psz field from the EJTAG Control register, the two or three LSBs from the Address register, and the endianess.

The endianness for Debug Mode, used in the following, is indicated through the ENM bit in the Debug Control Register (DCR), see Chapter
2 on page 15.

Table 6-6 shows the byte positioning for a 32-bit processor (MIPS32/64 = 0), in which case the two LSBs of the Address
register are used. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, byte 2 refers to bits 23:16, and byte 3 refers to bits
31:24, independent of endianess.

Table 6-6 Data Register Contents for 32-bit Processors

Psz
from
ECR Size Address[1:0]

Little Endian Big Endian

3 2 1 0 3 2 1 0

0 Byte

002

012

102

112

1 Halfword
002

102

2 Word 002

3 Triple
002

012

Reserved n.a. n.a.

98 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Table 6-7 shows the byte positioning for a 64-bit processor (MIPS32/64 = 1), in which case the three LSBs of the
Address register are used. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, and so on up to byte 7 which refers to bits
63:56, independent of endianess.

Table 6-7 Data Register Contents for 64-bit Processors

Psz
from
ECR Size Address[2:0]

Little Endian Big Endian

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 Byte

0002

0012

0102

0112

1002

1012

1102

1112

1 Halfword

0002

0102

1002

1102

2

Word 0002

5-byte/Quinti 0012

6-byte/Sexti 0102

7-byte/Septi 0112

Word 1002

5-byte/Quinti 1012

6-byte/Sexti 1102

7-byte/Septi 1112

3
Triple

0002

0102

1002

1102

Doubleword 1112

Reserved n.a. n.a.

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 99

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5.4 Address Register (TAP Instruction ADDRESS or ALL)

Compliance Level: Required with EJTAG TAP feature.

The read-only Address register provides the address for a processor access. The width of the register corresponds to the
size of the physical address in the processor implementation (from 32 to 64 bits). The specific length is determined by
shifting through the Address register, because the length is not indicated elsewhere.

The value read in the register is valid if a processor access is pending, otherwise the value is undefined.

The two or three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size
and data position of the pending processor access transfer. These bits are not taken directly from the address referenced
by the load/store. See Section 6.5.3 on page 96 for more details.

Figure 6-10 shows the format of the Address register; Table 6-8 describes the Address register field.

Figure 6-10 Address Register Format

6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

Compliance Level: Required with EJTAG TAP feature.

The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indication,
access start, finish, and size and read/write indication. The ECR also:

• controls debug vector location and indication of serviced processor accesses,

• allows a debug interrupt request,

• indicates processor low-power mode, and

• allows implementation-dependent processor and peripheral resets.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit
31) is either already 0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses
after a reset.

Reset of the processor can be indicated through the Rocc bit in the TCK domain a number of TCK cycles after it is
removed in the processor clock domain in order to allow for proper synchronization between the two clock domains.

Bits that are R/W in the register return their written value on a subsequent read, unless other behavior is defined. Internal
synchronization ensures that a written value is updated for reading immediately afterwards, even when the TAP
controller takes the shortest path from the Update-DR to Capture-DR state.

MSB 0
32/64-bit
Processor

Address

Table 6-8 Address Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Address MSB:0 Address used by processor access. R Undefined Required

100 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Figure 6-11 shows the format of the EJTAG Control register; Table 6-9 describes the EJTAG Control register fields.

Figure 6-11 EJTAG Control Register Format

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0
32/64-bit
Processor

Rocc Psz 0 VPE
D

Doze Halt Per
Rst

PRn
W

Pr
Acc

0 Pr
Rst

Prob
En

Prob
Trap

0 Ejtag
Brk

0 DM 0

Table 6-9 EJTAG Control Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Rocc 31

 Indicates if a processor reset or soft reset has occurred since the bit was cleared:

The Rocc bit stays set as long as reset is applied.

This bit must be cleared to acknowledge that the reset
was detected. The EJTAG Control register is not
updated in the Update-DR state unless Rocc is 0 or
written to 0 at the same time. This is in order to
ensure correct handling of the processor access after
reset. Refer to Section 6.6.3 on page 108 for more
information on Rocc.

R/W0 1 Required

Psz 30:29

Indicates the size of a pending processor access, in
combination with the Address register:

A full description is located in Section 6.5.3 on page
96, including reserved combinations with Address
register bits.

This field is valid only when a processor access is
pending, otherwise the read value is undefined.

R Undefined Required

VPED 23

For processors with MIPS MT ASE this bit is a status
bit that indicates whether the VPE is currently
disabled. A value of 1 indicates that the VPE is
disabled and the rest of the EJTAG state is not valid.
If this bit is 0, then the processor is either not a MT
core or it is an MT core that is currently enabled.
Hence, a non-MT core must implement this bit and
tie it to zero.

R

0 for
non-MT

cores and 1
for MT
cores

Required for
EJTAG

version 3.10
and higher.

Encoding Meaning

0 No reset occurred

1 Reset occurred

Encoding
32-bit Processor

MIPS32/64=0
64-bit Processor

MIPS32/64=1

0 Byte Byte

1 Halfword Halfword

2 Word Word, 5-7 bytes

3 Triple Triple, Doubleword

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 101

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Doze 22

Indicates if the processor is in low-power mode:

Doze indicates Reduced Power (RP) and WAIT, and
other implementation-dependent low-power modes.

If the implementation does not support low-power
modes, then this bit always reads as 0.

R 0 Required

Halt 21

Indicates if the internal system bus clock is running:

Halt indicates WAIT, and other
implementation-dependent events that stop the
system bus clock.

If the implementation does not support a halt state,
then the bit always reads as 0.

R 0 Required

PerRst 20

Controls the peripheral reset with
implementation-dependent behavior:

This bit PerRst might not have any effect. There is no
inherent indication of whether the PerRst is effective,
so the user must consult system documentation.

When this bit is changed, then it is only guaranteed
that the new value has taken effect when it can be
read back here. This handshake mechanism ensures
that the setting from the TCK clock domain takes
effect in the processor clock domain and in
peripherals.

This bit is read-only (R) and reads as zero if not
implemented.

R/W 0 Optional

PRnW 19

Indicates read or write of a pending processor access:

This value is defined only when a processor access is
pending.

R Undefined Required

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Processor is not in low-power mode

1 Processor is in low-power mode

Encoding Meaning

0 Internal system bus clock is running

1 Internal system bus clock is stopped

Encoding Meaning

0 No peripheral reset applied

1 Peripheral reset applied

Encoding Meaning

0 Read processor access, for a fetch/load
access

1 Write processor access, for a store
access

102 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

PrAcc 18

Indicates a pending processor access and controls
finishing of a pending processor access. When read:

A write of 0 finishes a processor access if pending;
otherwise operation of the processor is UNDEFINED
if the bit is written to 0 when no processor access is
pending. A write of 1 is ignored.

A successful FASTDATA access will clear this bit.
See Table 6-11 for details.

R/W0 0 Required

PrRst 16

Controls the processor reset with
implementation-dependent behavior:

The PrRst bit might not have any effect. There is no
inherent indication of an effective PrRst, so the user
must consult system documentation.

If a reset occurs on PrRst, then all parts of the system
are reset. It is not allowed for only some device to be
reset.

When this bit is changed then it is guaranteed that the
new value has taken effect when it can be read back
here. This handshake mechanism ensures that the
setting from the TCK clock domain takes effect in the
processor clock domain and in peripherals.

However, because a processor reset clears this bit,
then the effect of setting it can be that the bit is
cleared when the reset takes effect. In this case, the
Rocc bit should be observed to detect that the reset
took effect.

This bit is read-only (R) and reads as zero if not
implemented.

R/W 0 Optional

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No pending processor access

1 Pending processor access

Encoding Meaning

0 No processor reset applied

1 Processor reset applied

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 103

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

ProbEn 15

Controls whether the probe handles accesses to the
dmseg segment through servicing of processors
accesses:

The ProbEn bit is reflected as a read-only bit in the
Debug Control Register (DCR) bit 0, see Chapter 2
on page 15.

When this bit is changed, then it is guaranteed that
the new value has taken effect in the DCR when it can
be read back here. This handshake mechanism
ensures that the setting from the TCK clock domain
takes effect in the processor clock domain.

However, a change of the ProbEn prior to setting the
EjtagBrk bit will be effective for the debug handler.

Not all combinations of ProbEn and ProbTrap are
allowed, see section 6.5.5.2 .

R/W

See
Section

6.5.5.1 on
page 104

Required

ProbTrap 14

Controls location of the debug exception vector:

When this bit is changed, then it is guaranteed that
the new value is indicated to the processor when it
can be read back here. This handshake mechanism
ensures that the setting from the TCK clock domain
takes effect in the processor clock domain.

However, a change of the ProbTrap prior to setting
the EjtagBrk bit will be effective at the debug
exception.

Not all combinations of ProbEn and ProbTrap are
allowed, see Section 6.5.5.2 on page 105.

R/W

See
Section

6.5.5.1 on
page 104

Required

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Probe will not served processor
accesses

1 Probe will service processor
accesses

Encoding Meaning

0 Normal memory
0xFFFF FFFF BFC0 0480

1 in dmseg at 0xFFFF FFFF FF20 0200

104 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn

The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAGBOOT indication.
If the EJTAGBOOT instruction has been given, and the internal EJTAGBOOT indication is active, then the reset value
of the three bits is set (1), otherwise the reset value is clear (0).

The results of setting these bits are:

• A Debug Interrupt exception is requested right after reset because EjtagBrk is set

• The debug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in EJTAG
memory at 0xFFFF FFFF FF20 0200

• Service of the processor access is indicated because ProbEn is set

Thus it is possible to execute the debug handler right after reset, without executing any instructions from the normal reset
handler.

EjtagBrk 12

Requests a Debug Interrupt exception to the
processor when this bit is written as 1. The debug
exception request is ignored if the processor is
already in debug at the time of the request. A write of
0 is ignored.

The debug request restarts the processor clock if the
processor was in a low-power mode.

The read value indicates a pending Debug Interrupt
exception requested through this bit:

The read value can, but is not required to, indicate
other pending DINT debug requests (for example,
through the DINT signal).

This bit is cleared by hardware when the processor
enters Debug Mode.

R/W1

See
Section

6.5.5.1 on
page 104

Required

DM 3

Indicates if the processor is in Debug Mode:

R 0 Required

0

28:24,
17, 13,
11:4,
2:0

Must be written as zeros; return zeros on reads. 0 0 Reserved

Table 6-9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No pending Debug Interrupt exception
requested through this bit

1 Pending Debug Interrupt exception

Encoding Meaning

0 Processor is not in Debug Mode

1 Processor is in Debug Mode

6.5 TAP Data Registers

EJTAG Specification, Revision 3.10 105

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.5.5.2 Combinations of ProbTrap and ProbEn

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availability
of EJTAG memory. Behavior for the different combinations is shown in Table 6-10. Note that not all combinations are
allowed.

6.5.6 Fastdata Register (TAP Instruction FASTDATA)

Compliance Level: Required with EJTAG TAP feature for EJTAG version 02.60 and higher.

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit is
shifted in and a bit is shifted out. (See Section 6.4.3 on page 91 for how the Data + Fastdata registers are selected by the
FASTDATA instruction.) During a Fastdata access, the Fastdata register value shifted in specifies whether the Fastdata
access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access was
successful or not (if completion was requested).

Figure 6-12 Fastdata Register Format

The FASTDATA access is used for efficient block transfers between the dmseg segment (on the probe) and target
memory (on the processor). An “upload” is defined as a sequence of processor loads from target memory and stores to
the dmseg segment. A “download” is a sequence of processor loads from the dmseg segment and stores to target
memory. The “Fastdata area” specifies the legal range of dmseg segment addresses (0xF..F20.0000 - 0xF..F20.000F)

Table 6-10 Combinations of ProbTrap and ProbEn

ProbTrap ProbEn Debug Exception Vector Processor Accesses

0 0
Normal memory at 0xFFFF FFFF BFC0 0480

Not serviced by probe

0 1 Serviced by probe

1 0
If these two bits are changed to this state, the operation of the processor is UNDEFINED,
indicating that the debug exception vector is in EJTAG memory, but the probe will not
service processor accesses.

1 1 EJTAG memory at 0xFFFF FFFF FF20 0200 Serviced by probe

0
32/64-bit
Processor

SPrA
cc

Table 6-11 Fastdata Register Field Description

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

SPrAcc 0

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access
succeeds. (The access succeeds if PrAcc is one and
the operation address is in the legal dmseg segment
Fastdata area.) When successful, a one is shifted out.
Shifting out a zero indicates a Fastdata access failure.

Shifting in a one does not complete the Fastdata
access and the PrAcc bit is unchanged. Shifting out a
one indicates that the access would have been
successful if allowed to complete and a zero indicates
the access would not have successfully completed.

R/W Undefined Required

106 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

that can be used for uploads and downloads. The Data + Fastdata registers (selected with the FASTDATA instruction)
allow efficient completion of pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (processor
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download accesses
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see if the
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Downloads will
also shift in the data to be used to satisfy the load from the dmseg segment Fastdata area, while uploads will shift out the
data being stored to the dmseg segment Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:
• PrAcc must be 1, i.e., there must be a pending processor access.
• The Fastdata operation must use a valid Fastdata area address in the dmseg segment (0xF..F20.0000 to

0xF..F20.000F).

Table 6-12 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between the
download/upload transfer code and the probe software. Note that the most efficient transfer sizes are word and
double-word for 32-bit and 64-bit processors respectively.

The Rocc bit of the Control register is not used for the FASTDATA operation.

6.5.7 PCsample Register (PCSAMPLE Instruction)

Compliance Level: Required if PC Sampling feature is implemented in EJTAG (PC Sampling was introduced in
EJTAG revision 3.xx.)

The PCSAMPLE instruction reads out the entire PCsample register. The width of the register depends on whether or not
the processor implements the MIPS MT ASE. If MIPS MT is not implemented, the length is 41 bits. If MIPS MT is
implemented, then the PCsample register length is 49 bits.

Table 6-12 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes to

LSB
shifted

out
Data shifted

out

Download
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1
valid

(previous)
data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes

1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

6.6 Examples of Use

EJTAG Specification, Revision 3.10 107

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Figure 6-10 shows the format of the PCsample register; Table 6-8 describes the PCsample register field.

Figure 6-13 PCsample Register Format

6.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

Compliance Level: Required with EJTAG TAP.

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. This register
is also defined in IEEE 1149.1.

Figure 6-14 shows the format of the Bypass register; Table 6-14 describes the Bypass register field.

Figure 6-14 Bypass Register Format

6.6 Examples of Use

This section provides several examples that use the TAP.

48 41 40 33 32 1 0
32/64-bit
Processor

TC (for MIPS MT
processors only)

ASID PC Ne
w

Table 6-13 PCsample Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

TC 48:41 Thread Context Id of the sampled PC. R Undefined
Required if
MIPS MT is
implemented

ASID 40:33 Address Space Id of the sampled PC R Undefined Required

PC 32:1 Program Counter value R Undefined Required

New 0

Processor writes a 1 to this field whenever a new
sample is written into this register. The probe
replaces with a zero when it reads out the sample
value. Used to detect a duplicate sample read on the
probe side.

R/W0 Undefined Required

0
32/64-bit
Processor

0

Table 6-14 Bypass Register Field Description

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

0 0 Ignored on writes; returns zero on reads. R 0 Required

108 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

6.6.1 TAP Operation

An example for operation of the TAP is shown in Figure 6-15. TRST* is assumed deasserted high.

Figure 6-15 TAP Operation Example

The five-bit Instruction register is initially loaded with 000012. The first bit shifted out of the Instruction register is a 1
followed by four 0’s. IR0 to IR4 indicate the new value for the Instruction register. IR0, the new LSB, is shifted in first,
because it will be at the LSB position once all five bits are shifted in.

This example is similar for the selected data register.

6.6.2 ManufID Value

Table 6-15 shows the values of the ManufID field in the Device ID register as defined by the manufacturers. The Device
ID register is described in Section 6.5.1 on page 93.

6.6.3 Rocc Bit Usage

The R/W0 Rocc bit in the EJTAG Control register acknowledges that the probe has seen a processor reset, and further
accesses take this reset into account. This bit is set at reset. The probe must clear it as an acknowledge of the reset.

Table 6-15 ManufID Field Value Examples

Company JEDEC Code Continuations
Last byte without

Carry ManufID Value

Philips 0x15 0 0x15 0x015

LSI Logic 0xB6 0 0x36 0x036

IDT 0xB3 0 0x33 0x033

Toshiba 0x98 0 0x18 0x018

MIPS Technologies, Inc. 0x7F 7F A7 2 0x27 0x127

R
un

-T
es

t/I
dl

e

TCK

Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-I
R

Sh
if

t-
IR

E
xi

t1
-I

R

U
pd

at
e-

IR

Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-D
R

Sh
if

t-
D

R

Se
le

ct
-I

R
-S

ca
n

TMS

TDI

TDO

TAP
controller

IR0 IR1 IR2 IR3 IR4 DR0 DR1 DR2

6.6 Examples of Use

EJTAG Specification, Revision 3.10 109

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

All other writes to the EJTAG Control register, except for the reset acknowledge, should write 1 to this bit in order to
not acknowledge any resets occurring between reads and writes of the EJTAG Control register.

Correct use of the Rocc bit ensures safe handling of processor access even across reset. An example is the following
scenario:

1. A processor access is pending and the PrAcc is read with value 1 (Rocc has been cleared previously).

2. The Address and Data registers are accessed and set up to handle the processor access.

3. The EJTAG Control register is accessed to finish the processor access. The register is read in the Capture-DR state.
Shifting in of the value to write begins.

4. A reset of the processor occurs, the Rocc bit is set, and the PrAcc bit is cleared.

5. A new processor access occurs, because EJTAGBOOT was indicated.

6. A write of the EJTAG Control register is attempted with PrAcc equal to 0 and Rocc equal to 1, but the write does
not occur because the Rocc bit is set. The new processor access that was not seen is not finished.

7. Polling of the EJTAG Control register continues. The probe detects that the Rocc bit is set.

8. The probe writes the EJTAG Control register with Rocc equal to 0 to acknowledge that the probe has seen the
reset.

9. The new processor access is serviced as usual.

Inhibiting writes to the EJTAG Control register because of the Rocc bit ensures that the new processor access is not
finished by mistake due to detection of a pending processor access before the reset occurred.

6.6.4 EJTAG Memory Access Through Processor Access

The processor access feature makes it possible for the probe to handle accesses from the processors to the specific
EJTAG memory area (dmseg). Thus the processor can execute a debug handler from EJTAG memory, whereby
applications that are not prepared with EJTAG code in the system memory still can be debugged.

The probe can get information about the access through the TAP as shown in Table 6-16.

The servicing of processor accesses works with a polling scheme, where the PrAcc bit is polled until a pending processor
access is indicated by PrAcc equal to 1. Then the Address register is read to get the address of the transaction, and the
Data register is accessed to get the write data or provide the read data. Finally the PrAcc bit is cleared, in order to finish
the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication to the processor
that the probe will service accesses to the EJTAG memory through processor accesses.

Table 6-16 Information Provided to Probe at Processor Access

Information Field and Register

Pending processor access PrAcc field in the EJTAG Control register

Read or write access PRnW field in the EJTAG Control register

Size and data location Psz field in EJTAG Control register, and two or three LSBs in the Address register

Address Address register

Data Data register

110 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

Handling of processor access in relation to reset requires specific handling. A pending processor access is cleared at
reset. At the same time, the Rocc bit is set, thereby inhibiting any processor accesses to be finished until Rocc is cleared.
Thus the probe will have to acknowledge that a reset occurred, and will thereby not accidentally finish a processor access
due to a processor access that occurred before the reset.

A pending processor access can only finish if the probe clears PrAcc or a processor reset occurs.

The width of the Address register is from 32 to 64 bits. The specific length is determined by shifting a known bit pattern
through the register.

The following subsections show examples of servicing read and write processor accesses.

6.6.4.1 Write Processor Access

Figure 6-16 shows a possible flow for servicing a write processor access. The example implements a 32-bit processor
with 32-bit Address register, running in little-endian mode. A halfword store is performed to address 0xFF20 1232 of
value 0x5678.

Figure 6-16 Write Processor Access Example

The different probe actions shown on the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is attempted to
be written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The
values of PRnW and Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the store resulting in the write processor access.

3. The Data register is read, which contains the data from the store resulting in the write processor access.

4. The PrAcc bit is written to 0, in order to finish the processor access.

The probe must update the appropriate bytes in its internal memory used for EJTAG memory with the value of the write.

Notice that the two lower bytes of the Data register are undefined, and that the two lower bytes of the saved register are
shifted up on the two high bytes in the Data register as on a data bus for an external memory system. The Address register
in this case contains the address from the store; however, for some accesses, this is not the case because the two LSBs
(32-bit processor) are modified for some accesses depending on size and address.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data = = 0x5678 XXXX

Address = = 0xFF20 1232

Size = 1

2 3 41 1

6.6 Examples of Use

EJTAG Specification, Revision 3.10 111

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

6.6.4.2 Read Processor Access

Figure 6-17 shows a possible flow for servicing a read processor access. The example implements a 64-bit processor
with 36-bit Address register. A doubleword load/fetch from address 0xFFFF FFFF FF20 3450 is shown in the figure.

Figure 6-17 Read Processor Access Example

The different probe actions shown in the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is attempted to be
written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The values
of PRnW and Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the load/fetch resulting in the write processor access, with
the three LSBs (64-bit processor) modified to allow size indication together with the Psz.

3. The Data register is written with the data to return for the load/fetch, resulting in the read processor access.

4. The PrAcc bit is cleared, in order to finish the processor access.

The probe must provide data for the read processor access from the internal EJTAG memory.

Notice that the Address register does not contain the direct address from the access, because the three LSBs (64-bit
processor) are modified to indicate the size in conjunction with Psz. Also notice that in this case, there is no shifting of
the data returned for the processor access by writing to the Data register, because a doubleword is provided. For other
accesses, the Data register must be written with a shifted value depending on the specific access.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data =

Address = = 0xF FF20 3457

Size = 3

2 3 41 1

0x0..0 0..0 0..0 BEEF

112 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 6 EJTAG Test Access Port

EJTAG Specification, Revision 3.10 113

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7

On-Chip Interfaces

This chapter covers issues regarding implementation of a processor on a chip with respect to hook-up of the EJTAG TAP
and DINT interfaces. It contains the following sections:

• Section 7.1, "Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals"

• Section 7.2, "Optional TRST* Pin"

• Section 7.3, "Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins"

• Section 7.4, "Connecting Multi-Core Test Access Port (TAP) Controllers"

7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals

If the EJTAG capabilities provided through the Test Access Port (TAP) and Debug Interrupt (DINT) signals on a
processor core are unused when the processor core is implemented on a chip, then TRST* is tied to low (if TRST* is
present on the core) and the remaining input signals TCK, TMS, TDI, and DINT must be tied to a constant value, either
high or low. The output signal TDO should be left unconnected.

7.2 Optional TRST* Pin

The TRST* signal to the TAP is optional, and need not be provided as a pin on the chip for a processor implementing
the EJTAG TAP.

If a TRST* chip pin is not provided, then a TAP reset like the one provided when TRST* is asserted (low) must be
applied to the TAP at power-up, for example, through a power-up reset circuit on the chip. This power-up TAP reset must
be finished after the time TVIOrise (see Section 8.2.4 on page 120).

If a TRST* chip pin is provided, then the power-up TAP reset is applied by a pull-down resistor, because the probe will
not drive TRST* at power-up.

7.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins

If an input buffer with an integrated pull-up resistor is used for the TRST* chip pin, then its resistor value must be
sufficiently large that it is overruled by the external pull-down resistor on the PCB, so a well-defined logical level is
present on the TRST* pin (see Section 8.5.1 on page 123 for more information).

Observe the additional rules described in the IEEE Std. 1149.1 specification, if the same TAP is used for JTAG boundary
scan also.

The output driver for the TDO chip pin must be capable of supplying the IOL and IOH current required for the probe (see
Section 8.3 on page 121).

114 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 7 On-Chip Interfaces

7.4 Connecting Multi-Core Test Access Port (TAP) Controllers

This section is concerned with building a multi-core system where each core has its own TAP controller, but share one
set of external EJTAG TAP controller pins. Note that this section does not attempt to address the full issue of multi-core
debug, which involves resolving debugger issues and other hardware issues such as debug signalling among multiple
cores, and handling breakpoints across multiple cores, etc.

Figure 7-1 shows the recommended daisy-chain connection for a multi-core configuration, where the TCK, TMS and
optional TRST* signals of all the TAP controllers are connected together. The TDI and TDO signals are daisy chained
together so that the information flow between the selected register of all the TAP controllers is a continuous sequence.

Figure 7-1 Daisy-chaining of multi-core EJTAG TAP controllers

The simplest usage model for this multi-core connection, under most circumstance, only uses one “active” device. This
is accomplished by including BYPASS TAP instruction for “non-active” devices in every TAP command chain sent by
the debugger. “Non-active” devices only get attention when made “active”. Note that it is not necessary that only one
device be “active” at a time, it depends entirely on how the debugger and the end-user want to control the multiple
on-chip TAP controllers.

It is recommended that the EJTAG TAPs are connected in a single daisy-chain without any non-EJTAG TAPs in that
chain, since this provide the fastest access to the EJTAG TAPs and it allows the most debug software packages to operate
the EJTAG TAPs. Special care must be taken by the system designer if both EJTAG TAPs and non-EJTAG TAPs are
connected in the same chain. In this case the system designer must ensure that both the EJTAG debug hardware and
software, and the external device using the non-EJTAG TAPs can apply the BYPASS TAP instruction when the TAPs
unrelated to the current operation are to be made “non-active”.

Probe

TCK
TMS

TDO
TDI

TRST*

Connector
TCK
TMS

TDO
TDI

TRST*

EJTAG TAP 1

(TRST* is optional)

TCK
TMS

TDO
TDI

TRST*

EJTAG TAP n

(TRST* is optional)

Several EJTAG TAPs possible

EJTAG Specification, Revision 3.10 115

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8

Off-Chip and Probe Interfaces

This chapter outlines the requirements for the target system chip and probe interfaces to make them compatible. This
chapter contains the following sections:

• Section 8.1, "Logical Signals"

• Section 8.2, "AC Timing Characteristics"

• Section 8.3, "DC Electrical Characteristics"

• Section 8.4, "Mechanical Connector"

• Section 8.5, "Target System PCB Design"

• Section 8.6, "Probe Requirements and Recommendations"

The off-chip interface forms the connection from the chip over the target system PCB and to the probe connector, thereby
allowing the probe to connect to the target processor. The probe connection is optional in the target system.

The probe signals are described with respect to logical functionality, timing behavior, electrical characteristics, and
connector and PCB design. Comments are also added with respect to probe functionality.

The descriptions in this chapter only cover issues related to EJTAG use of the Test Access Port (TAP). Issues related to
reuse of the same TAP on a chip, for example, for JTAG boundary scan, are not covered.

8.1 Logical Signals

This section describes the EJTAG signals categorized according to functionality:

• Test Access Port: TCK, TMS, TDI, TDO, and TRST* (optional TRST*)

• Debug Interrupt: DINT (optional)

• System reset (reset or soft reset): RST*

• Voltage Sense for I/O: VIO

116 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

Figure 8-1 shows the signal flow between the chip, target system PCB, and Probe.

Figure 8-1 Signal Flow between Chip, Target System PCB, and Probe

8.1.1 Test Access Port Signals

The TCK, TMS, TDI, TDO, and TRST* signals make up the Test Access Port (TAP). For more details about the logical
functionality of these signals, refer to Chapter 6 on page 85. The five signals are listed in Table 8-1 with a short
description.

The TRST* chip pin is optional. If TRST* is not provided, then the TAP controller must be reset by a power-up reset
circuit on-chip. Refer to Section 7.2 on page 113 for information on a power-up reset that is on-chip and Section 8.2.4
on page 120 for duration of this power-up reset.

Table 8-1 Test Access Port Signals Overview

Signal Description Direction Compliance

TCK
Test Clock Input is the clock that controls the updates of the TAP controller and
the shifts through the Instruction or selected data register(s). Both the rising and
the falling edges of TCK are used.

Input

Required with
probe

connection

TMS Test Mode Select Input is the control signal for the TAP controller. This signal is
sampled at the rising edge of TCK. Input

TDI Test Data Input has the data shifted into the Instruction or data register. This
signal is sampled on the rising edge of TCK. Input

TDO Test Data Output has the data shifted out from the Instruction or data register.
This signal is changed on the falling edge of TCK. Output

TRST*
Test Reset Input is used for the TAP reset of the TAP controller, Instruction
register, and EJTAGBOOT indication. TAP reset is applied asynchronously when
low.

Input
Optional with

probe
connection

Target System

Probe

TCK
TMS

TDO
TDI

TRST*

DINT

RST*

VIO

Connector
TCK
TMS

TDO
TDI

TRST*

DINT

Chip with EJTAG

Reset

Other reset sources

(TRST* is optional, see description)

Chip I/O
Voltage

(DINT is optional, see description)

Reset Circuit

Target System

8.1 Logical Signals

EJTAG Specification, Revision 3.10 117

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.1.2 Debug Interrupt Signal

The Debug Interrupt (DINT) signal allows the probe to request the CPU to take a debug exception. Table 8-2 briefly
defines this signal.

The DINT signal from the probe is optional. The DINTsup bit indicates whether or not the DINT signal is implemented.
Refer to Section 6.5.2 on page 94 for more information on DINTsup. The debug interrupt request is described in Section
5.3.9 on page 67.

8.1.3 System Reset Signal

The System Reset (RST*) signal from the probe is required to generate a reset of the target board. It is recommended
that assertion of RST* results in a (hard) reset of the processor, but it is allowed to generate a soft reset. Table 8-3 briefly
describes the RST* signal.

The probe controls the RST* via an open-collector (OC) output. Thus RST* is actively driven low when asserted (low),
but is 3-stated when deasserted (high).

8.1.4 Voltage Sense for I/O Signal

The Voltage sense for I/O (VIO) indicates target power is applied and voltage levels are present at the probe I/O
connections. Table 8-4 briefly describes the VIO signal.

With VIO, the probe can auto adjust the voltage level for the signals, and detect if power is lost at the target system.

Table 8-2 Debug Interrupt Signal Overview

Signal Description Direction Compliance

DINT

A debug interrupt is requested when DINT goes from low to high. The CPU is
allowed to synchronize this signal to the CPU clock before detecting its rising
edge, if this is possible with respect to the minimum pulse width indicated in
Section 8.2.2 on page 119. The request is ignored if the CPU is already in Debug
Mode.

Input Optional with
EJTAG TAP

Table 8-3 System Reset Signal Overview

Signal Description Direction Compliance

RST*

RST* is the system reset of the target board. When the probe asserts RST* low,
the result is either a reset (recommended) or soft reset of the processor.

No reset is applied when the RST* is undriven (3-stated from the probe).

Input
Required with

probe
connection

Table 8-4 Voltage Sense for I/O Signal Overview

Signal Description Direction Compliance

VIO Voltage Sense for I/O indicates if target power is applied, and indicates the
voltage level for the probe signals. Output

Required with
probe

connection

118 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

8.2 AC Timing Characteristics

The timing relations and AC requirements for the signals are described in this section. The timing is measured at the
probe connector for the target system, and must be valid in the full operating range of the target board.

All setup and hold times are measured with respect to the 50% value between VIL / VIH for inputs, and VOL / VOH for
outputs.

All rise and fall times are measured at 20% and 80% of the values of VIL / VIH for inputs and VOL / VOH for outputs.

The capacitance of CTarget and CProbe is assumed to be as seen from the probe connector for the inputs and outputs.

8.2.1 Test Access Port Timing

Figure 8-2 shows the timing relationships of the five TAP signals, TCK, TMS, TDI, TDO, and TRST*. Table 8-5 shows
the absolute times for the symbols in the figure.

Figure 8-2 Test Access Port Signals Timing

Table 8-5 Test Access Port Signals Timing Values

Symbol Description Min Max Unit

TTCKcyc TCK cycle time 25 ns

TTCKhigh TCK high time 10 ns

TTCKlow TCK low time 10 ns

TTsetup TAP signals setup time before rising TCK 5 ns

TThold TAP signals hold time after rising TCK 3 ns

TTDOout TDO output delay time from falling TCK 5 ns

TCK

TTCKcyc

TTCKhigh TTCKlow

TRST*

TTRST*low

TMS
TDI

TTDOout

TThold

TTDOzstate

TDO

TTsetup

UndefinedDefined

Trf

Trf

Trf

Trf

Trf

8.2 AC Timing Characteristics

EJTAG Specification, Revision 3.10 119

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

TRST* is independent of the TCK signal, because TRST* is a truly asynchronous signal. Note the IEEE 1149.1
recommendation in 3.6.1 (d): “To ensure deterministic operation of the test logic, TMS should be held at 1 while the
signal applied at TRST* changes from 0 to 1.” A race might otherwise occur if TRST* is deasserted (going from low to
high) on a rising edge of TCK when TMS is low, because the TAP controller might go either to Run-Test/Idle state or
stay in the Test-Logic-Reset state.

8.2.2 Debug Interrupt Timing

Figure 8-3 shows the timing for the DINT signal from the probe. Table 8-6 shows the absolute times for the symbols in
the figure.

Figure 8-3 Debug Interrupt Signal Timing

The probe should guarantee that the TDINThigh and TDINTlow pulse widths meet the specifications, in order to leave
enough time for the CPU to synchronize the DINT signal to the internal CPU clock domain.

If the CPU clock speed or clocking scheme is such that TDINThigh and TDINTlow do not leave enough time for
synchronization or, for example, PLL walk-up, then the target system is responsible for extending the DINT pulse in the
processor.

TTDOzstate TDO 3-state delay time from falling TCK 5 ns

TTRST*low TRST* low time 25 ns

Trf TAP signals rise / fall time, all input and output 3 ns

Table 8-6 Debug Interrupt Signal Timing Values

Symbol Description Min Max Unit

TDINThigh DINT high time 1 µs

TDINTlow DINT low time 1 µs

Trf DINT signal rise / fall times 3 ns

Table 8-5 Test Access Port Signals Timing Values (Continued)

Symbol Description Min Max Unit

DINT

TDINThigh TDINTlow
Trf

TrfDebug interrupt request

120 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

8.2.3 System Reset Timing

Figure 8-4 shows the timing for the RST* signal from the probe. Table 8-7 shows the absolute times for the symbols in
the figure. The target system is responsible for extending the RST* pulse if required.

Figure 8-4 System Reset Signal Timing

8.2.4 Voltage Sense for I/O (VIO) Timing

Figure 8-5 shows the timing for the VIO signal. Table 8-8 shows the absolute time for the symbol in the figure. VIO
must rise to the stable level within a specific time TVIOrise after the probe detects VIO to be above a certain limit
VVIOactive.

Figure 8-5 Voltage Sense for I/O Signal Timing

The target system must ensure that TVIOrise is obeyed after the VVIOactive value is reached, so the probe can use this value
to determine when the target has powered-up. The probe is allowed to measure the TVIOrise time from a higher value
than VVIOactive (but lower than VVIO minimum) because the stable indication in this case comes later than the time when
target power is guaranteed to be stable.

If TRST* is asserted by a pulse at power-up, either on-chip or on PCB, then this reset must be completed after TVIOrise.
If TRST* is asserted by a pull-down resistor, then the probe will control TRST*.

At power-down no power is indicated to the probe when VIO drops under the VVIOactive value, which the probe uses to
stop driving the input signals, except for RST*.

Table 8-7 System Reset Signal Timing Value

Symbol Description Min Max Unit

TRST*low RST* low time 1 ms

Table 8-8 Voltage Sense for I/O Signal Timing Value

Symbol Description Min Max Unit

TVIOrise VIO rise time from VVIOactive to stable VIO value 2 s

RST*

TRST*low

Driven low
Undriven
3-stated

VIO

TVIOrise

VVIOactive

8.3 DC Electrical Characteristics

EJTAG Specification, Revision 3.10 121

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.3 DC Electrical Characteristics

Table 8-9 describes the DC electrical characteristics for voltage and current measured at the probe connector. Current
measures positive in direction from the probe to the target system, and negative in the other direction. The characteristics
apply to the full operating range of the target system.

The IZstate specifies the current that a 3-stated (undriven) output driver and pull-up/down can provide. It sets a limit for
the drivers in the probe for TCK, TMS, TDI, TRST*, DINT, and RST*, and it sets a limit for the output driver on-chip
for TDO. This limit allows design of pull-up/down resistors that can keep a logical level when no driver is controlling
the signal.

CTarget and CProbe are the capacitances in the target system for inputs and the capacitances for the probe for outputs.
Additional capacitance in the target system must be added to CProbe when designing the output driver, and additional
capacitance for the probe driver is added to CTarget.

Table 8-9 DC Electrical Characteristics

Symbol Description Condition Min Typ Max Unit

VVIO VIO voltage When stable 1.5 5.0 V

VVIOactive VIO active indication 0.5 V

IVIO VIO output current 20 mA

VIL Low-level input voltage
2.8 V ≤ VVIO - 0.3 0.8 V

VVIO < 2.8 V - 0.3 0.3 * VVIO V

VIH High-level input voltage
2.8 V ≤ VVIO 2.0 VVIO + 0.3 V

VVIO < 2.8 V 0.7 * VVIO VVIO + 0.3 V

VOL Low-level output voltage
2.8 V ≤ VVIO - 0.3 0.4 V

VVIO < 2.8 V - 0.3 0.15 * VVIO V

VOH High-level output voltage
2.8 V ≤ VVIO 2.4 VVIO + 0.3 V

VVIO < 2.8 V 0.85 * VVIO VVIO + 0.3 V

IIL
Low-level input current, except
RST* - 8.0 mA

IRST RST* low-level input current - 10 mA

IIH High-level input current 8.0 mA

IOL Low-level output current 8.0 mA

IOH High-level output current - 8.0 mA

IZstate 3-state input or output current 0 V ≤ Vsig ≤ VVIO - 50 50 µA

CTarget Capacitance for target system 25 pF

CProbe Capacitance for probe 25 pF

122 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

8.4 Mechanical Connector

Figure 8-6 shows the recommended EJTAG connector on a target system. The connector is a common pin strip with
dimensions 0.100” x 0.100”, for example, SAMTEC part number TSW-107-23-L-D or compatible. The socket on the
probe side must allow for an angled connector on the target system.

Figure 8-6 EJTAG Connector Mechanical Dimensions

Table 8-10 shows the pin assignments for the connector.

Pin 12 on the target system connector should be removed to provide keying and thereby ensure correct connection of the
probe to the target system.

The connector in Figure 8-6 does not provide PC trace signals. An additional connector, probably with 0.05” x 0.05”
spacing, will be defined later when the PC trace feature is redefined.

8.5 Target System PCB Design

This section provides guidelines for using the EJTAG connector on a target system.

Table 8-10 EJTAG Connector Pinout

Pin Signal Direction Pin Signal Direction

1 TRST* - Test Reset Input Input 2 GND - Ground GND

3 TDI - Test Data Input Input 4 GND - Ground GND

5 TDO - Test Data Output Output 6 GND - Ground GND

7 TMS - Test Mode Select Input Input 8 GND - Ground GND

9 TCK - Test Clock Input Input 10 GND - Ground GND

11 RST* - System Reset Input 12 key - pin removed on connector n.a.

13 DINT - Debug Interrupt Input 14 VIO - Voltage Sense for I/O Output

2.54 mm

Top view on PCB

2.54 mm

1 2

13 14
Pin 12 removed
to allow for key

0.64 mm

5.84 mm

Side view on PCB

GND

Signal Positions

1

GND

GND

GND

GND

key

VIO

TRST*

TDI

TDO

TMS

TCK

RST*

DINT

8.5 Target System PCB Design

EJTAG Specification, Revision 3.10 123

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

8.5.1 Electrical Connection

Figure 8-7 shows the electrical connection of the target system connector. This subsection only covers the case where
the probe connects directly to a chip with an EJTAG compliant processor.

Figure 8-7 Target System Electrical EJTAG Connection

In Figure 8-7, the pull-up resistors for TCK, TMS, TDI, DINT, and RST*, the pull-down resistor for TRST*, and the
series resistor for TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is
1.0 kΩ, because a low value reduces crosstalk on the cable to the connector, allowing higher TCK frequencies. Α typical
value for the series resistor is 33 Ω. Recommended resistor values have 5% tolerance.

The IEEE 1149.1 specification requires that the TAP controller is reset at power-up, which can occur through a
pull-down resistor on TRST* if the probe is not connected. However, on-chip pull-up resistors can be implemented on
some chips due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the TRST*
signal requires special care in the design to ensure that a valid logical level is provided to TRST*, for example, using a
small external TRST* pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative is to use an
active power-up reset circuit for TRST*, which drives TRST* low only at power-up and then holds TRST* high
afterwards with a pull-up resistor.

It must be ensured that a valid logical level is provided on TRST*, because some chips have an on-chip pull-down
resistor on TRST* (even through this setup contradicts the IEEE 1149.1 standard), which might cause an undefined
signal value when other chips have on-chip pull-ups, and they all connect to TRST*.

The pull-up resistor on TDO must ensure that the TDO level is high when no probe is connected and the TDO output is
3-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on (hot
plug). The value of the pull-up resistor depends on the 3-state current of the TDO output driver in the chip, but a value
around 47 kΩ usually is sufficient.

Optional diodes to protect against overshoot and undershoot voltage can be provided on the signals to the chip with
EJTAG.

The RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe, and
thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the probe. The

GND
1

GND

GND

GND

GND

TRST*

TDI

TDO

TMS

TCK

RST*

DINT

TRST*

TDI

TDO

TMS

TCK

GND

DINT

VDD

GND

VIO voltage
reference

Pu
ll-

up

Pu
ll-

up

Pu
ll-

do
w

n

Series-res.

Reset (soft/hard)

Target System
Reset Circuit

Pu
ll-

up

Other reset
sources

VIO

Pu
ll-

up

Pu
ll-

up

Pu
ll-

up

EJTAG-compliant
Processor On Chip

124 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

input on the target system reset circuit must be able to accept the rise time when the pull-up resistor charges the CTarget
and CProbe capacitance to a high logical level.

VIO must connect to a voltage reference that drops rapidly to below VVIOactive when the target system loses power, even
with the capacitive load of CProbe. The probe can thus detect the lost power condition.

The signals on the probe connection for the optional signals DINT and TRST* should be left unconnected in the target
system, if unused.

8.5.2 Layout Considerations

Layout around the pin connector on the target system must provide for sufficient clearance for the probe to connect.
Figure 8-8 shows the recommended clearance. Place the connector at the edge of the PCB. Avoid tall components around
the connector to allow for easy access.

Figure 8-8 Target System Layout for EJTAG Connection

8.6 Probe Requirements and Recommendations

This section provides the probe requirements for different features.

8.6.1 Target System Power-Up with Probe Attached

A probe connected to the target system at power-up is not allowed to drive the inputs before VIO indicates a stable
voltage (see Section 8.2.4 on page 120). TRST* (if present) is then asserted by the target system pull-down resistor at
power-up, whereby a TAP reset is applied through TRST* for TAPs, depending on TRST*. This step implies that inputs
are not driven until the target system is powered up; otherwise the communication on the TAP might be undefined or
damage could occur.

Target System PCB

4.0 mm

4.0 mm

3.0 mm

3.0 mm
No components taller than the
base of the pin header should
be placed in the marked area

1

8.6 Probe Requirements and Recommendations

EJTAG Specification, Revision 3.10 125

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

At power-down the probe is not allowed to drive the inputs after VIO has dropped under a certain level (see Section
8.2.4 on page 120).

The RST* signal is an exception to the above description because it can be driven low by the probe during power-up.

8.6.2 Hot Plug in of Probe

The probe must not drive any inputs to the target system if it is connected while the system is running (hot plug).
Detection of a stable VIO from the target system is required before any input is allowed to be (see Section 8.2.4 on page
120).

To avoid spikes or changes in the input voltage to the target system when the probe is connected, the level of the signal
on the probe must be adjusted to the same level as the signals on the target system. This adjustment can be done with
large pull-up/down resistors (in the range of 150 kΩ) on the probe signals, so the level of these signals matches the level
on the target system shown in Figure 8-8. The specific implementation of this feature is dependent on the probe, the
driver type, etc. used in the probe.

8.6.3 TDO Level when 3-Stated

The probe must apply a pull-up resistor on TDO to have a well-defined logical level when TDO on the TAP is 3-stated.
The pull-up on the target system ensures the level at hot plug. The size of the pull-up on the probe is expected to be
1.0 kΩ or more. The resistor value must be chosen so IZstate is observed.

8.6.4 RST* Drive by Open Collector

Drive the RST* signal with an open-collector (OC) output driver to allow for easy connection of the RST* signal in the
target system.

8.6.5 Changing TMS and TDI

It is recommended that the TMS and TDI signals driven by the probe change in relation to the falling edge generated on
the TCK, since this ensures a high setup and hold time for the TMS and TDI in relation to the rising edge of TCK, on
which these signals are sampled by the target processor.

If the TCK clock speed can be adjusted by extending the high and low period time of the TCK clock, then the behavior
described above will also make the probe work even with a target processor not respecting setup and hold time, simply
by lowering the TCK frequency.

8.6.6 Mechanical Connector

The female connector from the probe must allow for an angled board connector.

Block Hole 12 on the probe connector in order to provide keying and ensure correct connection of the probe to the target
system. Connect the signal from the probe at line 12 to GND on the probe.

126 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Chapter 8 Off-Chip and Probe Interfaces

EJTAG Specification, Revision 3.10 127

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Differences for R3k Privileged Environments

This appendix describes the EJTAG feature differences necessary for integration with a 32-bit processor having an R3k
privileged environment.

A.1 EJTAG Processor Core Extensions

This section covers differences between an R3K environment and the description in Chapter 5 on page 51.

A.1.1 SYNC Instruction

The SYNC instruction is not available for processors with R3k privileged environment, but this instruction must be
available and have behavior as described in Section 5.2.3.7 on page 57.

A.1.2 Debug Exception Vector Location

Table A-1 shows the debug exception vector location in system memory for processors with R3k privileged
environments.

The debug exception vector in dmseg (EJTAG memory) is the same for processors with R3k and R4k privileged
environments.

A.1.3 SYNC Instruction Substitute

In case the SYNC instruction is not provided (for example, on a processor with an R3k privileged environment), then an
implementation-specific instruction sequence must be used to ensure full update of the Debug register status bits and
BSn bits for hardware breakpoints with respect to handling of imprecise data hardware breakpoints and imprecise errors.

A.1.4 CP0 Register Numbers for Debug and DEPC Registers

The register numbers to use in processors with R3k privileged environments for CP0 Debug and DEPC registers is shown
below:

• Debug register: 16

• DEPC register: 17

Table A-1 Debug Exception Vector Location for R3k Privileged Environment Processors

ProbTrap bit in
ECR register Debug Exception Vector Address

0 0xBFC0 0200

128 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A Differences for R3k Privileged Environments

A.2 Hardware Breakpoints

This section describes the differences between hardware breakpoints in an R3k privileged environment and those
describes in Chapter 3 on page 19.

A.2.1 Instruction Breakpoint Registers

Table A-2 shows the address offsets in drseg for the Instruction Breakpoint registers. In the table, n is the breakpoint
number in the range 0 to 14.

A.2.2 Conditions for Matching Instruction Breakpoints

The width in bits of the ASID field for the compare is 6 bits, as is the size used in the TLB. The ASID and IBASIDnASID
references used in the equations in Section 3.3.1 on page 22 has this size.

A.2.3 ASID Field in IBCn Register

Compliance Level: Required with instruction breakpoints when the ASIDsup bit in the IBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for instruction breakpoint n; it is placed in the IBCn register,
not in a register of its own. Table A-3 shows the format of the ASID field.

A.2.4 Data Breakpoint Registers

Table A-4 shows the address offsets in drseg for the Data Breakpoint registers. In the table, n is the breakpoint number
in the range 0 to 14.

Table A-2 Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors

Offset in drseg
Register

Mnemonic Register Name and Description

0x0004 IBS Instruction Breakpoint Status

0x0100 + 0x010 * n IBAn Instruction Breakpoint Address n

0x0104 + 0x010 * n IBCn Instruction Breakpoint Control and ASID n

0x0108 + 0x010 * n IBMn Instruction Breakpoint Address Mask n

Table A-3 ASID Field in IBCn Register

Fields

Description
Read/
Write Reset StateName Bits

ASID 29:24 Instruction breakpoint ASID value for compare. R/W Undefined

Table A-4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors

Offset in drseg
Register

Mnemonic Register Name and Description

0x0008 DBS Data Breakpoint Status

A.3 EJTAG Test Access Port

EJTAG Specification, Revision 3.10 129

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

A.2.5 Conditions for Matching Data Breakpoints

The width in bits of the ASID field for the compare is 6 bits, as is the size used in the TLB. The ASID and DBASIDnASID
references used in the equations in Section 3.3.2 on page 24 has this size.

A.2.6 ASID Field in DBCn Register

Compliance Level: Required with instruction breakpoints when the ASIDsup bit in the DBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for data breakpoint n; it is placed in the DBCn register, not in
a register of its own. Table A-5 shows the format of the ASID field.

A.3 EJTAG Test Access Port

There are no differences for processors with R3k privileged environment with respect to the EJTAG Test Access Port.
The R4k/R3k bit in the Implementation register selects between R4k and R3k privileged environments (see Section
6.5.2 on page 94).

0x0200 + 0x010 * n DBAn Data Breakpoint Address n

0x0204 + 0x010 * n DBCn Data Breakpoint Control and ASID n

0x0208 + 0x010 * n DBMn Data Breakpoint Address Mask n

0x020C + 0x010 * n DBVn Data Breakpoint Value n

Table A-5 ASID Field in DBCn Register

Fields

Description
Read/
Write Reset StateName Bits

ASID 29:24 Data breakpoint ASID value for compare. R/W Undefined

Table A-4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors (Continued)

Offset in drseg
Register

Mnemonic Register Name and Description

130 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix A Differences for R3k Privileged Environments

EJTAG Specification, Revision 3.10 131

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix B

Terminology

This appendix defines several terms used throughout this document.

Term Definition

3-state Undriven output, thus output with high impedance

ASE Application Specific Extension.

CP0 Coprocessor 0 (zero)

Debug exception Exception bringing the processor from Non-Debug Mode to Debug Mode.

Debug Mode exception Exception occurring in Debug Mode, which causes the processor to re-enter
Debug Mode.

dmseg Memory-mapped area, accessible from the processor in Debug Mode only. It is
provided as emulated memory handled by the probe through processor accesses.

drseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains registers for hardware breakpoint setup, for example.

dseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains the combined dmseg and drseg areas.

EJTAG Enhanced JTAG.

EJTAG Area See dseg definition.

EJTAG Memory See dmseg definition.

EJTAG Registers See drseg definition.

GPR General-Purpose Registers r0 to r31.

IEEE 1149.1 IEEE standard describing the TAP and the boundary-scan architecture.

ISA Instruction Set Architecture.

JTAG Joint Test Action Group.

Hardware breakpoint Instruction or data breakpoints implemented in hardware.

LSB Least Significant Bit.

MMU Memory Management Unit. Translates virtual addresses to physical addresses.

MSB Most Significant Bit.

Naturally-aligned
Alignment of a memory structure at an address corresponding to its size, so for
example a word is aligned to an word boundary thus where the two LSBs of the
address are 0.

Non-Debug Mode Any mode other than Debug Mode (User Mode, Supervisor Mode or Kernel
Mode).

PC Program Counter, the virtual address of the currently executed instruction.

Probe A hardware system controlling the target system through the TAP. The probe is
controlled through the debug host, a PC, or workstation.

Processor access Access from the processor to dmseg, which is handled by the probe through the
TAP.

Software breakpoint SDBBP instruction, which can be inserted in the code being debugged, causing
a debug exception when executed.

TAP

Test Access Port. The interface port defined in IEEE 1149.1 and used for access
to EJTAG from the probe. The interface is made up of the test clock (TCK), test
mode select (TMS), test data in (TDI), test data out (TDO), and optional TAP
reset (TRST*).

TLB Translation Lookaside Buffer. Provides programmable mapping of address
translations done by the MMU.

132 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix B Terminology

Triggerpoint Hardware breakpoint, which is set up to generate a trigger indication when it
matches.

Term Definition

EJTAG Specification, Revision 3.10 133

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix C

Functional Clarifications from Old EJTAG 2.5

The following items were clarified from the previous EJTAG rev. 2.5 Specification:

• Update of Instruction register in Update-IR state

Updating Instruction register in the Update-IR state is allowed either on the rising or the falling TCK edge. See
Section 6.3.4 on page 89 for more information.

• Update of selected Data register(s) in Update-DR state

Updating selected Data register(s) in the Update-IR state is allowed either on the rising or the falling TCK edge. See
Section 6.3.7 on page 89 for more information.

• Use of the Device ID register

The Device ID register is recommended to be unique among designs and among several processors on the same chip.
See Section 6.5.1 on page 93 for more information.

• Reset State or Power-up State

Either the reset state or the power-up state is indicated for the data registers. It is not possible to state only the reset
value, because a reset denotes a processor reset. For example, the Bypass register must be reset to 1 as soon as the
TAP can be operated, thus the processor should not be required to be reset first. See Section 6.5 on page 92 for more
information.

• SRstE Changed to Optional

The SRstE bit described in Chapter 2 on page 15 has been made optional, because not every implementation needs it,
and its behavior is defined as implementation dependent.

• Bypass Register Initial Value as 0 (zero)

The initial value for the Bypass register (in Capture-DR state) is defined to 0 (zero), see Section 6.5.8 on page 107.,
since the JTAG spec. requires this in chapter 9 page 9-1.

134 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix C Functional Clarifications from Old EJTAG 2.5

EJTAG Specification, Revision 3.10 135

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D

Multithreaded and Multi-Core Debug

This is not a required feature of EJTAG, but is provided here has a recommended method to implement debug for a
multi-core or a multi-threaded processor.

0.1 Introduction

This document serves as a guideline for designing a Multi-Core Breakpoint Unit (MCBU) for System-On-Chip (SOC)
devices that integrate multiple MIPS processor cores. The document is intended to be used by designers of SOC devices
and by software tool vendors who design debuggers capable of interacting with these SOC devices.

The MCBU is capable of requesting a debug interrupt from any number of cores in the SOC as a result of any core in
the system entering Debug Mode. In addition, the MCBU can be used to request debug interrupt, soft reset, hard reset
and non-maskable interrupt from any number of the cores under software control.

0.2 MCBU Register Map

The MCBU consists of registers that specify which of the processors in the multi-processor system should receive a
RESET, COLD RESET, NMI, and Debug Interrupt signal. There are also per-processor debug interrupt registers that
say whether that processor would cause a debug interrupt to be sent to other processors in the multi-processor system.
These registers are described below. These registers are memory-mapped for access by the debug probe hardware and
software and the memory map is shown in Table D-1 and Table D-2.

Table D-1 sMCBU Register Memory Map

Register Name Memory Map of the Register

Reset Base+0x000

Cold_Reset Base+0x010

NMI Base+0x020

Debug_Interrupt Base+0x030

Table D-2 MCBU Debug_Int Register Memory Map

Register Name Memory Map of the Register

Debug_Int_0 Base+0x200

Debug_Int_1 Base+0x210

Debug_Int_2 Base+0x220

... ...

Debug_Int_i Base+0x200+(0x10*i16), (i expressed in hex)

... ...

Debug_Int_63 Base+0x5F0

136 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

SoC designers are advised to design the base address to be 0x1FFFC00. This is the end of kseg1 (ROM is at
0x1FC00000). If it is impossible to map the MCDU into this address, SoC designers are requested to map base into kseg1
and to notify the head of the Architecture Team at MIPS Technologies of the selected base address. Debugger designers
are advised to use the above-specified address as the default, but to enable configuring this address in the debuggers for
SoC devices that are using a different address. A default configuration file (mips_mcbu_base.cfg) could be made
available by the chip manufacturer to the debugger vendors.

Addresses Base through Base+0x1FFF should be reserved for future expansion of the MCBU. If no more than N cores
are implemented in the SoC (N < 32), only registers Debug_Int_0 through Debug_Int_N-1 need to be implemented.
Registers Debug_Int_N through Debug_Int_31 should remain reserved.

0.3 MCBU Registers

D.0.1 Debug_Int_i

There are a maximum of 64 such registers, but only as many as exist in the multiprocessor system needs to be
implemented. The Debug_Int_i register is a 64-bit read/write register that contains a mask used to control which of the
processor cores in the SOC device should receive an EJ_DINT request upon a detection of an asserted EJ_DebugM in
processor core number “i” in the SOC. When Mask[j] is set, an asserted EJ_DebugM in processor core number “i” will
force the EJ_DINT in core number “j” to be asserted. When Mask[j] is clear, an asserted EJ_DebugM in processor core
number “i” will have no effect on EJ_DINT in core number “j”.

If no more than N cores are implemented in the SOC (N < 64), bits N through 63 should remain reserved. Upon SOC
reset, the value of the Mask bits is undefined.

Figure 8-9 Debug_Int_i Register Format

0.3.1 Reset

The Reset register is a 64-bit read/write register that contains a mask used to control which of the processor cores in the
SoC device should receive a SI_Reset request. When Mask[j] is set, the MCDU will force the SI_Reset input of core “j”
to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

63 k+1 k 1 0
0 Mask

Table 8-11 Debug_Int_i Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Mask k:0

There are k+1 processors in the multi-processor
system under debug. For each processor, the
corresponding mask bit, that is, mask[j] for processor
j specifies whether or not the current processor i will
assert EJ_DINT for j when i gets a EJ_DebugM.

R/W 0
Required if
MCBU is

implemented

0 63:k+1 Reserved R 0
Required if
MCBU is

implemented

EJTAG Specification, Revision 3.10 137

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Figure 8-10 Reset Register Format

0.3.2 Cold Reset

The Cold Reset register is a 64-bit read/write register that contains a mask used to control which of the processor cores
in the SoC device should receive a SI_ColdReset request. When Mask[j] is set, the MCDU will force the SI_ColdReset
input of core “j” to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-11 Cold Reset Register Format

0.3.3 NMI

The NMI register is a 64-bit read/write register that contains a mask used to control which of the processor cores in the
SoC device should receive a SI_NMI request. When Mask[j] is set, the MCDU will force the SI_NMI input of core “j”
to be asserted.

63 k+1 k 1 0
0 Mask

Table 8-12 Reset Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Mask k:0
There are k+1 processors in the multi-processor
system under debug. When the mask bit j is set, this
forces a SI_Reset signal to processor j.

R/W 0
Required if
MCBU is

implemented

0 63:k+1 Reserved R 0
Required if
MCBU is

implemented

63 k+1 k 1 0
0 Mask

Table 8-13 Cold Reset Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Mask k:0
There are k+1 processors in the multi-processor
system under debug. When the mask bit j is set, this
forces a SI_ColdReset signal to processor j.

R/W 0
Required if
MCBU is

implemented

0 63:k+1 Reserved R 0
Required if
MCBU is

implemented

138 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-12 NMI Register Format

0.3.4 Debug Interrupt

The Debug Interrupt register is a 64-bit read/write register that contains a mask used to control which of the processor
cores in the SoC device should receive a EJ_DINT request. When Mask[j] is set, the MCDU will force the EJ_DINT
input of core “j” to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure 8-13 Debug Interrupt Register Format

63 k+1 k 1 0
0 Mask

Table 8-14 NMI Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Mask k:0
There are k+1 processors in the multi-processor
system under debug. When the mask bit j is set, this
forces a SI_NMI signal to processor j.

R/W 0
Required if
MCBU is

implemented

0 63:k+1 Reserved R 0
Required if
MCBU is

implemented

63 k+1 k 1 0
0 Mask

Table 8-15 Debug Interrupt Register Field Descriptions

Fields

Description
Read/
Write

Power-up
State ComplianceName Bits

Mask k:0
There are k+1 processors in the multi-processor
system under debug. When the mask bit j is set, this
forces a EJ_DINT signal to processor j.

R/W 0
Required if
MCBU is

implemented

0 63:k+1 Reserved R 0
Required if
MCBU is

implemented

EJTAG Specification, Revision 3.10 139

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

0.4 Possible Implementation

The following diagram demonstrates a possible implementation of a circuit that generates EJ_DINT to processor “j” in
a system with 9 processors

Figure D-1 An Example Implementation

Debug_Int_0[j]

Debug_Int_1[j]

Debug_Int_8[j]

EJ_Debug0 EJ_Debug1 EJ_Debug8

Other
DINT
Sources

EJ_DINTj

140 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix D Multithreaded and Multi-Core Debug

EJTAG Specification, Revision 3.10 141

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix E

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these
sections indicate alterations since the previous version of the relevant Architecture document.

Table E-1 Revision History

Revision Date Description

2.5 February 22, 2000 Release to users under NDA

2.5-1 June 6, 2000

Changes in this revision:

• Clarification describing possible speculative fetch from dmseg. See Section
5.2.2.1 on page 54.

• Clarification of SYNC instruction behavior in Section 5.2.3.7 on page 57.

• Added hazard description on DEBUG[LSNM] and DEBUG[IEXI] in
Section 5.2.4 on page 58.

• Clarification for Doze and Halt bits in Debug register, see Section 5.8.1 on
page 75.

• Removed requirement that bytes of TAP Data Register which are not
accessed for a processor access read must be written with 0s by the probe.
Thus, now any value may be written to the not accessed bytes.

• Wording change in headline and beginning of Appendix C covering
clarification of changes since previous EJTAG revisions.

• Added cross references for clarification.

• Corrected typos.

• Declassify the document.

2.5-2 August 22, 2000
Removed old Section 6.2, and added Section 6.4 to discuss multi-core EJTAG,
i.e., MIPS recommended way to connect multiple TAP controllers to one set of
external EJTAG TAP pins.

142 EJTAG Specification, Revision 3.10

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

Appendix E Revision History

02.53 January 8, 2001

Changes in this revision:

• Revision number changed to have format XX.YY, thus the next minor
revision after 2.5-2 is named 02.53.

• Clarification of data triggerpoint handling when exception occur on a
load/store instruction.

• Clarification of value of BYTELANE for hardware breakpoints when
access with unaligned address occurs.

• Elaborated description of fields in TAP Device ID register.

• Added recommendation for handling of CacheErr register in Debug Mode.

• Modified description of connecting multiple TAP controllers in daisy chain.

• Updates for clarifications in general.

• Corrected typos.

02.60 February 15, 2001

Changes in this revision:

• Updated the chapter on TAP controller to specify the FASTDATA
instruction.

• Added the instructions needed for the trace control block register access.

• Updated the revision number to 02.60 and made a value of 2 in the
EJTAGver field correspond to this version.

02.61 September 30, 2002

Changes in this revision:

• Include the EJTAGver field encoding of 2, inadvertently left out of version
2.60.

02.62 May 7, 2003

Changes in this revision:

• Remove Appendix D, as this information in not appropriate to a
specification documenting the current state of the EJTAG architecture.

• Clarify the definition of EJTAGBOOT. If this condition is active, the first
instruction fetch after reset is to one of the EJTAG debug addresses, not to
the reset exception vector.

• Clarify the wording describing the BAI field of the Data Breakpoint
Control register.

• Clarify the definition of ADDR for the LUXC1 and SUXC1 instructions,
when used in the data breakpoint address match equation.

• Clarify the use of the DebugDExcCode field for SDBBP instructions in
Debug Mode.

• Add an introduction to EJTAG to the first chapter of the specification.

• Clarify the state of the Halt and Doze bits in the Debug register if a
hardware interrupt or other event awakens the processor, but a debug
exception is taken instead.

• Make it clear that it is implementation dependent whether an SC/SCD,
which would fail because the LLbit is 0, will cause a debug exception due
to a data breakpoint match.

• Update with MIPS32 and MIPS64 Release 2 Architecture changes.

Table E-1 Revision History

Revision Date Description

EJTAG Specification, Revision 3.10 143

Copyright © 2000-2005 MIPS Technologies Inc. All rights reserved.

3.10 July 5, 2005

Changes in this revision:

• Added PC Sampling feature

• Added support for MIPS MT ASE

• EJTAG version 3 for specification revision 3.10 and up

• Inclusion of a possible proposal for implementing EJTAG support for
multiple processors or a multi-threaded configuration

• Miscellaneous cleanup

Table E-1 Revision History

Revision Date Description

	EJTAG Specification
	Table of Contents
	List of Figures
	List of Tables
	The EJTAG System
	1.1 Introduction to EJTAG
	1.2 Historical Perspective
	1.3 EJTAG Capabilities
	1.3.1 Debug Exception and Debug Mode
	1.3.2 Off-board EJTAG Memory
	1.3.3 Debug Breakpoint Instruction
	1.3.4 Hardware Breakpoints
	1.3.5 Single-Step Execution

	1.4 EJTAG Components and Options
	1.4.1 EJTAG Processor Core Extensions
	1.4.2 EJTAG Test Access Port
	1.4.3 Debug Control Register
	1.4.4 Hardware Breakpoint Unit

	1.5 EJTAG-Specific Coprocessor 0 Registers
	1.6 Memory-Mapped EJTAG Registers
	1.6.1 Debug Control Register
	1.6.2 Instruction Hardware Breakpoint Registers
	1.6.3 Data Hardware Breakpoint Registers

	1.7 Memory-Mapped EJTAG Memory Segment
	1.8 EJTAG Test Access Port Registers
	1.9 The Implications of Multiprocessing and Multithreading for EJTAG
	1.10 Related Documents
	1.11 Notations and Conventions
	1.11.1 Compliance
	1.11.2 UNPREDICTABLE and UNDEFINED Operations
	1.11.2.1 UNPREDICTABLE
	1.11.2.2 UNDEFINED

	1.11.3 Register Field Notations
	1.11.4 Value Notations
	1.11.5 Address Notations

	Debug Control Register
	Hardware Breakpoints
	3.1 Introduction
	3.1.1 Instruction Breakpoint Features
	3.1.2 Data Breakpoint Features

	3.2 Overview of Instruction and Data Breakpoint Registers
	3.2.1 Overview of Instruction Breakpoint Registers
	3.2.2 Overview of Data Breakpoint Registers

	3.3 Conditions for Matching Breakpoints
	3.3.1 Conditions for Matching Instruction Breakpoints
	3.3.2 Conditions for Matching Data Breakpoints
	3.3.2.1 Data Breakpoints in case of Unaligned Address
	3.3.2.2 Match for Data Breakpoint with Value Compare on Bus or Cache Error
	3.3.2.3 Precise Match for Data Breakpoints
	3.3.2.4 Imprecise Match for Data Breakpoints

	3.4 Debug Exceptions from Breakpoints
	3.4.1 Debug Exception Caused by Instruction Breakpoint
	3.4.2 Debug Exception by Data Breakpoint
	3.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception
	3.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

	3.5 Breakpoints Used as Triggerpoints
	3.6 Instruction Breakpoint Registers
	3.6.1 Instruction Breakpoint Status (IBS) Register
	3.6.2 Instruction Breakpoint Address n (IBAn) Register
	3.6.3 Instruction Breakpoint Address Mask n (IBMn) Register
	3.6.4 Instruction Breakpoint ASID n (IBASIDn) Register
	3.6.5 Instruction Breakpoint Control n (IBCn) Register

	3.7 Data Breakpoint Registers
	3.7.1 Data Breakpoint Status (DBS) Register
	3.7.2 Data Breakpoint Address n (DBAn) Register
	3.7.3 Data Breakpoint Address Mask n (DBMn) Register
	3.7.4 Data Breakpoint ASID n (DBASIDn) Register
	3.7.5 Data Breakpoint Control n (DBCn) Register
	3.7.6 Data Breakpoint Value n (DBVn) Register

	3.8 Recommendations for Implementing Hardware Breakpoints
	3.8.1 Number of Instruction Breakpoints Without Single Stepping
	3.8.2 Data Breakpoints with Data Value Compares
	3.8.3 Data Breakpoint Compare on Invalid Data
	3.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

	3.9 Breakpoint Examples
	3.9.1 Instruction Breakpoint Examples
	3.9.1.1 Instruction Break in Small Range of Instructions with ASID
	3.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

	3.9.2 Data Breakpoint
	3.9.2.1 Data Break on Load Access with ASID
	3.9.2.2 Data Break on Store(s) to Halfword in Memory
	3.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

	PC Sampling
	4.1 Introduction
	4.2 Overview of the PC Sampling Feature
	4.2.1 PC Sampling in Wait State
	4.2.2 PC Sampling a MT Processor

	EJTAG Processor Core Extensions
	5.1 Overview
	5.2 Debug Mode Execution
	5.2.1 Debug Mode Instruction Set
	5.2.2 Debug Mode Address Space
	5.2.2.1 Access to dmseg (EJTAG memory) Address Range
	5.2.2.2 Access to drseg (EJTAG Registers) Address Range

	5.2.3 Debug Mode Handling of Processor Resources
	5.2.3.1 Coprocessors
	5.2.3.2 Random Register
	5.2.3.3 Count Register
	5.2.3.4 WatchLo/WatchHi Registers
	5.2.3.5 CacheErr Register
	5.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
	5.2.3.7 SYNC Instruction Behavior

	5.2.4 CP0 and dseg Segment Hazards
	5.2.4.1 Types of Hazards
	5.2.4.2 Hazard Clearing Instructions
	5.2.4.3 Instruction Encoding

	5.3 Debug Exceptions
	5.3.1 Debug Exception Priorities
	5.3.2 Debug Exception Vector Location
	5.3.3 General Debug Exception Processing
	5.3.4 Debug Breakpoint Exception
	5.3.5 Debug Instruction Break Exception
	5.3.6 Debug Data Break Load/Store Exception
	5.3.7 Debug Data Break Load/Store Imprecise Exception
	5.3.8 Debug Single Step Exception
	5.3.9 Debug Interrupt Exception

	5.4 Debug Mode Exceptions
	5.4.1 Exceptions Taken in Debug Mode
	5.4.2 Exceptions on Imprecise Errors
	5.4.3 Debug Mode Exception Processing

	5.5 Interrupts and NMIs
	5.5.1 Interrupts
	5.5.2 NMIs

	5.6 Reset and Soft Reset of Processor
	5.6.1 EJTAGBOOT Feature
	5.6.2 Reset from Probe
	5.6.3 Processor Reset by Probe through Test Access Port
	5.6.4 Reset Occurred Indication through Test Access Port
	5.6.5 Soft Reset Enable
	5.6.6 Reset of Other Debug Features

	5.7 EJTAG Instructions
	5.7.1 DERET Instruction

	5.8 EJTAG Coprocessor 0 Registers
	5.8.1 Debug Register (CP0 Register 23, Select 0)
	5.8.2 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	5.8.3 Debug Exception Save Register (CP0 Register 31, Select 0)

	EJTAG Test Access Port
	6.1 TAP Overview
	6.2 TAP Signals
	6.2.1 Test Clock Input (TCK)
	6.2.2 Test Mode Select Input (TMS)
	6.2.3 Test Data Input (TDI)
	6.2.4 Test Data Output (TDO)
	6.2.5 Test Reset Input (TRST*)

	6.3 TAP Controller
	6.3.1 Test-Logic-Reset State
	6.3.2 Capture-IR State
	6.3.3 Shift-IR State
	6.3.4 Update-IR State
	6.3.5 Capture-DR State
	6.3.6 Shift-DR State
	6.3.7 Update-DR State

	6.4 Instruction Register and Special Instructions
	6.4.1 ALL Instruction
	6.4.2 EJTAGBOOT and NORMALBOOT Instructions
	6.4.3 FASTDATA Instruction

	6.5 TAP Data Registers
	6.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)
	6.5.2 Implementation Register (TAP Instruction IMPCODE)
	6.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)
	6.5.4 Address Register (TAP Instruction ADDRESS or ALL)
	6.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	6.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
	6.5.5.2 Combinations of ProbTrap and ProbEn

	6.5.6 Fastdata Register (TAP Instruction FASTDATA)
	6.5.7 PCsample Register (PCSAMPLE Instruction)
	6.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

	6.6 Examples of Use
	6.6.1 TAP Operation
	6.6.2 ManufID Value
	6.6.3 Rocc Bit Usage
	6.6.4 EJTAG Memory Access Through Processor Access
	6.6.4.1 Write Processor Access
	6.6.4.2 Read Processor Access

	On-Chip Interfaces
	7.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals
	7.2 Optional TRST* Pin
	7.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins
	7.4 Connecting Multi-Core Test Access Port (TAP) Controllers

	Off-Chip and Probe Interfaces
	8.1 Logical Signals
	8.1.1 Test Access Port Signals
	8.1.2 Debug Interrupt Signal
	8.1.3 System Reset Signal
	8.1.4 Voltage Sense for I/O Signal

	8.2 AC Timing Characteristics
	8.2.1 Test Access Port Timing
	8.2.2 Debug Interrupt Timing
	8.2.3 System Reset Timing
	8.2.4 Voltage Sense for I/O (VIO) Timing

	8.3 DC Electrical Characteristics
	8.4 Mechanical Connector
	8.5 Target System PCB Design
	8.5.1 Electrical Connection
	8.5.2 Layout Considerations

	8.6 Probe Requirements and Recommendations
	8.6.1 Target System Power-Up with Probe Attached
	8.6.2 Hot Plug in of Probe
	8.6.3 TDO Level when 3-Stated
	8.6.4 RST* Drive by Open Collector
	8.6.5 Changing TMS and TDI
	8.6.6 Mechanical Connector

	Differences for R3k Privileged Environments
	A.1 EJTAG Processor Core Extensions
	A.1.1 SYNC Instruction
	A.1.2 Debug Exception Vector Location
	A.1.3 SYNC Instruction Substitute
	A.1.4 CP0 Register Numbers for Debug and DEPC Registers

	A.2 Hardware Breakpoints
	A.2.1 Instruction Breakpoint Registers
	A.2.2 Conditions for Matching Instruction Breakpoints
	A.2.3 ASID Field in IBCn Register
	A.2.4 Data Breakpoint Registers
	A.2.5 Conditions for Matching Data Breakpoints
	A.2.6 ASID Field in DBCn Register

	A.3 EJTAG Test Access Port

	Terminology
	Functional Clarifications from Old EJTAG 2.5
	Multithreaded and Multi-Core Debug
	D.0.1 Debug_Int_i

	Revision History

