
MIPS Technologies MIPS32® M4K®
Synthesizable Processor Core

© 2007 BDTI (www.BDTI.com). All rights reserved.

An Independent Analysis of the:

By the staff of

Berkeley Design Technology, Inc.

Contents
Introduction . 1

About BDTI . 2

Architecture . 3

Instruction Set . 6

Development and Debug Tools. 7

Strengths and Weaknesses . 7

Conclusions. 8

Introduction
MIPS Technologies, Inc. is a provider of licensable, syn-

thesizable 32- and 64-bit processor cores, and, with their
recent acquisition of Chipidea®, a provider of licensable
analog IP. Each member of the MIPS 32-bit processor core
product line is compatible with the MIPS32® instruction
set architecture (ISA) and targets a different class of appli-
cations. The MIPS32 ISA provides a standard instruction
set architecture specification that is common across all 32-
bit MIPS cores, allowing code written for one core to be
reused with a different 32-bit MIPS core without modifica-
tion. At the low end of the MIPS product line is the
MIPS32® M4K® core. The M4K core has the smallest sil-
icon footprint and lowest power consumption of all MIPS
cores. It is targeted at cost-sensitive, deeply embedded con-
trol applications, such as those found in wireless network-
ing, automotive applications, and industrial process control
and instrumentation.

MIPS does not intend that the M4K be used for compu-
tationally-intensive digital signal processing (DSP) applica-
tions. Indeed, such applications are better served by larger,
more powerful (and more costly) general purpose proces-

OVERVIEW
MIPS Technologies, Inc. is an Intellectual Property (IP) vendor offering a range of licensable 32- and 64-
bit processor cores for use by SoC designers. These processor cores target applications ranging from
deeply embedded, real-time control applications to high-performance embedded systems with demanding
digital signal processing requirements. The M4K core is the smallest, lowest-power MIPS core, and is sup-
ported with a C and assembly language tool chain that includes application-specific software component
libraries, an instruction set simulator, and in-system debug support. The M4K core is intended for deeply
embedded control applications such as those found in wireless networking, automotive, and industrial
control applications.

The M4K core is specifically designed to perform traditional control-oriented tasks in the embedded control
applications for which it is intended. Historically, these applications do not include signal processing tasks.
However, with increasing core clock speeds and architectural enhancements, processor cores competing
with the M4K core, such as the ARM Cortex-M3, are increasingly finding some of their processing band-
width being used for signal processing tasks. One area of interest, therefore, is how the M4K is likely to
perform for such tasks. In this white paper, BDTI, an independent technology analysis company, assesses
the capabilities and efficacy of the M4K core with a special emphasis on signal processing tasks.

Page 2 © 2007 BDTI (www.BDTI.com). All rights reserved.

sors (GPPs) or DSP processors such as Texas Instruments’
TMS320C54x and Analog Devices’ ADSP-21xx. However,
when compared with the 8- and 16-bit processors they are
intended to replace in deeply-embedded control applica-
tions, the M4K core and its competitors, such as the ARM
Cortex-M3 core, can provide significantly higher perfor-
mance. Consequently, these cores are becoming increasingly
attractive for simple DSP tasks, such as digital filtering and
simple signal conditioning operations. While these DSP
tasks may not be the primary function these cores perform
in their target applications, they can augment the capabilities
of the cores to provide additional features or to integrate
certain system functions that would otherwise not be feasi-
ble. It is the efficacy of the M4K core in executing such DSP
tasks that forms the basis for this paper.

The M4K core was introduced by MIPS in 2002. Like all
MIPS cores, it has a number of build-time configuration
options that allow it to be customized for different applica-
tion requirements. Configuration options are applied prior
to synthesis, and allow the designer to choose from a range
of different implementations that trade off higher-perfor-
mance for more compute-intensive applications against sil-
icon area-efficiency to minimize die size and power
consumption. The configuration options available include
different levels of debug control and visibility, the inclusion
of either high-performance or area-efficient multiply and
divide hardware, different numbers of shadow register sets
to improve interrupt performance, the MIPS16e™ Appli-
cation Specific Extensions (ASE), and different types of

instruction and data bus interfaces to the core. According to
MIPS, one area-optimized implementation of the M4K core
has a die area of 0.185 mm2, typical power consumption of
0.066 mW/MHz, and a worst case maximum clock speed of
100 MHz, when implemented in a TSMC 130 nm G pro-
cess. Also according to MIPS, one high-performance imple-
mentation, in the same target process, has a worst-case
maximum clock frequency of 228 MHz, a die area of
0.64 mm2 and typical power consumption of 0.066 mW/
MHz. More details on clock speed, area, and power con-
sumption are given in the section on Core Characteristics
on page 5.

About BDTI
Berkeley Design Technology, Inc. (BDTI) is widely rec-

ognized for its long history as a credible source of indepen-
dent analysis, evaluation, and benchmarking of processing
engines and tools targeting embedded applications. In addi-
tion to detailed evaluation of the performance and architec-
ture of DSP processors, BDTI’s analysis activities have
included significant focus on general-purpose microproces-
sors incorporating digital signal processing capabilities. This
is exemplified by BDTI’s groundbreaking 500-page techni-
cal report, DSP on General-Purpose Processors. Addition-
ally, BDTI has completed numerous embedded software
development projects targeting general-purpose processors,
using a variety of operating systems including Linux and
WindowsCE. For further information see www.BDTI.com.

EJTAG
(Optional)

TAP

Trace

FIGURE 1. M4K™ Processor Core Block Diagram

Power
Mgmt

Multiply/
Divide Unit

Execution
Core (RF/
ALU/Shift)

Memory
Management

Unit

System
Coprocessor

CP2
(Optional

Fixed
Mapping

Table

UDI
(Optional

SRAM
Interface

O
n-

C
hi

p
S

R
A

M

Off/On-Chip
Trace Interface

Off-Chip Debug
Interface

Dual or Unified
SRAM Interface

On-Chip
Coprocessor 2

U
se

r-
D

ef
in

ed
C

or
E

xt
en

d
B

lo
ck

© 2007 BDTI (www.BDTI.com). All rights reserved. Page 3

Architecture

OVERVIEW
The M4K core is a 32-bit, integer RISC CPU that imple-

ments the MIPS32 Release 2 instruction set architecture.
The data path comprises a 32-bit ALU, a shifter, a multiply/
divide unit (MDU), and thirty-two 32-bit general purpose
registers (GPRs). The M4K core uses a load/store architec-
ture, where all ALU, shifter, and MDU operations execute
on 32-bit data from, and return 32-bit data to, on-core reg-
isters. Load/store operations support 8-, 16-, and 32-bit
data transfers to and from memory. A block diagram illus-
trating the key functional elements in the M4K core is
shown in Figure 1.

While the use of a general-purpose processor for digital
signal processing tasks may not achieve as high perfor-
mance as a dedicated DSP processor, the M4K core archi-
tecture has features that enable it to provide reasonable
performance for some DSP tasks. Among these is the inclu-
sion of thirty-two 32-bit GPRs in the core. These GPRs
can, for example, be used to store filter coefficients or oper-
ands that are shared among multiple calculations, reducing
the memory transfer overhead and allowing higher compu-
tational throughput.

The key competing cores for the M4K core in cost-sensitive
applications are the ARM ARM7TDMI and its more
recent successor, the ARM Cortex-M3. In contrast to
these cores, which have only sixteen 32-bit GPRs, the
thirty two 32-bit GPRs in the M4K core is a distinct
advantage. The greater number of GPRs enables the M4K
core to store more coefficients, parameters, and data values
on-core, allowing instruction slots that would otherwise be
needed for memory transfer operations to be used to
increase the throughput of computation operations.

MULTIPLY AND DIVIDE UNIT
Many DSP tasks are characterized by the need to pro-

cess a large volume of real-time data using mathematically
intensive operations. From a processor perspective, this
means that the instruction flow is often dominated by mul-
tiply, multiply-accumulate (MAC), and add/subtract opera-
tions for data processing, and load/store operations for
transferring operands and results to and from memory. In
the M4K core, many mathematical operations are executed
in a separate multiply and divide unit (MDU) that supports
a number of different signed and unsigned multiply, multi-
ply-accumulate (MAC), and divide instructions, all of which
are part of the MIPS32 Release 2 ISA. As these instructions
flow through the M4K core pipeline, they are transferred to
the MDU for processing. Non-MDU instructions immedi-
ately following an MDU instruction continue to flow
through the pipeline, without waiting for the MDU instruc-
tions to complete. The one exception to this is that any

instruction following an MDU instruction that uses the
result of that instruction will stall the M4K core pipeline
until the result becomes available.

Two build-time configuration options are available for
the MDU: a high-performance implementation and an area-
efficient implementation. In the high-performance imple-
mentation, the MDU can complete one 32 × 16-bit (or one
16 × 16-bit) multiply or MAC operation in a single cycle. A
32 × 32-bit multiply or MAC completes in two cycles.

Most low-end DSP processors, such as TI’s
TMS320C54x or Analog Devices’ ADSP-21xx, take
significantly more than two cycles to complete a 32 × 32-
bit multiply, highlighting the high-performance multiplica-
tion capabilities of the M4K core. Note that the ARM
Cortex-M3 can perform a 32 × 32-bit multiply in a sin-
gle cycle, while the older, ARM7TDMI cannot.

The alternative MDU configuration is the area-efficient
implementation, based on a one-bit-per-clock iterative algo-
rithm. In this configuration, all multiplies complete in 32
clock cycles, and all divides complete in 25 clock cycles,
making it less attractive to chip designers targeting DSP-
intensive tasks. As with the high-performance MDU, inde-
pendent non-MDU instructions continue to flow through
the M4K core pipeline while multi-cycle multiply, MAC, and
divide operations are in progress.

Since the MDU can perform multiply and MAC opera-
tions in parallel with other ALU, shifter, and load/store
operations, with careful scheduling of instructions the pro-
grammer may be able to execute data transfer operations in
parallel with multi-cycle MDU operations and achieve
higher computational throughput than would otherwise be
possible. Multiply and MAC operations form the basis of
many DSP algorithms, including convolution operations,
FIR and IIR filters, and FFTs.

As a result of the difference in multiply and MAC
throughput between the high-performance and area-effi-
cient implementations of the MDU, ASIC designers con-
templating the M4K core for DSP tasks will most likely
opt for the high-performance MDU implementation.

Associated with multiply and MAC functions, many
low-end DSPs typically include instruction support for
rounding, saturation, and scaling operations. For example,
the range of multiply instructions provided may include a
variant that supports rounding the product of a 16 × 16-bit
multiply to a 16-bit result. In many DSP tasks, the bulk of
the processor cycles are often spent in tight inner-loops
consisting of multiply and MAC operations. Since the M4K
core does not provide hardware support for rounding, sat-
uration and scaling operations, this will limit performance
for the core for many DSP tasks. However, this is somewhat
offset by the 32-bit data path in the M4K core (compared

Page 4 © 2007 BDTI (www.BDTI.com). All rights reserved.

to 16-bit data paths in typical low-end DSPs); this provides
greater dynamic range and precision which may reduce the
need for rounding, saturation and scaling operations. In
addition, DSP library support for such operations can sim-
plify the programming effort.

PIPELINE
The M4K core uses a five-stage pipeline that is fully

interlocked: the pipeline will stall if an instruction requires
the result of a previous operation that is not yet available.
This frees the programmer (or compiler) from the need to
consider pipeline hazards when implementing software.
Bypass logic is included in the pipeline to ensure that the
register-result of one instruction is available to the immedi-
ately following instruction, if required. For back-to-back
instructions that first write and then read a core register,
therefore, the pipeline will not stall. All ALU and shifter
operations complete in one clock cycle. As discussed earlier,
multiply and divide operations may take longer, depending
on the operations and depending on the specific configura-
tion of the MDU chosen by the designer.

Many DSP algorithms spend most of their time in com-
putationally intensive inner loops. Such inner loops often
comprise relatively few instructions meaning there are fre-
quent branch operations associated with each iteration of
the loop. To improve performance, most DSP processors
include special purpose hardware for loops that eliminate or
reduce the overhead associated with a branch. In the M4K
core, like most general-purpose processors, no such loop
hardware is included. Each branch takes two clock cycles to
complete, which may add significant overhead to tight inner
loops and impact performance for DSP tasks. If this is likely
to be a key performance bottleneck, however, the user-
defined instruction capability of the M4K core may be used
to implement special purpose hardware to accelerate the
loop, albeit with a significant degree of effort. Alternatively,
loops may be unrolled to reduce the control overhead asso-
ciated with branches. It should also be noted that although
two clock cycles are required to complete a branch, with
careful scheduling of assembly instruction, the programmer
can use the branch delay slot immediately following the
branch instruction to minimize the impact of branching.

The lack of hardware support to reduce loop-overhead in
the M4K core is a disadvantage for DSP tasks since it will
reduce performance for tight inner loops that form the heart
of many such tasks. Many DSP processors, for example,
include hardware support to eliminate this overhead. Note
that neither the ARM Cortex-M3 nor the
ARM7TDMI processor cores include hardware support
for reducing loop overhead.

The five-stage pipeline in the M4K core is the shortest
used in the MIPS 32-bit core product line. (In contrast, for
example, the high-performance MIPS 74K core uses a 15-

stage pipeline.) The use of a short pipeline in the M4K core
is a limiting factor in the clock speed that can be achieved.
A shorter pipeline, however, consumes less power and
requires less silicon area, both of which are key require-
ments for cost-sensitive, deeply embedded applications. In
addition, a shorter pipeline, together with its fully-inter-
locked design, is an easier target for efficient compiler code
generation, and for hand-written assembly code.

For DSP tasks, the short and fully interlocked pipeline of
the M4K core can reduce the effort required for optimized
software design and accelerate software development efforts.

MEMORY SYSTEM
The memory system provided with the core consists of

an SRAM-style (synchronous) external interface for instruc-
tion and data memory. No instruction or data memory, and
no cache are included inside the core itself. For deeply
embedded, real-time control applications, this arrangement
can be a distinct advantage over cores that include on-core
memory. In these applications, low cost is an important
goal, and generally, memory requirements will be minimal.
By using a relatively small SRAM (for example, less than 32
KByte), a designer can satisfy the memory requirements of
the target application, while minimizing die size and, conse-
quently, minimizing cost. The SRAM can be either on-chip
(but off-core) or off-chip. In addition, using the smallest
required memory helps to ensure that memory-related
power consumption will be minimized.

For applications that have large memory requirements,
the absence of an on-core cache in the M4K core may be a
disadvantage. Including a large SRAM on-chip, but external
to the M4K core, will be expensive and power-hungry, and
may not be a viable solution. However, in such cases, a bet-
ter choice of core would be the MIPS 4KE core, which does
include an on-core cache memory and is otherwise very
similar to the M4K core. For some M4K core applications,
such as motor control or sequential process control, large
memory is not a requirement and the lack of on-core mem-
ory in the M4K core will not be a concern. Many DSP tasks,
however, involve the processing of a large-volume of data.
For example, an FIR filter processing real-time data samples
from a temperature sensor may have large data storage
need, in order to read input data and write results. For pro-
cessing of this nature, the 4KE core may be a better choice.

While the lack of on-core memory in the M4K core may
be a disadvantage for tasks that have large memory
requirements, the MIPS 4KE core may be an attractive
alternative. The 4KE core is similar to the M4K core, but
includes on-core memory.

As previously mentioned, a large number of real-time
DSP tasks are characterized by the need for high computa-
tional throughput. This often involves mathematical calcu-

© 2007 BDTI (www.BDTI.com). All rights reserved. Page 5

lations that operate on two operands. High-performance,
therefore, is dependent upon the processor’s ability to trans-
fer operands and results to and from memory at a rate that
can support the throughput of the mathematical calcula-
tions associated with that data. In low-end DSP processors,
this is typically achieved by employing separate instruction
and data busses. This allows one instruction and one data
transfer to occur every cycle and provides a higher data
memory transfer bandwidth than can be achieved with a
single, shared bus for instructions and data. In high-perfor-
mance DSP processors this idea is often extended by the
use of two data memory busses in addition to a separate
instruction bus, further improving the data transfer band-
width and allowing more computational throughput for
DSP tasks. The M4K core includes a build-time configura-
tion option that implements separate instruction and data
busses in the external memory interface. As with low-end
DSPs, this improves DSP performance over a single bus by
supporting higher computation throughput in the core. In
contrast, for example, the ARM7TDMI includes only a sin-
gle, unified instruction and data bus interface. ARM’s suc-
cessor to the ARM7TDMI, the Cortex-M3, includes
separate busses for instructions and data. As with the M4K
core, separate instruction and data busses in the Cortex-M3
core enable higher performance.

The use of separate instruction and data busses does
have the disadvantage that more die area is required and that
power consumption will be higher. For applications that
don’t need the improved data transfer bandwidth, the M4K
core has a build-time configuration option that implements
a single, unified instruction and data bus in the external
memory interface. While this configuration reduces the data
transfer bandwidth, it has the advantage that die-area and
power consumption associated with the memory interface
are minimized. The ARM Cortex-M3 core cannot be con-
figured to use a single, unified instruction and data bus.

INTERRUPTS
Embedded control applications are often characterized

by the need to handle multiple, independent control tasks
with real-time response to system events. These require-
ments are most often handled with the aid of interrupt sup-
port provided in the CPU. In the M4K core, interrupt
support is provided by three different build-time configura-
tion options:

• An interrupt compatibility mode that is the same as
that supported in the earlier Release 1 implementation
of the MIPS32 architecture.

• A vectored interrupt mode.
• An external interrupt controller mode.

The vectored interrupt mode is the most powerful built-
in configuration option for the core. In this configuration,
the M4K core provides support for eight prioritized inter-

rupt sources: six hardware interrupts and two software
interrupts. A separate interrupt service routine can be asso-
ciated with each interrupt. In addition, the M4K core can be
configured to implement one, two, four, or eight sets of
shadow GPRs. A set of shadow GPRs can be associated
with each interrupt level. This eliminates the need for each
interrupt service routine to explicitly save and restore con-
text, and reduces the latency associated with interrupts. In
embedded, real-time control applications, a faster response
to system events means better overall performance. Conse-
quently, the use of shadow GPRs is an important consider-
ation for ASIC designers using the M4K core in embedded
real-time control applications.

CORE CHARACTERISTICS
The different build-time options for the M4K core

mean that a number of different configurations can be
implemented, all of which will have different die size, clock
frequency, and power characteristics. Table 1, below, shows
these characteristics, as reported by MIPS, for two configu-
rations. The first is a high-performance configuration that
uses the high-performance MDU, separate instruction and
data bus external memory interfaces, and extensive hard-
ware debug support (which will be described in more detail,
later). The second is an area-efficient implementation that
uses the area-efficient MDU, no hardware debug support,
and the unified instruction and data bus external memory
interface. These implementations represent two extremes
of the trade-off between performance and silicon area. It
should be noted that the different build-time configuration
options available for the M4K core provide varying degrees
of trade-off between performance and silicon area. In gen-
erating the figures for Table 1, the optimization switches in
synthesis and layout for the high-performance implementa-
tion targeted maximum clock speed, while those for the
area-efficient implementation targeted minimum die size.
The clock speed was obtained for worst-case process, volt-
age and temperature, while the power consumption was
obtained for typical-case process, voltage, and temperature.
In both cases, the target fabrication process was a 130 nm
TSMC G process. The high-performance implementation
used the TSMC-HP libraries and the area-efficient imple-
mentation used the ARM Metro libraries.

It should be noted that these implementations represent
two extremes of the trade-off between performance and sil-
icon area for the M4K core. The different build-time con-
figuration options available for the M4K core enable a range
of implementations between these two extremes that pro-
vide varying degrees of trade off between performance and
silicon area.

From Table 1, it is evident that depending on the build-
time options used for the M4K core and the optimization
targets in synthesis and layout, clock frequency, die area, and
power consumption can vary significantly. For ASIC

Page 6 © 2007 BDTI (www.BDTI.com). All rights reserved.

designers considering the M4K core for DSP applications,
the high-performance implementation will be the most
likely choice. This implementation provides single-cycle
32 × 16-bit, and two-cycle 32 × 32-bit multiplication and
MAC support, separate instruction and data bus interfaces
to memory, and operates at over 2X the clock frequency of
the most area-efficient version of the core. For comparison,
ARM claims that the speed-optimized ARM Cortex-M3
achieves a worst-case maximum clock frequency of
135 MHz in a 130 nm TSMC G process, using ARM Arti-
san SAGE-X libraries; around 59% that of the M4K core.
With most instructions on both the M4K core and the Cor-
tex-M3 completing in one or two clock cycles, this repre-
sents a significant speed advantage for the M4K core for
DSP tasks. According to ARM, the speed-optimized Cor-
tex-M3 has a die-size of 0.74 mm2, without the Cortex-M3
Memory protection Unit and Embedded Trace Modules,
and without most hardware debug support options. It does
include the CM3Core, interrupt controller, and bus matrix.
This implementation of the Cortex-M3 core is around 10%
larger than the M4K core. Typical power consumption in
the Cortex-M3, claimed by ARM for a speed-optimized
configuration, is 0.165 mW/MHz; a reduction of around
25% over the M4K core. However, this does not present an
advantage for ARM given that the area-efficient version of
the M4K can be used at relatively high clock speeds and
with substantially lower power consumption and smaller die
size than the high-performance Cortex-M3 core implemen-
tation.

The area-efficient Cortex-M3 data given in Table 1, in
contrast to the high-performance data, was obtained using
ARM Metro libraries for a TSMC 130 nm G process.

The higher achievable clock speed for speed-optimized con-
figurations of the M4K core suggest that it can achieve
higher computational throughput for many DSP tasks
when compared to a speed-optimized configuration of the
ARM Cortex-M3 core. It is also interesting to note that
while the power-efficiency of the high-performance M4K
core implementation is less than that of the high-perfor-
mance Cortex-M3 core implementation, the area-efficient
implementation of the M4K core may present an attractive
alternative for clock speeds up to around 100 MHz. For
example, at 100 MHz, the high-performance Cortex-M3

core implementation will consume around 16 mW. The
area-efficient M4K core implementation will consume
around 6.6 mW, for the same clock speed. This corre-
sponds to a 58% reduction in power compared to the Cor-
tex-M3 core with a 75% reduction in die area.

Instruction Set
The M4K core, without the MIPS16eTM optional 16-bit

instruction mode (discussed below), is a fixed instruction-
length architecture, with each instruction constructed as a
32-bit word. The assembly language format will be very
familiar to programmers who have used other general-pur-
pose, load/store RISC processors.

Some notable instructions in the M4K core include the
multiply instructions supported in the MDU, instructions
for modifying and accessing bit-fields within 32-bit data
words, and the count-leading-zeros (CLZ) and count-lead-
ing-ones (CLO) instructions, all of which are commonly
used operations in many DSP tasks. For example, multiply
operations commonly form the performance critical parts
of filter and FFT tasks, and accessing bitfields is useful in
extracting data words in variable word-length codes. In the
high-performance implementation of the MDU the instruc-
tions for 32-bit multiply and multiply-accumulate complete
in one or two clock cycles. While DSP processors may pro-
vide more powerful versions of these operations, including
incorporating rounding and saturation support into them,
the more limited versions in the M4K core do serve to
extend the capabilities of a low-cost controller to some DSP
tasks. In addition, as has already been described, the 32-bit
data path in the M4K core can provide greater numeric pre-
cision and dynamic range, reducing the need for rounding
and saturation operations, in contrast to most low-end DSP
processors, which generally use a 16-bit data path.

The ARM7TDMI core does not support count-leading-
zero and count-leading-one instructions, putting it at a dis-
advantage to the M4K core for those DSP tasks where
those instructions can be used.

The MIPS16e capability is a build-time configuration
option for the M4K core. When chosen, it provides for 16-
bit instruction encoding in memory. When loaded into the
M4K core, MIPS16e instructions are expanded to 32 bits
for execution. While the 16-bit instruction encoding pro-
vides restricted functionality compared to 32-bit instruction

Core M4K M4K Cortex-M3 Cortex-M3

Optimization Target High-Performance Area-Efficient High-Performance Area-Efficient

Max. Clock Speed 228 MHz 100 MHz 135 MHz 50 MHz

Die Area 0.64 mm2 0.185 mm2 0.74 mm2 0.38 mm2

Typical Power 0.214 mW/MHz 0.066 mW/MHz 0.165 mW/MHz 0.084 mW/MHz

TABLE 1. M4K® Core and Cortex-M3 Core Physical Characteristics for High-Performance and Area-Efficient Implementations (as
Reported by MIPS and ARM). See the Text for Core Configurations, Target Libraries, and Target Processes

© 2007 BDTI (www.BDTI.com). All rights reserved. Page 7

encoding, it has the advantage that code memory require-
ments are reduced significantly, since twice as many instruc-
tions can be stored in the same space. A second advantage
of MIPS16e is that each instruction fetch reads two 16-bit
instructions from memory, reducing the instruction fetch
bandwidth requirement and, consequently, reducing power
consumption.

In addition to the built-in instructions provided in the
M4K core, the CorExtend build-time configuration option
allows designers to add their own, User Defined Instruc-
tions (UDI) to the processor. UDIs are implemented by the
designer in custom hardware, external to the core, but can
access the core registers, and can complete in as few as one
processor cycle. This capability allows designers to add
functionality to the core to accelerate operations that
present a performance bottleneck in the target application.
ASIC designers using the M4K core for DSP tasks may find
this a useful way to accelerate a few key operations in critical
inner loops.

User Defined Instructions in the M4K core give the
designer the ability to create custom instructions to acceler-
ate performance-critical sections of code, such as those fre-
quently found in the tight inner-loops of many DSP tasks.
Neither the ARM Cortex-M3 nor the ARM7TDMI
provide this capability.

Development and Debug Tools
MIPS provides tools and hardware features to enable

software development and in-system application debug for
the M4K core. The MIPS Software Toolkit is MIPS’ pre-
mium development environment, consisting of the usual
array of development tools an application developer might
expect, and is common to all MIPS cores. It supports C and
assembly language software development using a GNU-
based compiler-assembler-linker tool chain. The Toolkit
also includes the MIPS DSP libraries, and cycle-accurate
simulation using the MIPSsim instruction set simulator.

The MIPS DSP libraries provide a wide range of func-
tions, including math, delay line, filtering, correlation,
FFT and DCT functions. The DSP libraries are written
in C. Hand-optimized assembly versions of the C func-
tions are available for the MIPS 4KE and 24K cores, but
not specifically for the M4K. The DSP libraries provided
by MIPS give programmers a jump-start in implementing
DSP-related tasks.

In addition to software tools from MIPS, the M4K core
is also supported by third-party software vendor Green
Hills Software, which provides a C and C++ optimizing
compiler, and an integrated development environment
including software development management tools and a
source-level debugger.

In addition to the software development environment,
the M4K core includes build-time configuration options for
different degrees of hardware debug support in the core,
ranging from no debug support whatsoever, to support for
complex hardware breakpoints and instruction and data
tracing capabilities. These build-time configuration options
provide the designer with some flexibility in making trade-
offs between die size and power consumption on the one
hand, and debug visibility and control on the other.

Basic hardware debug is enabled by choosing the
enhanced JTAG (EJTAG) build-time configuration option.
The EJTAG interface implements a proprietary extension
to the IEEE 1149.1 standard that allows the designer to
control debug events and single-stepping operations in the
core. Three different build-time options for the EJTAG
interface are available for hardware breakpoints that pro-
vide support for a different numbers and combination of
breakpoint events. Breakpoint events can be used in differ-
ent ways, such as initiating an exception handler for soft-
ware-only debug handling, or for triggering instruction and
data trace events.

For instruction and data tracing, MIPS provides build-
time configuration options for either MIPS trace support,
or a lightweight, iFlowtrace capability. MIPS trace allows for
instruction and data tracing using either on-chip or off-chip
trace memory. iFlowtrace only traces program flow, not data
memory access, and provides a reduction in die-size over
MIPS trace and also reduces trace memory requirements.

Additional debug support is provided by the First Sili-
con Solutions (FS2, a division of MIPS Technologies, Inc.)
System Navigator product. System Navigator is a software
tool that works with the trace hardware in the M4K core
and with the GNU debugger provided in the MIPS SDE
toolchain to allow users to capture and view program exe-
cution flow, load/store addresses and associated data. In
addition to supporting the MIPS toolchain, System Naviga-
tor also supports third party tools such as Mentor Graphics’
Edge, Green Hills Multi, and Viosoft Arriba.

Overall, for DSP task software development, the tools
provided by MIPS are adequate. The DSP libraries will give
programmers a good jump-start in coding their applica-
tions, and the in-system debug tools provided will accelerate
the deployment of applications and products.

The inclusion of a cycle-accurate simulator is an important
component of the software development tools provided for
the M4K core, since it gives programmers the ability to
carefully measure and tune the performance of tight inner-
loops and sections of code that represent performance bot-
tlenecks in many DSP tasks.

Strengths and Weaknesses
The M4K core is designed specifically for embedded

control applications. Increasingly, DSP tasks are finding

Page 8 © 2007 BDTI (www.BDTI.com). All rights reserved.

their way into many such applications. While not specifically
designed for DSP tasks, the M4K core does have strengths
in this area when compared with competing 32-bit, cost-
sensitive general-purpose processor cores. The most impor-
tant of these strengths are:

• The M4K core uses a 32-bit data path which provides
increased numeric precision and dynamic range over
low-end 16-bit DSPs and which may reduce the need
for saturation, rounding and scaling operations. The
Cortex-M3 core, a key competitor for the M4K core
also uses a 32-bit data path.

• The M4K core has thirty-two 32-bit registers which can
be used to store DSP algorithm parameters, coeffi-
cients, and operands in order to reduce the load-store
overhead of the processor and increase computational
throughput. This is also a significant advantage over the
ARM Cortex-M3, which has only 13 general-purpose
registers.

• The M4K core can perform single cycle 32 × 16-bit
multiply and MAC operations, which form the basis of
many DSP tasks. This is comparable with the multiplier
performance of low-end DSP processors. The ARM
Cortex-M3 can perform 32 × 32-bit multiplies in a sin-
gle cycle, but the older ARM7TDMI cannot.

• The M4K core has a build-time option for separate
instruction and data bus memory interfaces. This
allows an instruction and a 32-bit data word to be trans-
ferred every cycle, allowing better performance for
most DSP tasks than can be achieved with a single, uni-
fied instruction and data bus. Where performance is
less critical, the M4K core can be configured to use a
single, unified data and instruction bus to reduce silicon
die area and power consumption. While the older
ARM7TDMI core used only a single, unified instruc-
tion and data bus, putting it at a significant perfor-
mance disadvantage compared to the M4K core, the
newer ARM Cortex-M3, like the M4K core, has sepa-
rate instruction and data busses. Unlike the M4K core,
however, the Cortex-M3 cannot be configured to use a
single, unified data bus for reduced silicon die area and
reduced power consumption.

• The count-leading-zeros and count-leading-ones
instructions in the M4K core are useful for many DSP
tasks, particularly in the absence of any other support
for normalization. The ARM Cortex-M3 does not sup-
port these instructions.

The most important weaknesses of the M4K core for
DSP tasks are:

• The M4K core has limited hardware support for
rounding, saturation, and scaling operations. The ARM
Cortex-M3 also has limited support for these opera-
tions. These operations are commonly supported in
low-end DSPs and in many cases can be performed in

the same cycle as multiply and MAC instructions giving
these DSPs a significant performance advantage.

• The M4K core has no hardware support for zero-over-
head loops. This can have a significant negative impact
on performance for tight inner loops that form the
basis of many DSP algorithms. The ARM Cortex-M3
also has no support for zero-overhead looping.

• The absence of on-core memory may be a disadvantage
for the M4K core for those tasks that require the stor-
age of large amounts of data. However, for such appli-
cations, the 4KE core, with on-core memory, may be a
better choice.

Conclusions
The MIPS M4K licensable, synthesizable processor core

is targeted at cost- and power-sensitive deeply embedded
control applications. Increasingly, DSP tasks are finding
their way into these applications. These tasks can supple-
ment control-oriented tasks to provide flexibility and add
application features that would otherwise not be feasible.

The M4K core, while not designed specifically for DSP
tasks does have some strengths for processing such tasks.
The most important of these includes the ability to perform
a 16 × 16-bit multiplication in as little as one processor
clock cycle, thirty two 32-bit general purpose registers for
on-core coefficient, operand, and data value storage, and
the ability to configure the core with separate instruction
and data bus interfaces for increased instruction and data
transfer bandwidth.

When compared with one of its leading competitors, the
ARM Cortex-M3 core, the M4K core has a number of dis-
tinct advantages. These include higher operating clock
speeds, smaller die area, and lower power consumption for
many configurations and application scenarios. In addition
to compeitive physical characteristics, the M4K core has
thirty-two 32-bit general purpose registers giving it a signif-
icant advantage for many DSP tasks. The Cortex-M3 core-
has only thirteen 32-bit general purpose registers . The one
significant advantage that the Cortex-M3 has over the M4K
core is that it can perform a 32 × 32-bit multiplication in a
single clock cycle.

While the M4K core is not intended for compute-inten-
sive DSP applications (anyone looking for a processor for
such applications should look to dedicated DSP proces-
sors), it does present an attractive choice for deeply-embed-
ded control applications where some simple signal
processing capabilities would be an advantage.

