
LX4189 Data Sheet

Lexra, Inc.

Release 1.9

April 11, 2001

Lexra Proprietary and Confidential

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 2 - Release 1.9

LX4189 Data Sheet Revision 1.3, for RTL Release 1.9.

This document is proprietary and confidential to Lexra, Inc.
Copyright 2001 Lexra, Inc.
ALL RIGHTS RESERVED

MIPS, MIPS16, MIPS ABI, MIPSII, MIPSIV, MIPSV, MIPS32, R3000, R4000, and other MIPS
common law marks are trademarks and/or registered trademarks of MIPS Technologies, Inc. Lexra,
Inc. is not associated with MIPS Technologies, Inc. in any way.

SmoothCore, Radiax, and NetVortex are trademarks of Lexra, Inc.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 3 - Revision 1.3

Table of Contents

1. LX4189 Product Overview ..11
1.1. Introduction ... 11
1.2. LX4189 Processor Overview .. 12
1.3. System Level Building Blocks ... 13

1.3.1. SMMU .. 13
1.3.2. Local Memory Interface ... 13
1.3.3. Coprocessor Interface ... 14
1.3.4. Custom Engine Interface .. 14
1.3.5. Lexra Bus Controller .. 14
1.3.6. Building Block Integration ... 14

1.4. RTL Core & SmoothCore ... 14
1.5. EDA Tool Support .. 15

2. LX4189 Architecture ...17
2.1. Hardware Architecture .. 17

2.1.1. Module Partitioning .. 17
2.1.2. Six Stage Pipeline ... 17

2.2. RALU Data Path ... 18
2.3. System Control Coprocessor (CP0) .. 18
2.4. Low-Overhead Prioritized Interrupts .. 19

3. LX4189 RISC Programming Model ...21
3.1. Summary of MIPS-I Instructions .. 21

3.1.1. ALU Instructions .. 22
3.1.2. Load and Store Instructions .. 23
3.1.3. Conditional Move Instructions ... 23
3.1.4. Branch and Jump Instructions .. 24
3.1.5. Control Instructions .. 25
3.1.6. Coprocessor Instructions .. 25

3.2. Opcode Extension Using the Custom Engine Interface (CEI) 26
3.2.1. CEI Operations ... 26
3.2.2. Interface Signals ... 26

3.3. Memory Management ... 27
3.4. Exception Processing .. 27

3.4.1. Exception Processing Registers ... 29
3.4.2. Exception Processing: Entry and Exit .. 30

3.5. The Coprocessor Interface (CI) .. 30
3.6. Power Savings Mode .. 30

4. MIPS16 ..33
4.1. MIPS16 Instructions ... 33
4.2. Mode switching .. 36
4.3. Exceptions ... 36
4.4. No Delay Slots .. 36

5. LX4189 Local Memory ..37
5.1. Local Memory Overview .. 37
5.2. Cache Control Register: CCTL .. 38
5.3. Instruction Cache (ICACHE) LMI ... 39
5.4. Instruction Memory (IMEM) LMI ... 40

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 4 - Revision 1.3

5.5. Instruction ROM (IROM) LMI .. 42
5.6. Direct Mapped Write Through Data Cache (DCACHE) LMI 43
5.7. Scratch Pad Data Memory (DMEM) LMI .. 44

6. LX4189 System Bus ...47
6.1. Connecting the LX4189 to internal devices ... 47
6.2. Terminology ... 47
6.3. Bus Operations .. 48

6.3.1. Single-Cycle Read .. 48
6.3.2. Read Line ... 48
6.3.3. Burst Read .. 49
6.3.4. Single-Cycle Write ... 49
6.3.5. Line Write .. 49
6.3.6. Burst Write ... 49

6.4. Signal Descriptions ... 50
6.5. LBus Commands .. 50
6.6. Byte Alignment ... 51
6.7. Lexra Bus Controller .. 51

6.7.1. LBC Commands ... 51
6.7.2. LBC Write Buffer and Out-of-Order Processing ... 52
6.7.3. LBC Read Buffer ... 52
6.7.4. Transfer Descriptions ... 53
6.7.5. Single Cycle Read with No Waits .. 54
6.7.6. Single Cycle Read with Target Wait .. 55
6.7.7. Line Read with No Waits ... 55
6.7.8. Line Read with Target Waits ... 56
6.7.9. Line Read with Initiator Waits ... 56
6.7.10. Burst Read .. 57
6.7.11. Single-Cycle Write with No Waits ... 57
6.7.12. Single-Cycle Write with Waits .. 58
6.7.13. Burst Write with No Waits ... 58
6.7.14. Burst Write with Target Waits ... 59
6.7.15. Burst Write with Initiator Waits ... 59

6.8. LBC Signals .. 60
6.9. Arbitration ... 61

6.9.1. Rules ... 61
6.9.2. LBC behavior ... 61

6.10. Connecting Devices to the Bus ... 61

7. LX4189 Coprocessor Interface ...63
7.1. Attaching a Coprocessor Using the Coprocessor Interface (CI) 63
7.2. Coprocessor Interface (CI) Signals ... 63
7.3. Coprocessor Write Operations .. 64
7.4. Coprocessor Read Operations ... 64
7.5. Coprocessor Interface and Pipeline Stages ... 65

7.5.1. Pipeline Holds .. 65
7.5.2. Pipeline Invalidation .. 65

8. LX4189 EJTAG ..67
8.1. Introduction ... 67
8.2. Overview ... 67

8.2.1. IEEE JTAG-specific Pinout ... 68
8.3. Single Processor PC Trace .. 68

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 5 - Revision 1.3

8.3.1. PC Trace DCLK - Debug Clock .. 69
8.3.2. PC Trace PCST - Program Counter Status Trace .. 69
8.3.3. PC Trace TPC - Target Program Counter .. 69
8.3.4. Single-Processor PC Trace Pinout ... 69
8.3.5. Vectored Interrupts and PC Trace .. 70
8.3.6. Demultiplexing of TDO and TDI During PC Trace 70

9. Multiply-Divide-Accumulate (Optional) ..71
9.1. Summary of Instructions ... 71
9.2. MAC-DIV Instruction Overview .. 72
9.3. Op-codes for standard mode (32-bit) instructions .. 73
9.4. Op-codes for MIPS-16 (16 bit) mode instructions ... 74
9.5. Non-Standard Instruction Descriptions .. 75
9.6. Multiplier Pipelining ... 77
9.7. Accessing HI and LO after multiply instructions ... 77
9.8. Divider Overview and Register Usage ... 78

Appendix A.LX4189 Lconfig Forms ...79
A.1. Configuration Options for the LX4189 Processor .. 79

Appendix B.LX4189 Port Descriptions ..81

Appendix C. LX4189 Pipeline Stalls ...89
C.1. Stall Definitions .. 89
C.2. Instruction Groupings ... 89
C.3. Non-Sequential Program Flow Issue Stall .. 89
C.4. Load Subword Stall .. 90
C.5. Store-Load Stall .. 90
C.6. StoreAny - StoreSubword Stall .. 90
C.7. Load/Store Ops Stall Matrix ... 90
C.8. MVCz Stall ... 90
C.9. IMMU Stall ... 90
C.10. IMMU Issue Stall ... 91
C.11. Icache Miss Stall ... 91
C.12. Dcache Miss Stall ... 91
C.13. Pipeline Timing Diagrams for Stalls .. 91

C.13.1. Non-Sequential Program Flow Issue Stalls .. 91
C.13.2. Load Subword Stall .. 92
C.13.3. Store-Load Stall .. 92
C.13.4. StoreAny - Store Subword Stall ... 92
C.13.5. MVCz Stall ... 92
C.13.6. LWCz Stall ... 92
C.13.7. Icache Miss Stall .. 93
C.13.8. Dcache Miss Stall ... 93

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 6 - Revision 1.3

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 7 - Release 1.9

List of Tables

Table 1: EDA Tool Support .. 15
Table 2: CP0 Registers.. 19
Table 3: Prioritized Interrupt Exception Vectors.. 20
Table 4: ALU Instructions .. 22
Table 5: Load and Store Instructions .. 23
Table 6: Conditional Move Instructions ... 23
Table 7: Branch and Jump Instructions... 24
Table 8: Control Instructions .. 25
Table 9: Coprocessor Instructions... 25
Table 10: Custom Engine Interface Operations.. 26
Table 11: Custom Engine Interface Signals.. 26
Table 12: SMMU Address Mapping... 27
Table 13: List of Exceptions ... 28
Table 14: MIPS I Instructions Not Supported by MIPS16 ... 34
Table 15: MIPS16 Instructions that Support MIPS I.. 34
Table 16: New MIPS16 Instructions... 35
Table 17: PC-Relative Addressing.. 35
Table 18: Local Memory Interface Modules .. 37
Table 19: ICACHE Configurations... 39
Table 20: ICACHE RAM Interfaces... 40
Table 21: IMEM Configurations... 41
Table 22: IMEM RAM Interfaces... 41
Table 23: IROM Configurations... 42
Table 24: IROM ROM Interfaces ... 43
Table 25: DCACHE Configurations... 43
Table 26: DCACHE RAM Interfaces ... 44
Table 27: DMEM Configurations... 45
Table 28: DMEM RAM Interfaces ... 45
Table 29: Line Read Interleave Order... 49
Table 30: LBus Signal Description... 50
Table 31: LBus Byte Lane Assignment .. 51
Table 32: LBus Commands Issued by the LBC.. 52
Table 33: LBC Interface Signals... 60
Table 34: Coprocessor Interface Signals .. 63
Table 35: EJTAG Pinout... 68
Table 36: EJTAG AC Characteristics... 68
Table 37: EJTAG Synthesis Constraints... 68
Table 38: Single-Processor PC Trace Pinout.. 69
Table 39: Single-Processor PC Trace AC Characteristics .. 70
Table 40: Summary of MAC-DIV Instructions. ... 71
Table 41: MAC-DIV Operation Stall Matrix.. 72
Table 42: 16-bit Multiply and Multiply-Accumulate Instructions.. 75
Table 43: 32-bit Multiply-Accumulate Instructions ... 76
Table 44: LX4189 Processor Port Summary .. 81
Table 45: Instruction Groupings For Stall Definition... 89
Table 46: Load/Store Ops Stall Matrix ... 90

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 8 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 9 - Release 1.9

List of Figures

Figure 1: LX4189 Processor Overview.. 12
Figure 2: Processor Core Module Partitioning... 17
Figure 3: Lexra System Bus Diagram .. 47

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 10 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 11 - Release 1.9

1. LX4189 Product Overview

1.1. Introduction

This data sheet describes Lexra’s LX4189 processor, a complete MIPS R3000-class processor subsystem
developed for ease of integration. (See Figure 1 on page 12.) The major subsystems are: the CPU core, Local
Memory Interfaces (LMI) and LBus Controller (LBC). The technology includes optional interfaces to
customer-defined Coprocessors (CI[1-3]) and optional customer extensions to the MIPS ISA (Custom
Engine). The local instruction memories and data memories may include fixed RAM and/or cache; the sizes
are configurable.

The LX4189 is an upgrade to the LX4180, adding a 6-stage pipeline, conditional move instructions, 8
additional vectored interrupts, and greater clock speed.

Key Features

• Complete Processor Subsystem

• Executes MIPS I ISA (except unaligned loads, stores).
• Extensive third-party tool support.
• High-performance 6-stage pipeline.
• Local instruction memory and/or cache, configurable sizes.
• Local data memory and/or cache, configurable sizes.
• Memory interface logic included.
• System bus controller.
• Optional customer-defined coprocessors.
• Optional customer-defined instruction extensions.
• Supports EJTAG Draft 2.0 for debugging.

• Portable RTL Model

• Available as a synthesizable RTL.
• Portable to any 0.25µm, 0.18µm or 0.15µm.

logic and SRAM process.
• Foundry partners include IBM, TSMC, and UMC.

• Easy ASIC Design

• Single phase clocking.
• Fully synchronous design.
• Easy to interface system bus protocol.
• Supports popular EDA tools.

• Easy RTL Customization

• User-configurable local memory, reset method, clock distribution.
• User-configurable EJTAG breakpoints.
• Over 30 other configuration options.
• Interfaces for adding application-specific instructions.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 12 - Release 1.9

• Development Tools

• Available from third party suppliers supporting the MIPS architecture.
• Includes industry leaders Green Hills Software, Embedded Performance Inc.,

and Wind River Systems.

• Real-Time Operating System (RTOS) Support

• Available from industry leaders.
• Includes NucleusPLUS(tm), ThreadX(tm), and VxWorks(tm).

1.2. LX4189 Processor Overview

The figure below shows the structure of the LX4189 processor.

Figure 1: LX4189 Processor Overview

MIPS ISA Execution. The LX4189 supports the MIPS I programming model. Two source operands can be
supplied and one destination update performed per cycle. The second operand is either a register or 16-bit
immediate. The instruction set includes a wide selection of ALU operations executed by the RALU, Lexra’s
proprietary register based ALU. The RALU also generates memory addresses for 8-bit, 16-bit, and 32-bit
register loads from (stores to) memory by adding a register base to an immediate offset. Branches are based
on comparisons between registers, rather than flags, and are therefore easy to relocate. Optional links
following jump or branch instructions assist with subroutine programming.

The MIPS unaligned load and store instructions are not supported, because they represent poor price/
performance trade-off for embedded applications. Their absence does not affect the software programming
model.

Pipeline. LX4189 instructions are executed by a six-stage pipeline that has been designed so that all
transactions internal to the LX4189, as well as at the interfaces, occur on the positive edge of the processor
clock. Two-phase clocks are not used.

Exception Handling. The MIPS R3000 exception handling model is supported. Exceptions include both
instruction-synchronoustraps as well as hardware and softwareinterrupts. The STATUS register controls the
interrupt mask and operating mode. Exceptions are prioritized. When an exception is taken, control is
transferred to the exception vector, the current instruction address is saved in the EPC register, and the
exception source is identified in the CAUSE register. A user program located at the exception vector identifies
the cause of the exception, and transfers control to the application-specific handler. In the event of an address
error exception, the BADVADDR holds the failing address.

Coprocessor Operations.The LX4189 supports 32-bit Coprocessor operations. These include moves to and

Inst
RAM

Icache
RAM

Inst LMI

Data LMI

Data
RAM

Dcache
RAM

LX4189
CPU
Core

Custom
Engine

CI (1-3)

CEI

Instruction Bus (Addr, Data, Ctl)

Data Bus (Addr, Data, Ctl)

Coprocessor(s)

LBC System
Bus

denotes customer logic

Inst
ROM

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 13 - Release 1.9

from the Coprocessor general registers and control registers (MTCz, MFCz, CTCz, CFCz), Coprocessor
loads and stores (LWCz, SWCz) and branches based on Coprocessor condition flags (BCzT, BCzF). The
Lexra-supplied Coprocessor Interface can support Coprocessor operations in a single cycle, without pipeline
stalls.

LX4189 provides excellent price/performance and time-to-market. There are two main approaches which
Lexra has taken to achieve this:

• Deliver simple building blocks outside the processor core to enable system level
customizations such as coprocessors, application specific instructions, memories, and
busses.

• Deliver either a fully synthesizable Verilog source model or fully implemented hardcore
(called SmoothCore) for popular pure-play foundries.

Section 1.3 describes the building blocks, and Section 1.4 describes the deliverable models.

1.3. System Level Building Blocks

The LX4189 processor is designed to easily fit into different target applications. It provides the following
building blocks.

• A simple memory management unit (SMMU).

• An optimized Custom Engine Interface (CEI).

• Up to three Coprocessor Interfaces (CI).

• A flexible Local Memory Interface (LMI) that supports instruction cache, instruction
RAM, instruction ROM, data cache and data RAM.

• A Lexra Bus Controller (LBC) to connect peripheral devices and secondary memories to
the processor’s own local buses.

The following sections discuss each of these system building block interfaces.

1.3.1. SMMU

The LX4189 SMMU is designed for embedded applications using a single address space. Its primary
function is to provide memory protection between user space and kernel space. The SMMU is consistent
with the MIPS address space scheme for User/Kernel modes, mapping, and cached/uncached regions.

1.3.2. Local Memory Interface

The LX4189’s Harvard Architecture provides Local Memory Interfaces (LMIs) that support instruction
memory and data memory. Synchronous memory interfaces are employed for all memory blocks. The LMI
block is designed to easily interface with standard memory blocks provided by ASIC vendors or by third-
party library vendors.

The LMIs provide a two-way set associative instruction cache interface, and a direct-mapped write-through
data cache interface. The tag compare logic as well as a cache replacement algorithm are provided as part of
the LMI. One of the instruction cache sets may be locked down as un-swappable local memory. Local
instruction and data memories can also be mapped to fixed regions of the physical address space, and include
non-volatile memory (such as ROM, flash, or EPROM).

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 14 - Release 1.9

1.3.3. Coprocessor Interface

Lexra supplies an optional Coprocessor Interface (CI) for applications requiring this functionality. Up to three
CIs may be implemented in one design. The Coprocessor Interface “eavesdrops” on the Instruction bus. If a
Coprocessor load (LWCz) or “move to” (MTCz, CTCz) is decoded, data is passed over the Data Bus into a
CI register, then supplied to the designer-defined Coprocessor. Similarly, if a Coprocessor store (SWCz) or
“move from” (MFCz, CFCz) is decoded, data is obtained from the Coprocessor and loaded into a CI register,
then transferred onto the Data Bus in the following cycle. The design interface includes a data bus, five-bit
address, and independent read and write selects for Coprocessor registers and control registers. The LX4189
pipeline and Harvard Architecture permit single cycle Coprocessor access and transfer. An application-
defined Coprocessor condition flag is synchronized by the CI then passed to the Sequencer for testing in
branch instructions.

1.3.4. Custom Engine Interface

The LX4189 includes a Custom Engine Interface (CEI) that the application may use to extend the MIPS I
ALU opcodes with application-specific or proprietary operations. Similar to the standard ALU, the CEI
supplies the Custom Engine two input 32-bit operands, SRC1 and SRC2. One operand is selected from the
Register File. Depending on the most significant 6 bits of the opcode, the second operand is either selected
from the Register File or is a 16-bit sign-extended immediate. The opcode is locally decoded by the custom
engine, and following execution by the custom engine, the result is returned on the 32-bit result bus to the
LX4189. To support multi-cycle operations, a stall input is included in the interface.

1.3.5. Lexra Bus Controller

The Lexra Bus Controller (LBC) is the interface between the LX4189 and the outside world, which includes
DRAM and various peripherals. It is a non-multiplexed, non-pipelined, and non-parity checked bus to
provide the easiest bus protocol for design integration. On the processor side, the LBC provides a write-buffer
of configurable depth to support the write-through cache, as well as the control for byte and half-word
transfers. On the peripheral side, the LBC is designed to easily interface to industry standard bus protocols,
such as PCI, USB, and FireWire.

The LBC can run at any speed from 33 MHz, up to the speed of the LX4189 processor core in both the RTL
core and SmoothCore.

1.3.6. Building Block Integration

The LX4189 configuration script,lconfig, provides a menu of selections for designers to specify building
blocks needed, number of different memory blocks, target speed, and target standard cell library. Next, the
configuration software automatically generates a top level Verilog model, makefiles, and scripts for all steps
of the design flow.

For testability purposes, all building blocks contain scan control signals. The Lexra synthesis scripts include
scan insertion, which allows ATPG testing of the entire LX4189 core.

1.4. RTL Core & SmoothCore

Lexra delivers LX4189 as RTL Core and SmoothCore.

RTL Core: For full ASIC designs, the RTL is fully synthesizable and scan-testable Verilog source code, and
may be targeted to any ASIC vendor’s standard cell libraries. In this case, the designer may simply follow the
ASIC vendor’s design flow to ensure proper sign-off. In addition to the Verilog source code and system level
test bench, Lexra provides synthesis scripts as well as floor plan guidelines to maximize the performance of
the LX4189.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 15 - Release 1.9

SmoothCore:For COT designs that are manufactured at popular foundries such as IBM, TSMC, and UMC,
a SmoothCore port is the quickest, lowest cost, and best performance choice. In this case,the LX4189 has
been fully implemented and verified as a hard macro. All data path, register file, and interface optimizations
have been performed to ensure the smallest die size and fastest performance possible. Furthermore, there is a
scan based test pattern that provides excellent fault coverage during manufacturing tests.

1.5. EDA Tool Support

Lexra supports mainstream EDA software, so designers do not have to alter their design methodology. The
following is a snapshot of EDA tools currently supported:

Table 1: EDA Tool Support

Design Flow Tools Supported

Simulation Synopsys VCS
Cadence Verilog XL
Cadence NC-Verilog

Synthesis Synopsys Design Compiler

Static Timing Synopsys PrimeTime

DFT Synopsys TetraMax

P&R Avant! Apollo II

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 16 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 17 - Release 1.9

2. LX4189 Architecture

2.1. Hardware Architecture

2.1.1. Module Partitioning

The LX4189 processor core includes two major blocks: the RALU (register file and ALU) and the CP0
(Control Processor). The RALU performs ALU operations and generates data addresses while CP0 includes
instruction address sequencing, exception processing, and product specific mode control. The RALU and
CP0 are loosely-coupled and include their own independent instruction decoders.

Figure 2: Processor Core Module Partitioning

2.1.2. Six Stage Pipeline

The LX4189 has a six stage pipeline:

The six stage pipeline provides a complete processor cycle for the instruction memory, providing ease of use
integrating for allowing use of larger and set-associative memories without degrading cycle time. The six
pipeline stages allow the processor clock speed to scale with current silicon processes.

Stage 1 I Instruction fetch
Stage 2 D Decode
Stage 3 S Source fetch (register file read)
Stage 4 E Execution and address generation
Stage 5 M Memory data select (read data cache store and tags)
Stage 6 W Write back to register file

Register File

32 x 32-bit
r0=0

Instruction Address and Control

ALUPRiD

Exception
Processing Logic

PC and
Sequencer

Instructions

Data

Data Address
and Control

Flags
and Traps

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 18 - Release 1.9

As a result of the D-Stage, a two cycle penalty is incurred on branch prediction failure vs. the one-cycle
penalty in the LX4180 five stage pipeline. However, the LX4189’s conditional move instructions can be used
to avoid any wasted cycles in the control of real-time critical loops.

2.2. RALU Data Path

The LX4189 RALU incorporates a 32x32b four-port register file. One write port is dedicated to 32-bit
register file loads from the Data Bus (Loads, MFCz, CFCz - moves from Coprocessor). The remaining three
ports (2r/1w) are used for the other operations, such as ALU operations.

The instruction set includes a wide selection of ALU operations executed by the RALU. In the case of ALU
operations, one operand is a register and the second operand is either a register or 16-bit immediate value.
The immediate value is sign-extended or zero-extended, depending on the operation. Signed adds and
subtracts can generate the arithmetic overflow trap, Ov, which is sampled by CP0.

The RALU also generates the virtual memory addresses for register loads from (stores to) memory by adding
a register base to a sign-extended 16-bit immediate offset. Data address errors generate theAdEL, AdES trap
flags which are sampled by CP0. The LX4189 employsBig-Endian memory addressing.

Branches are based on comparisons between registers, rather than implicit flags, permitting the programmer
more flexibility. From these comparisons, the RALU generatesN andZ flags for sampling in CP0. Branch or
jump instructions may optionally store in a general purpose register the address of the instruction at the
memory location following the branch delay slot of a jump or a branch which is taken. This register, called
thelink, holds the return address following a subroutine call.

Coprocessor operations permit moves of the general purpose registers to one of three optional application-
specific Coprocessors The general purpose registers may also be loaded from the Coprocessor registers.
These transfers occur over the Data Bus, similar to data memory loads and stores.

2.3. System Control Copr ocessor (CP0)

The System Control Coprocessor (CP0) is responsible for instruction address sequencing and exception
processing.

For normal execution, the next instruction address has several potential sources: the increment of the previous
address, a branch address computed using a pc-relative offset, or a jump target address. For jump addresses,
the absolute target can be included in the instruction, or it can be the contents of a general-purpose register
transferred from the RALU.

Branches are assumed (or predicted) to be taken. In the event of prediction failure, two stall cycles are
incurred and the correct address is selected from a special “backup” register. Statistics from several large
programs suggest that these stalls will degrade average LX4189 throughput by several percent. However, the
net effect of the LX4189’s branch prediction on performance is positive because this technique eliminates
certain critical paths and therefore, permits a higher speed system clock.

If an exception occurs, CP0 selects one of several hardwired vectors for the next instruction address. The
exception vector depends on the mode and specific trap which occurred. This is described further in
Section 3.4, Exception Processing.

The following registers, which are visible to the programming model, are located in CP0:

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 19 - Release 1.9

Table 2: CP0 Registers

EPC, STATUS, CAUSE, and BADVADDR are described further in the Section 3.4. PRID is a read-only
register that allows the customer’s software to identify the specific version of the LX4189 that has been
implemented in their product. The CCTL register is a Lexra defined CP0 register used to control the
instruction and data memories, as described in Section 5.2, Cache Control Register: CCTL.

The contents of the above registers can be transferred to and from the RALU’s general-purpose register file
using CP0 operations. (Unlike registers located in Coprocessors 1-3, they cannot be loaded or stored directly
to data memory.)

2.4. Low-Overhead Prioritized Interrupts

The LX4189 includes eight new low-overhead hardware interrupt signals. These signals are compatible with
the R3000 Exception Processing model and are useful for real-time applications.

These interrupts are supported with three new Lexra CP0 registers, ESTATUS, ECAUSE, and INTVEC,
accessed with the new MTLXC0 and MFLXC0 variants of the MTC0 and MFC0 instructions. As with any
COP0 instruction, a Coprocessor Unusable Exception is taken if these instructions are executed while in User
Mode and the Cu0 bit is 0 in the CP0 STATUS register.

The three new Lexra CP0 registers are ESTATUS (0), ECAUSE (1), and INTVEC (2), and are defined as
follows:

ESTATUS (LX COP0 Reg 0) Read/Write

ECAUSE (LX COP0 Reg 1) Read-only

INTVEC (LX COP0 Reg 2) Read/Write

ESTATUS contains the new interrupt mask bits IM[15:8], which are reset to 0 so that none of the new

CP0 register Number Function

BADVADDR 8 Holds bad virtual address if address exception error occurs

STATUS 12 Interrupt masks, mode selects

CAUSE 13 Exception cause

EPC 14 Holds address for return after exception handler

PRID 15 Processor ID (read-only) 0x0000c401 for LX4189

CCTL 20 Instruction and data memory control

31 - 24 23 - 16 15 - 0

0 IM[15:8] 0

31 - 24 23 - 16 15 - 0

0 IP[15:8] 0

31 - 6 5 - 0

BASE 0

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 20 - Release 1.9

interrupts will be activated, regardless of the global interrupt signal IEc. IP[15:8] for the new interrupt signals
is located in ECAUSE and is read-only. These fields are similar to the IM and IP fields defined in the R3000
Exception Processing Model, except that the new interrupts are prioritized in hardware, and each have a
dedicated exception vector.

IP[15] has the highest priority, while IP[8] has the lowest priority, however, all new interrupts are higher
priority than IP[7:0]. The program defined BASE address for the exception vectors is located in INTVEC.
The exception vector used for each prioritized interrupt is shown in the table below. Two instructions can be
executed in each vector; typically these will consist of a jump instruction and its delay slot, with the target of
the jump being either a shared interrupt handler or one that is unique to that particular interrupt.

Table 3: Prioritized Interrupt Exception Vectors

When a vectored interrupt causes an exception, all of the standard actions for an exception occur. These
include updating the EPC register and certain subfields of the standard STATUS and CAUSE registers. In
particular, the Exception Code of the CAUSE register indicates “Interrupt”, and the “current” and “previous”
mode bits of the STATUS register are updated in the usual manner.

Interrupt Number Exception Vector

15 BASE || 111000

14 BASE || 110000

13 BASE || 101000

12 BASE || 100000

11 BASE || 011000

10 BASE || 010000

9 BASE || 001000

8 BASE || 000000

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 21 - Release 1.9

3. LX4189 RISC Programming Model

This section describes the LX4189 Programming Model. Section 3.1, Summary of MIPS-I Instructions,
contains a list summarizing all MIPS-I operations supported by the LX4189. These opcodes may be extended
by the customer using Lexra’s Custom Engine Interface (CEI). This capability is described in Section 3.2,
Opcode Extension Using the Custom Engine Interface (CEI).

Section 3.3, Memory Management, describes the Simplified Memory Management Unit (SMMU) which is
physically incorporated in the LX4189 LMI. The SMMU provides sufficient memory management
capabilities for most embedded applications while ensuring execution of third-party MIPS software
development tools.

The LX4189 supports the MIPS R3000 Exception Processing model, as described in Section 3.4, Exception
Processing.

The LX4189 supports all MIPS-I Coprocessor operations. The customer can include one to three application-
specific Coprocessors. Lexra provides a functional block called the Coprocessor Interface (CI) which allows
the customer a simplified connection between their Coprocessor and the internal signals of the LX4189. The
CI is described in Section 3.5, The Coprocessor Interface (CI).

3.1. Summary of MIPS-I Instructions

The LX4189 executes MIPS-I instructions as detailed in the tables below. To summarize, the LX4189
executes MIPS-I instructions with the following exclusions: the unaligned loads and stores (LWL, SWL,
LWR, SWR) are not supported because they add significant silicon area for little benefit in most applications.

The following conventions are employed in the instruction descriptions.

« » Encloses a list of syntax choices, from which one must be chosen.

{ } Encloses a list of values that are concatented to form a larger value.

n { value } Replicates (concatenates) a value n times.

value[3] Bits selected from a value.

[rA + offset] Memory address computation and corresponding memory contents.

4’b0000 A sized constant binary value.

32’h1234_5678 A sized constant hexadecimal value.

expr ? A : B Select A if expr is true, otherwise select B.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 22 - Release 1.9

3.1.1. ALU Instructions

Table 4: ALU Instructions

Instruction Description

ADD rD, rA, rB
ADDU rD, rA, rB
ADDI rD, rA, immediate
ADDIU rD, rA, immediate

rD <- rA + «rB, immediate»
Add reg rA to either reg rB or a 16-bit immediate sign-
extended to 32 bits. Result is stored in reg rD. ADD and ADDI
can generate overflow trap; ADDU and ADDIU do not.

SUB rD, rA, rB
SUBU rD, rA, rB

rD <- rA - rB
Subtract reg rB from reg rA. Result is stored in register rD.
SUB can generate overflow trap. SUBU does not.

AND rD, rA, rB
ANDI rD, rA, immediate

rD <- rA & «rB, immediate»
Logical and of reg rA with either reg rB or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

OR rD, rA, rB
ORI rD, rA, immediate

rD <- rA | «rB, immediate»
Logical or of reg rA with either reg rB or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

XOR rD, rA, rB
XORI rD, rA, immediate

rD <- rA ^ «rB, immediate»
Logical xor of reg rA with either reg rB or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

NOR rD, rA, rB rD <- ~(rA | rB)
Logical nor of reg rA with either reg rB or a zero-extended 16-
bit immediate. Result is stored in reg rD.

LUI rD, immediate rD <- {immediate, 16’b0}
The 16-bit immediate is stored into the upper half of reg rD.
The lower half is loaded with zeroes.

SLL rD, rB, immediate
SLLV rD, rB, rA

rD <- rB << «rA, immediate»
Reg rB is left-shifted by 0-31. The shift amount is either the 5b
immediate of the 5 lsb of rA. Result is store in reg rD.

SRL rD, rB, immediate
SRLV rD, rB, rA

rD <- rB >> «rA, immediate»
Reg rB is right-shifted by 0-31. The unsigned shift amount is
either the 5b immediate or the 5 lsb of rA. Result is stored in
reg rD.

SRA rD, rB, immediate
SRAV rD, rB, rA

rD <- rB >>(a) «rA, immediate»
Reg rB is arithmetic right-shifted by 0-31. The unsigned shift
amount is either the 5b immediate or the 5 lsb of rA. Result is
stored in reg rD.

SLT rD, rA, rB
SLTU rD, rA, rB
SLTI rD, rA, immediate
SLTIU rD, rA, immediate

rD <- (rA < «rB, immediate») ? 1 : 0
If reg rA is less than «rB, immediate» set rD to 1, else 0. The
16-bit immediate is sign extended. For SLT, SLTI, the compari-
son is signed; for SLU, SLTIU, the comparison is unsigned.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 23 - Release 1.9

3.1.2. Load and Store Instructions

Table 5: Load and Store Instructions

3.1.3. Conditional Move Instructions

Table 6: Conditional Move Instructions

Instruction Description

LB rD, offset(rA)
LBU rD, offset(rA)
LH rD, offset(rA)
LHU rD, offset(rA)
LW rD, offset(rA)

rD <- Memory[rA + offset]
Reg rD is loaded from data memory. The memory address is
computed as base + offset, where the base is reg rA and the
offset is the 16-bit offset sign-extended to 32 bits.
LB, LBU addresses are interpreted as byte addresses to data
memory; LH, LHU as halfword (16-bit) addresses; LW as word
(32-bit) addresses.
The data fetched in LB, LH (LBU, LHU) is sign-extended (zero-
extended) to 32-bits for storage to reg rD.
rD cannot be referenced in the instruction following a load
instruction.

SB rB, offset(rA)
SH rB, offset(rA)
SW rB, offset(rA)

rB -> Memory[rA + offset]
Reg rB is stored to data memory. The memory address is
computed as base + offset, where the base is reg rA and the
offset is the 16-bit offset sign-extended to 32 bits.
SB addresses are interpreted as byte addresses to data mem-
ory; the 8 lsb of rB are stored. SH addresses are interpreted
as halfword addresses to data memory; the 16 lsb of rB are
stored.

Instruction Description

MOVZ rD, rS, rT rD <- (rT== 0) ? rS : rD
If the contents of general register rT are equal to 0, the general
register rD is updated with rS; otherwise rD is unchanged.

MOVN rD, rS, rT rD <- (rT != 0) ? rS : rD
If the contents of general register rT are not equal to 0, the gen-
eral register rD is updated with rS; otherwise rD is unchanged.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 24 - Release 1.9

3.1.4. Branch and Jump Instructions

Table 7: Branch and Jump Instructions

Instruction Description

BEQ rA, rB, destination
BNE rA, rB, destination

if COND
 pc <- pc + 4 + { 14 { (destination[15] }, destination, 2’b00 }
else
 pc <- pc + 8
where COND = (rA = rB) for EQ, (rA ne rB) for NE, and desti-
nation is a 16-bit value.
For BEQ, BNE the instruction after the branch (delay slot) is
always executed.

BLEZ rA, destination
BGTZ rA, destination

if COND
 pc <- pc + 4 + { 14 {destination[15] }, destination, 2’b00 }
else
 pc <- pc + 8
where COND = (rA <= 0) for LE, (rA > 0) for GT, and destina-
tion is a 16-bit value
For BLEZ, BGTZ the instruction after the branch (delay slot) is
always executed.

BLTZ rA, destination
BGEZ rA, destination

if COND
 pc <- pc + 4 + { 14 { destination[15] }, destination, 2’b00 }
else
 pc <- pc + 8
where COND = (rA < 0) for LT, (rA >= 0) for GE, and destina-
tion is a 16-bit value
For BLTZ, BGEZ the instruction after the branch (delay slot) is
always executed.

BLTZAL rA, destination
BGEZAL rA, destination

Similar to the BLTZ and BGEZ except that the address of the
instruction following the delay slot is saved in r31 (regardless
of whether the branch is taken.)

J target pc <- { pc[31:28], target, 2’b00 }
target is a 26-bit absolute. The instruction following J (delay
slot) is always executed.

JAL target Same as above except that the address of the instruction fol-
lowing the delay slot is saved in r31.

JR rA pc <- (rA)
The instruction following JR (delay slot) is always executed.

JALR rA, rD Same as above except that the address of the instruction fol-
lowing the delay slot is saved in rD.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 25 - Release 1.9

3.1.5. Control Instructions

Table 8: Control Instructions

3.1.6. Coprocessor Instructions

Table 9: Coprocessor Instructions

Instruction Description

SYSCALL The Sys Trap occurs when SYSCALL is executed.

BREAK The Bp Trap occurs when BREAK is executed.

RFE Causes the KU/IE stack to be popped. Used when returning
from the exception handler. See “Exception Processing”
below.

SLEEP Initiates low-power standby mode. This is a Lexra specific
operation (LEXOP). See Section 3.6, Power Savings Mode.

Instruction Description

LWCz rCGEN, offset(rA) rCGEN <- Memory[rA + offset]
Coprocessor z general reg rCGEN is loaded from data mem-
ory. The memory address is computed as base + offset,
where the base is reg rA and the offset is the 16-bit offset
sign-extended to 32 bits.
rCGEN cannot be referenced in the following instruction (one
cycle delay).

SWCz rCGEN, offset(rA) rCGEN <- Memory[rA + offset]
Coprocessor z general reg rCGEN is stored to data memory.
The memory address is computed as base + offset, where
the base is reg rA and the offset is the16-bit offset sign-
extended to 32 bits.

MTCz rB, rCGEN
CTCz rB, rCCON

In MTCz(CTCz), the general register rB is moved to Copro-
cessor z general (control) reg rCGEN(rCCON).
rCGEN and rCCON cannot be referenced in the following
instruction.

MFCz rB, rCGEN
CFCz rB, rCCON

In MFCz(CFCz), the Coprocessor z general (control) reg
rCGEN(rCCON) is moved to the general register rB.
rB cannot be referenced in the following instruction.

BCzT destination
BCzF destination

if COND
 pc <- pc + 4 + { 14’ { destination[15] } , destination, 2’b00 }
else
 pc <- pc + 8
where COND = (CpCondz = True) for BCzT, (CpCondz =
False) for BCzF.
For BCzT, BCzF the instruction after the branch (delay slot) is
always executed.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 26 - Release 1.9

3.2. Opcode Extension Using the Custom Engine Interface (CEI)

3.2.1. CEI Operations

Customers may add proprietary or application-specific opcodes to their LX4189 based products using the
Custom Engine Interface (CEI). The new instructions take one of the following forms illustrated below and
use reserved opcodes.

Table 10: Custom Engine Interface Operations

Lexra permits customer operations to be added using the four (4) I-Format opcodes and six (6) R-Format
opcodes listed in the Table above. Other opcode extensions in future Lexra products willnot utilize the
opcodes reserved above.

When the CEI decodes NEWOPI or NEWOPR, it must signal the Core that a custom operation has been
executed so that the Reserved Instruction trap will not be taken. Multi-cycle custom operations may be
executed by asserting CESEL.

Note: The custom operation may choose to ignore the SRC1 and SRC2 operands supplied by the CEI and
reference customer registers instead. Results can also be written to an implicit customer register; however,
unless D = 0 is coded, a register in the Core will also be written.

3.2.2. Interface Signals

Table 11: Custom Engine Interface Signals

New Instruction Description Available Opcodes

NEWOPI rD, rA, immed rD <- rA NEWOPI immed
Reg rA is supplied to the SRC1 port of
CEI and the 16-bit immediate, sign-
extended to 32-bits is supplied to
SRC2.
The result of the customer’s NEWOPI
is placed on the CEI input port RES
and stored in reg rD.

INST[31:26] = 24 - 27

NEWOPR rD, rA, rB rD <- rA NEWOPR rB
Reg rA is supplied to the SRC1 port of
CEI and reg rB is supplied to SRC2.
The result of the customer’s NEWOPI
is placed on the CEI input port RES
and stored in reg rD.

INST[31:26] = 0 and
INST[5:0] = 56,58-
60,62-63

Signal I/O Description

SRC1[31:0] output Operand supplied to customer logic.

SRC2[31:0] output Operand supplied to customer logic.

RES[31:0] input Result of customer logic. Supplied to Core.

CEIOP[11:0] output Instruction OP and SUBOP fields – to be decoded by
customer logic.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 27 - Release 1.9

3.3. Memory Management

The LX4189 includes a Simplified Memory Management Unit (SMMU) for the instruction memory address
and the data memory address. These units are physically located in the Local Memory Interface (LMI)
modules. The hardwired virtual-to-physical address mapping performed by the SMMU is sufficient to ensure
execution of third-party software development tools.

Table 12: SMMU Address Mapping

3.4. Exception Processing

The LX4189 implements the MIPS R3000 exception processing model as described below. Features specific
to on-chip TLB support are not included. In the discussion below, the termexception refers to bothtraps,
which are non-maskable program synchronous events, andinterrupts, which result from unmasked
asynchronous events.

The list below is numbered from highest to lowest priority. ExcCode is stored in CAUSE when an exception
is taken. Note that Sys, Bp, RI, CpU can share the same priority level because only one can occur in a
particular time slot.

CEHALT input Indicates that a multi-cycle custom operation is in
progress.

CESEL input Indicates that a CEI operation has been decoded.

Virtual Address Space Description Mapped to Physical Address

0xFF00_0000 to
0xFFFF_FFFF

EJTAG address space.
16 Mbyte. Uncached.
This address range is
reserved for EJTAG use
only.

0xFF00_0000 to 0xFFFF_FFFF

0xC000_0000 to
0xFEFF_FFFF

KSEG2. 1Gbyte (minus
16 Mbyte). Addressable
only in kernel mode.
Cached.

0xC000_0000 to 0xFEFF_FFFF

0xA000_0000 to
0xBFFF_FFFF

KSEG1. 0.5 Gbyte.
Addressable only in ker-
nel mode. Uncached.
Used for I/O devices.

0x0000_0000 to 0x1FFF_FFFF

0x8000_0000 to
0x9FFF_FFFF

KSEG0. 0.5 Gbyte.
Addressable only in ker-
nel mode. Cached.

0x0000_0000 to 0x1FFF_FFFF
(differentiated from KSEG1
addresses with an internal signal)

0x0000_0000 to
0x7FFF_FFFF

KUSEG. 2Gbyte.
Addressable in kernel or
user mode. Cached.

0x4000_0000 to 0xBFFF_FFFF

Signal I/O Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 28 - Release 1.9

Table 13: List of Exceptions

Exception Priority ExcCode Description

Reset 1 -- Reset trap.

AdEL –
instruction

2 4 Address exception trap. Instruction
fetch. Occurs if the instruction address
is not word-aligned or if a kernel
address is referenced in user mode.

Ov 3 12 Arithmetic overflow trap. Can occur as a
result of signed add or subtract opera-
tions.

Sys 4 8 SYSCALL instruction trap. Occurs
when SYSCALL instruction is executed.

Bp 4 9 BREAK instruction trap. Occurs when
BREAK instruction is executed.

RI 4 10 Reserved instruction trap. Occurs when
a reserved opcode is fetched. Reserved
opcodes are listed below.

CpU 4 11 Coprocessor Usability trap. Occurs
when an attempt is made to execute a
Coprocessor n operation and Copro-
cessor n is not enabled.

AdEL – data 5 4 Address exception trap. Data fetch.
Occurs if the data address is not prop-
erly aligned or if a kernel address is
generated in user mode.

AdES 6 5 Address exception trap. Data store.
Occurs if the data address is not prop-
erly aligned or if a kernel address is
generated in user mode.

Int 7 0 Unmasked interrupt. There are six (6)
level-sensitive hardware interrupt
request signals into the LX4189 Core.
Each is synchronized by the Core to the
LX4189 system clock. In addition, pro-
gram writes to CAUSE[9:8] are soft-
ware-initiated interrupt requests. Each
of the eight (8) requests has an associ-
ated mask bit in STATUS. Int is gener-
ated by any unmasked request (when
Interrupts are globally enabled).

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 29 - Release 1.9

3.4.1. Exception Processing Registers

STATUS: Coprocessor 0 General Register Address = 12

CU CU[n] = 1(0) indicates that Coprocessor n is usable(unusable) in Coprocessor instructions.

BEV Bootstrap Exception Vector. Selects between two trap vectors. (see below)

IM Interrupt masks for the six hardware interrupts and two software interrupts.

KU/IE KU = 0(1) indicates kernel (user) mode. In the LX4189, user mode virtual addresses must have
msb = 0. In kernel mode, the full address space is addressable. IE = 1(0) indicates that
interrupts are enabled (disabled).
The KUo, IEo, KUp, IEp, KUc and IEc fields form a three-level stack hardware stack KU/IE
signals. Thecurrent values are KUc/IEc, theprevious values are KUp/IEp, and theold values
(those before previous) are KUo/IEo. (See Section 3.4.2.)

STATUS is read or written using MTC0 and MTF0 operations. On reset, BEV = 1, KUc = IEc = 0. The other
bits in STATUS are undefined. The 0 fields are ignored on write and are 0 on read. It is recommended that the
user explicitly write them to 0 to insure compatibility with future versions of the LX4189.

CAUSE: Coprocessor 0 General Register Address = 13

BD Branch Delay. Indicates that the exception was taken in a branch or jump delay slot.

CE Coprocessor Exception. In the case of a Coprocessor Usability exception, indicates the number
of the responsible Coprocessor.

IP Interrupt Pending. Each bit in IP(7:0) indicated an associated unmasked interrupt request.

ExcCode The ExcCode listed above for the different exceptions are stored here when as exception
occurs.

CAUSE is read or written using MTC0 and MTF0 operations. The only program writable bits in CAUSE are
IP(1:0), which are calledsoftware interrupts. CAUSE is undefined at reset. The 0 fields are ignored on write
and are 0 on read.

EPC: Coprocessor 0 General Register Address = 14

EPC is a 32-bit read-only register which contains the virtual address of the next instruction to be executed
following return from the exception handler. If the exception occurs in the delay slot of a branch, EPC will
hold the address of the branch instruction and BD will be set in CAUSE. The branch will typically be re-
executed following the exception handler.

BADVADDR: Coprocessor 0 General Register Address = 8

BADVADDR is a 32-bit read-only register containing the virtual address (instruction or data) which

31-28 27-23 22 21-16 15-8 7-6 5 4 3 2 1 0

CU(3:0) 0 BEV 0 IM(7:0) 0 KUo IEo KUp IEp KUc IEc

31 30 29-28 27-16 15-8 7 6-2 1-0

BD 0 CE(1:0) 0 IP(7:0) 0 ExcCode(4:0) 0

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 30 - Release 1.9

generated an AdEL or AdES exception error.

3.4.2. Exception Processing: Entry and Exit

When an exception occurs, the instruction address changes to one of the following locations:

The KU/IE stack is pushed:

{ KUo, IEo, KUp, IEp, KUc, IEc } (before push)

{ KUp, IEp, KUc, IEc, 0, 0 } (after push)

which disables interrupts and puts the program in kernel mode. The code (ExcCode) for the exception source
is loaded into CAUSE so that the application-specific exception handler can determine the appropriate action.
The exception handler should not re-enable Interrupts until necessary context has been saved.

To return from the exception, the exception handler first moves EPC to a general register using MFC0,
followed by a JR operation. RFE onlypops the KU/IE stack:

{ KUp, IEp, KUc, IEc, 0, 0 } (before pop)

{ KUp, IEp, KUp, IEp, KUc, IEc } (after pop)

(This example assumes that KU/IE were not modified by the exception handler). Therefore, a typical
sequence of operations to return from the exception handler would be:

3.5. The Coprocessor Interface (CI)

Designers may implement up to three Coprocessors to interface with the LX4189. The contents of these
Coprocessors may include up to thirty-two (32) 32-bitgeneral registers and up to thirty-two (32) 32-bit
control registers. The general registers may be moved to and from the RALU’s registers using MTCz, MFCz
operations, or be loaded and stored from data memory using LWCz, SWCz operations. The control registers
may only be moved to and from the RALU’s registers using CTCz, CFCz operations.

Lexra supplies a simple Coprocessor Interface (CI) model allowing the customer to easily interface a
Coprocessor to the LX4189. The CI supplies a set of control, address, and data busses that may be tied
directly to the Coprocessor general and special registers.

The CI is described in more detail in Section 7, LX4189 Coprocessor Interface.

3.6. Power Savings Mode

The operating system kernel can initiate a power savings standby mode using the Lexra specific SLEEP

RESET 0xbfc0_0000

Other exceptions, BEV = 0 0x8000_0080

Other exceptions, BEV = 1 0xbfc0_0180

MFC0 EPC, r26 // r26 is a temporary storage register in the RALU
. . .
JR r26
RFE

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 31 - Release 1.9

instruction. This holds the LX4189's internal clocks in the high state until an external hardware interrupt is
received.

Before executing the SLEEP instruction, the kernel must ensure that the interrupt condition that will
ultimately terminate standby mode has been enabled via the IM field of the coprocessor 0 Status register.
When the SLEEP instruction enters the W stage, the standby logic stalls the processor and waits for the LBC
to complete any outstanding processor initiated system bus operations. After these are completed, the
standby logic holds the system and bus clocks high. These are held high until an enabled interrupt is
received.

When standby mode is terminated by an interrupt, the standby logic allows the clocks to toggle. The
processor honors the interrupt by branching to the exception handler as is normally done for interrupt
servicing. Because several instructions are held in the pipeline while the clocks are frozen prior to the
interrupt, the exception PC will not point to the SLEEP instruction, but rather some later instruction.
Typically, a kernel would enter an idle loop just after executing the SLEEP instruction, so the interrupt will be
serviced from the kernel's normal idle interrupt service level.

The LX4189 takes a minimum of 6 cycles after the SLEEP instruction enters the W stage to safely
synchronize the initiation of standby mode, i.e. hold the clocks in the high state. Two cycles are required
terminate standby mode. The processor is stalled during these periods.

The standby logic receives the free running system and bus clocks, and generates gated clocks for distribution
to the LX4189. The standby logic must use flip-flops tied to free running clocks, which results in about a
dozen loads on the free running clocks.

Two pins, SL_SLEEPING_R and SL_SLEEPING_BR, are available from the standby logic and are asserted
high when the processor is in standby mode. The _R pin is for use in the system clock domain, and the _BR
pin is for use in the bus clock domain.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 32 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 33 - Release 1.9

4. MIPS16

MIPS16 is an extension to the MIPS Instruction Set Architecture (ISA) that was developed to improve code
density, especially for System-on-Chip (SoC) designs. In these designs, on-chip instruction storage is often a
significant, even dominant, portion of the silicon component cost. This is especially true for real-time
applications because, in order to meet real-time requirements, instruction cache miss penalties cannot be
tolerated and thus a large portion of the instruction storage must be resident on-chip.

MIPS16 provides a set of 16-bit instruction formats to encode the most common operations. The key
compromises required to achieve 16-bit encoding include: (i) some MIPS I instructions are not available, (ii)
immediate widths are reduced, (iii) only 8 of the 32 general registers may be directly addressed. As a result
some operations cannot be executed in MIPS16 or require multiple MIPS16 instructions. Thus realistic
programs need to include both MIPS16 and MIPS I instructions, using MIPS16 where possible to save

storage, at some cost to performance.1 Mode switching between MIPS16 and MIPS I is discussed below. To
permit occasional access to all 32 general registers without the overhead of mode switching, MIPS16
providesMOVE instructions to move data between the MIPS16-visible registers and the full general register
set. Also, to permit occasional use of 16-bit immediates without mode switching, MIPS16 provides the
EXTEND instruction to allow a full width immediate in two MIPS16 instruction cycles. (Programs requiring
a large register set or frequent full-width immediates should be compiled in MIPS I.)

MIPS16 is difficult to program effectively at the assembler level. This is because of the limited register set

and the restricted size immediates. In fact, according to Sweetman2, "MIPS16 is not a suitable language for
assembly coding". Rather, MIPS16 is viewed as a compiler option which can be effectively applied to
achieve significant code size reduction where performance is not critical.

4.1. MIPS16 Instructions

This section describes the MIPS16 instructions, with emphasis on the differences between MIPS16 and the
32-bit MIPS ISA. The first table lists MIPS I Instructions that arenot supported in MIPS16.

The second table lists MIPS I instructionswhich are supported in MIPS16. In most cases these are
specialized versions of the MIPS I instruction. MIPS16 is compatible with MIPS I, II and III, IV or V. The

LX4189 implementsall MIPS16 for 32-bit data operations.3 The table lists all MIPS16 instructions together
with the corresponding MIPS I instruction and the specialization required to produce the MIPS16 instruction
(other than smaller register set and smaller immediates).

The third table lists the several new instructions introduced by MIPS16.

It is notable that MULT(U), DIV(U) are supported in MIPS16. MFHI and MFLO are also supported and are
necessary to access the result of MULT(U) or DIV(U). However, MTHI and MTLO are not supported. These
are used primarily to restore the state after exception handling and are used within the kernel, typically in
MIPS I.

1. The MIPS16 performance penalty results from occasionally using two instructions where one MIPS I instruction would suffice.
Some of this penalty is recovered in applications where a larger number of instructions per cache line reduces cache miss rate.

2. “See MIPS Run”, Dominic Sweetman, Appendix D, p. 425.
3. MIPS16 includes 16-bit formats for a number of MIPS III 64-bit doubleword operations which are not supported in the MIPS I ISA.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 34 - Release 1.9

Table 14: MIPS I Instructions Not Supported by MIPS16

Table 15: MIPS16 Instructions that Support MIPS I

MIPS I Not Supported by MIPS16 Assembler Mnemonics

Coprocessor operations CTCz, CFCz, MTCz, MFCz, LWCz, SWCz,
BCzT, BCzF, COPz

Unaligned loads, stores LWL, LWR, SWL, SWR

Arithmetic operations ADD, ADDI, SUB

Conditional branches BLEZ, BGTZ, BLTZ, BGEZ, BLTZAL, BGEZAL

Logical operations with immediates ANDI, ORI, XORI, LUI

Jump J

Miscellaneous SYSCALL, RFE, MTHI, MTLO

MIPS16 Instruction MIPS I Equivalent Instruction a

LB(U) ry, offset(rx)
LH(U) ry, offset(rx)
LW ry, offset(rx)
LW rx, offset(sp) (r29 base)
SB ry, offset(rx)
SH ry, offset(rx)
SW ry, offset(rx)
SW rx, offset(sp) (r29 base)

LW rx, offset(base); base = r29

SW rx, offset(base); base = r29

ADDIU ry, rx, immediate
ADDIU rx, immediate
ADDIU sp, immediate (1-operand)
ADDIU rx, sp, immediate (2-operand)
ADDU rz, rx, ry
SUBU rz, rx, ry
NEG rx, ry (2-operand)

ADDIU rt, rs, immediate; rt=rs
ADDIU rt, rs, immediate; rt=rs=r29
ADDIU rt, rs, immediate; rs=r29

SUBU rd, rs, rt; rs=r0

SLT(U) rx, ry (r24 dest. implied)
SLTI(U) rx, immediate (2-op., r24 dest)

SLT(U) rd, rs, rt; rd=r24
SLTI(U) rt, rs, immediate; rt=rs

CMPI rx, immediate (r24 dest. implied)
CMP rx, ry (r24 dest. implied)

XORI rt, rs, immediate; rt=r24
XOR rd, rs, rt; rd=r24

AND rx, ry (2-operand)
OR rx, ry (2-operand)
XOR rx, ry (2-operand)
NOT rx, ry (2-operand)
MOVE ry, r32 (2-operand)
MOVE r32, ry (2-operand)
LI rx, immediate

AND rd, rs, rt; rd=rs
OR rd, rs, rt; rd=rs
XOR rd, rs, rt; rd=rs
NOR rt, rs, rt; rs=r0
OR rd, rs, rt; rs=r0
OR rd, rs, rt; rs=r0
ORI rd, rs, immediate; rs=r0

SLL rx, ry, immediate
SRL rx, ry, immediate
SRA rx, ry, immediate
SLLV ry, rx (2-operand)
SRLV ry, rx (2-operand)
SRAV ry, rx (2-operand)

SLLV rd, rt, rs; rd=rs
SRLV rd, rt, rs; rd=rs
SRAV rd, rt, rs; rd=rs

MULT(U) rx, ry
DIV(U) rx, ry
MFHI rx
MFLO rx

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 35 - Release 1.9

As noted earlier, MIPS16 restricts the MIPS I directly addressable register set and immediate field. Another
common MIPS16 restriction is that two, rather than three, register operands, are permitted. MIPS16 provides
a number of instructions that are not found MIPS I, as shown in Table 16.

Table 16: New MIPS16 Instructions

The pc-relative load LW is important to overcoming the drawback of smaller immediates in MIPS16. It
allows full 32-bit immediates to be embedded in the program and loaded into registers in a single instruction.
The ADDIU with pc operand is useful to support immediates embedded in the program. The pc value
referenced in LW or ADDIU depends on the context of the pc-relative instruction as shown in Table 17.

Table 17: PC-Relative Addressing

EXTEND is used to supply an extra 11-bits of immediate. It is used together with the restricted size
immediate field of the next instruction to supply a full width immediate. EXTEND cannot occur in the delay
slot of a Jump. It is not necessary for the assembly programmer to code EXTEND instructions. It will
automatically be assembled by MIPS16 assemblers wherever the immediate is too large to be encoded in a
single MIPS16 instruction.

JAL target
JR rx
JR ra
JALR ra, rx (2-operand; link = r31)

JR rs; rs=r31
JALR rs, rd; rs=r31

BEQZ rx, offset (1-operand)
BNEZ rx, offset (1-operand)
BTEQ offset (implied operands)
BTNE offset (implied operands)
B offset (implied operands)

BEQ rs, rt, offset; rt=r0
BNE rs, rt, offset; rt=r0
BEQ rs, rt, offset; rs=r24, rt=r0
BNE rs, rt, offset; rs=r24, rt=r0
BEQ rs, rt, offset; rs=r0, rt=r0

BREAK

a. If no 32-bit MIPS instruction is listed, no specialization beyond limited size register set and
limited size immediates is required.

New MIPS16 Instruction Comment

LW rx, offset(pc) Load word with pc-relative address

ADDIU rx, pc, immediate ADDIU with pc operand

EXTEND immediate Supplies 11-bit immediate for use in the
following MIPS16 instruction

JALX target Jump to target, store return in r31 and toggle
the ISA mode between MIPS16 and MIPS I.

Context for PC-Relative Instruction pc Value

Normal case. (Non-extended pc-relative
instruction, not in jump delay slot.)

pc of the pc-relative instruction.

pc-relative instruction with extended immediate pc of the EXTEND instruction

Non-extended pc-relative in the delay slot of
jump, JR, JALR, JAL(X) (extended instructions
are not permitted in the delay slot of the jump.)

pc of the jump instruction

MIPS16 Instruction MIPS I Equivalent Instruction a

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 36 - Release 1.9

Another new instruction JALX, is available in both MIPS16 and also in MIPS I on machines implementing
MIPS16 and is discussed below. [in MIPS I machines not implementing MIPS16, the JALX opcode 000111
causes an RI trap.]

4.2. Mode switching

Mode is switched between MIPS16 and MIPS I in one of two ways:

1. The instruction,

JALX target

toggles the mode.

2. The lsb of the general register rx in

JR rx
JALR rs, rx (in MIPS16 rs=ra)

causes the mode to be set to MIPS16 if rx[0] = 1; to MIPS I if rx[0] = 0. However, the lsb of the instruction
memory address from JR/JALR is forced to 0. As a consequence, machines that implement MIPS16 never
take AdEL exceptions on the lsb of the instruction address (this is true regardless of whether the machine is
operating in MIPS16 or MIPS I mode.).

The mode bit is saved in the lsb of the link register in JAL, JALX, JALR.

4.3. Exceptions

Upon Exception, the mode is automatically switched to MIPS I. The mode is saved in the lsb of the
Exception PC (EPC). EPC[0] = 0 indicates that the Exception occurred while executing code in MIPS I
mode; EPC[0] = 1 indicates that the Exception occurred in MIPS16 mode. The typical program will save the
EPC to a general register and later return to the main program with a JR instruction, causing the proper ISA
mode to be restored.

4.4. No Delay Slots

Consistent with the MIP16 emphasis on code density, there are no load delay or branch delay slots. In other
words, the instruction following the branch is executed only if the branch is not taken. [MIPS16jumps (JAL,
JALX, JR, JALR) have a single delay slot, the same as in MIPS I. For jumps, the target address is always
taken. Thus, there is no risk that the delay slot cannot be used to do useful work: the instruction from the
target can be moved to the delay slot, if necessary.]

For MIPS16 loads, the instruction following the load can reference the loaded register (as in MIPS II). This
feature is present because the MIPS I compiler is not always successful in scheduling a useful instruction in
the delay slot and must occasionally resort to a NOP, reducing code density. This possibility is eliminated in
MIPS16.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 37 - Release 1.9

5. LX4189 Local Memory

5.1. Local Memory Overview

This chapter describes how memories are configured and connected to the LX4189 using the Local Memory
Interfaces (LMIs). This section provides a brief summary of the conventions and supported memories.
Section 5.2 describes the control register that allows software control over certain aspects of the LMIs. The
subsequent sections cover each of the LMIs in detail.

This chapter also discusses configuration options and the ports that customers must access to connect
application specific RAM and ROM devices that are used by the LX4189 LMIs. All of the signals between
the processor core, the LMIs, RAMs and the system bus controller are automatically configured bylconfig,
the LX4189 configuration tool.Lconfig also produces documentation of the exact RAMs required for the
chosen configuration settings, and writes RAM models used for RTL simulation.

The LMIs connect to RAMs that service the LX4189 processor’s local instruction and data busses. The LMIs
also provide the pathways from the processor to the system bus. The LX4189 includes an LMI for each of the
local memory types. The sizes of the RAMs and ROMs are customer selectable. The LX4189 LMIs directly
support synchronous RAMs that register the address, write data, and control signals at the RAM inputs. The
LMIs also supply redundant read enable and chip select lines for each RAM, which may be required for some
RAM types. ROMs may also be connected, but may require a customer supplied address register at the
address inputs.

Lexra supplies an integration layer for the LMIs and the memory devices connected to them. In this layer,
memory devices are instanced as generic modules satisfying the depth and width requirements for each
specific memory instance. Thelconfig utility supplies a summary of the memory devices required for the
chosen configuration. In most cases, customers simply need to write a wrapper that connects the generic
module port list to a technology specific RAM instance inside the RAM wrapper.

The LX4189 is configurable for a 16, 32, 64, or 128-byte cache line size. The tag store RAM sizes shown in
the tables of this chapter assume a 16-byte line size. The documentation produced bylconfig indicates the
required tag RAMs for the selected configuration options, including the line size. As a general rule, a
doubling of the line size results in halving the tag store depth.

The valid bits within tag stores are automatically cleared by the LMIs upon reset. The data cache implements
a write-through protocol. Caches do not snoop the system bus. The LX4189 is configurable to work with
RAMs with a write granularity of 8 bits (byte) or 32 bits (word). Byte write granularity results in more
efficient operation of store byte and store half-word instructions.

Table 18 summarizes the LMIs that can be integrated on the local busses.

Table 18: Local Memory Interface Modules

Name Description

ICACHE Direct mapped or two-way set associative instruction cache.

IMEM Instruction RAM.

IROM Instruction ROM.

DCACHE Direct mapped data cache.

DMEM Data RAM or ROM.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 38 - Release 1.9

5.2. Cache Control Register: CCTL

CCTL. CP0 General Register Address = 20

When reading this register, the contents of the Reserved bits are undefined. When writing this register, the
contents of the Reserved bits should be preserved.

Changes in the contents of the CCTL register are observed in the W stage. However, these changes affect
instruction fetches currently in progress in the I stage, and data load or store operations in progress in the M
stage.

The IROMOn and IROMOff bits of the CCTL register control the and use of the optional local IROM
memory configured into the LX4189. When IROM is present and the LX4189 is reset, the LMI enables
access to the IROM. A transition from 0 to 1 on IROMOff disables the IROM, allowing instruction references
to be serviced IMEM, ICACHE or the system bus. A transition from 0 to 1 on IROMOn enables the IROM.

The IMEMFill and IMEMOff bits of the CCTL register control the contents and use of any local IMEM
memory configured into the LX4189. When the LX4189 is reset, the LMI clears an internal register to
indicate that the entire IMEM LMI contents are invalid. When IMEM is invalid, all cacheable fetches from
the IMEM region will be serviced by the instruction cache, if an instruction cache is present.

A transition from 0 to 1 on IMEMFill causes the LMI to initiate a series of line read operations to fill the
IMEM contents. The addresses used for these reads are defined by the configured BASE and TOP addresses
of the IMEM, described in Section 5.4. The processor stalls while the entire IMEM contents are filled by the
LMI. Thereafter, the LMI sets its internal IMEM valid bit and will service any access to the IMEM range
from the local IMEM memory. The time that an IMEM fill takes to complete is the number of line reads
needed to fill the IMEM range, multiplied by the latency of one line read, assuming there is no other system
bus traffic.

A transition from 0 to 1 on IMEMOff causes the LMI to clear its internal IMEM valid bit. Subsequent
cacheable fetches from the IMEM region will be serviced by the instruction cache. To use the IMEM again,
an application must re-initialize the IMEM contents through the IMEMFill bit of the CCTL register.

The ILock field controls set locking in the two set associative instruction cache. When ILock is 00 or 01, the
instruction cache operates normally. When ILock is 10, all cached instruction references are forced to occupy
set 1. The hardware will invalidate lines in set 0 if necessary to accomplish this. When ILock is 11, lines in set
1 are never displaced – i.e. they are locked in the cache. Set 0 is used to hold other lines as needed.

To utilize the cache locking feature, software should execute at least one pass of critical subroutines or loops
with ILock set to 10. After this has been done, ILock should be set to 11 to lock the critical code into set 1,
and use set 0 for other code.

The IInval and DInval fields control hardware invalidation of the instruction cache and data cache. A
transition from 0 to 1 on IInval will initiate a hardware invalidation sequence of the entire instruction cache.
Likewise, a 0 to 1 transition on DInval will initiate a hardware invalidation sequence of the entire data cache.
The DMEM, if present, is unaffected by this operation.

The hardware invalidation sequence for the instruction and data caches requires one cycle per cache line to
complete.

Depending on the circumstances, software may be able to employ an alternative to a full invalidation of the
data cache. If a small number of lines must be invalidated, software may perform cached reads from aliases of

31-8 7 6 5 4 3-2 1 0

Reserved IROMOff IROMOn IMEMOff IMEMFill ILock IInval DInval

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 39 - Release 1.9

the memory locations of concern. This displaces data in the addressed locations of the data cache, even if they
do not encache the affected memory location.

Another alternative, if the affected memory location has an alias in uncacheable (KSEG1) space, is to simply
perform an uncached read of the affected memory locations. If the location is resident in the data cache it will
be invalidated. This method has the advantage of not displacing data in the cache unless it is absolutely
necessary to maintain coherency. Note that a write to a KSEG1 address has no affect on the contents of the
data cache.

With either of these two alternatives, it is only necessary to reference one word of each affected cache line.

5.3. Instruction Cache (ICACHE) LMI

The ICACHE LMI supplies the interface for a direct mapped or two-way set associative instruction cache
attached to the LX4189 local bus. The degree of associativity is specified through lconfig. The ICACHE LMI
participates in cacheable instruction fetches, but only if the address is not claimed by the IMEM module. The
configurations supported by ICACHE, and the synchronous RAMs required for each, are summarized in
Table 19.

The instruction store for the two-way ICACHE consists of two 32-bit wide banks, with separate write-enable
controls. The tag store consists of one RAM bank with tag and valid bits for set 0, and a second RAM for set
1 that holds the tag, valid, LRU (Least Recently Used), and lock bits. When a miss occurs in the two-way
ICACHE, the LRU bit is examined to determine which element of the set to replace, with element 0 being
replaced if LRU is 0, and element 1 being replaced if LRU is 1. The state of the LRU bit is then inverted. To
optimize the timing of cache reads, the two-way ICACHE uses the state of the LRU bit to determine which
element should be returned to the CPU. In the following cycle, the ICACHE determines if the correct element
was returned. If not, the ICACHE takes an extra cycle to return the correct element to the CPU and inverts the
LRU bit.

Table 19: ICACHE Configurations

Configuration ICACHE_INST RAM ICACHE_TAG RAM

no instruction cache no RAM required no RAM required

1K bytes, 2-way 2 x 128 x 32 bits 32 x 24 and 32 x 26 bits

2K bytes, 2-way 2 x 256 x 32 bits 64 x 23 and 64 x 25 bits

4K bytes, 2-way 2 x 512 x 32 bits 128 x 22 and 128 x 24 bits

8K bytes, 2-way 2 x 1,024 x 32 bits 256 x 21 and 256 x 23 bits

16K bytes, 2-way 2 x 2,048 x 32 bits 512 x 20 and 512 x 22 bits

32K bytes, 2-way 2 x 4,096 x 32 bits 1,024 x 19 and 1,024 x 21 bits

64K bytes, 2-way 2 x 8,192 x 32 bits 2,048 x 18 and 2,048 x 20 bits

1K bytes, direct mapped 256 x 32 bits 64 x 23 bits

2K bytes, direct mapped 512 x 32 bits 128 x22 bits

4K bytes, direct mapped 1,024 x 32 bits 256 x 21 bits

8K bytes, direct mapped 2,048 x 32 bits 512 x 20 bits

16K bytes, direct mapped 4,096 x 32 bits 1,024 x 19 bits

32K bytes, direct mapped 8,192 x 32 bits 2,048 x 18 bits

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 40 - Release 1.9

Table 20 lists the ICACHE signals that are connected to application specific modules. The IC_ prefix
indicates signals that are driven by the ICACHE LMI module and received by the RAMs. The ICR_ prefix
indicates signals that are driven by the ICACHE RAMs and received by the ICACHE LMI. Lexra supplies
the Verilog module that makes all required connections to these wires. The width of the index and data lines
depends upon the RAM connected to the LMI, and can be inferred from the Table 19.

Table 20: ICACHE RAM Interfaces

Note: <N> designates an available active-low version of a signal.

5.4. Instruction Memory (IMEM) LMI

The IMEM LMI supplies the interface for an optional local instruction store. The IMEM serves a fixed range
of the physical address space, determined by configuration settings inlconfig. The IMEM contents are filled

64K bytes, direct mapped 16,384 x 32 bits 4,096 x 17 bits

Signal Description

IC_TAGINDEX Tag and state RAM address (line).

ICR_TAGRD0 Tag and state RAM element 0 read path.

IC_TAGWR0 Tag and state RAM element 0 write path.

ICR_TAGRD1 Tag and state RAM element 1 read path.

IC_TAGWR1 Tag and state RAM element 1 write path.

IC_TAG0WE<N> Tag 0 RAM write enable.

IC_TAG0RE<N> Tag 0 RAM read enable.

IC_TAG0CS<N> Tag 0 RAM chip select.

IC_TAG1WE<N> Tag 1 RAM write enable.

IC_TAG1RE<N> Tag 1 RAM read enable.

IC_TAG1CS<N> Tag 1 RAM chip select.

IC_INSTINDEX Instruction RAM address (word).

ICR_INST0RD Instruction RAM element 0 read path.

ICR_INST1RD Instruction RAM element 1 read path.

IC_INSTWR Instruction RAM write path (to both elements).

IC_INST0WE<N>[1:0] Instruction RAM 0 write enable.

IC_INST0RE<N> Instruction RAM 0 read enable.

IC_INST0CS<N> Instruction RAM 0 chip select.

IC_INST1WE<N>[1:0] Instruction RAM 1 write enable.

IC_INST1RE<N> Instruction RAM 1 read enable.

IC_INST1CS<N> Instruction RAM 1 chip select.

Configuration ICACHE_INST RAM ICACHE_TAG RAM

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 41 - Release 1.9

and invalidated under the control of the CP0 CCTL register, described in Section 5.2, Cache Control
Register: CCTL. The IMEM module services instruction fetches that falls within its configured range. The
IMEM is a convenient, low-cost alternative to a cache that makes instruction memory available to the core for
high-speed access.

The configurations supported by IMEM, and the synchronous RAMs required for each, are summarized in
Table 21.

Table 21: IMEM Configurations

Table 22 lists the IMEM signals that are connected to application specific modules. TheIW_ prefix indicates
signals that are driven by the IMEM LMI module and received by RAMs. TheIWR_ prefix indicates signals
that are driven by RAMs and received by the IMEM LMI. TheCFG_ prefix identifies configuration ports on
the IMEM LMI that are typically wired to constant values. The width of the index and data lines depends
upon the RAM connected to the LMI, and can be inferred from Table 21.

The CFG_ wires define where the IMEM is mapped into the physical address space. This configuration
information defines the local bus address region of the IMEM. It also determines the address of the external
resources which are accessed when an IMEM miss occurs. Thelconfig utility supplied by Lexra will verify
that the configured address range does not interfere with other regions defined for LX4189. The size of the
memory region must be a power of two, and must be naturally aligned.

Table 22: IMEM RAM Interfaces

Configuration IMEM_INST RAM

no local instruction RAM no RAM required

1K bytes 256 x 32 bits

2K bytes 512 x 32 bits

4K bytes 1,024 x 32 bits

8K bytes 2,048 x 32 bits

16K bytes 4,096 x 32 bits

32K bytes 8,192 x 32 bits

64K bytes 16,384 x 32 bits

128K bytes 32,768 x 32 bits

256K bytes 65,536 x 32 bits

Signal Description

IW_INSTINDEX IMEM index.

IWR_INSTRD Instruction read data.

IW_INSTWR Instruction write data.

IW_INSTWE<N>[1:0] Instruction RAM write enable.

IW_INSTRE<N> Instruction RAM read enable.

IW_INSTCS<N> Instruction RAM chip select.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 42 - Release 1.9

Note: <N> designates an available active-low version of a signal.

5.5. Instruction ROM (IROM) LMI

The IROM LMI supplies the interface for an optional read-only local instruction store. The IROM serves a
fixed range of the physical address space, determined by configuration settings inlconfig. IROM may be
disabled via a hardware configuration pin, CFG_IROFF. IROM may also be enabled and disabled under
software control as described in Section 5.2, Cache Control Register: CCTL. The IROM is a convenient,
low-cost alternative to a cache that makes read-only instruction memory available to the core for high-speed
access.

The configurations supported by IROM, and the synchronous ROMs required for each, are summarized in
Table 23.

Table 23: IROM Configurations

Table 24 lists the IROM signals that are connected to application specific modules. The IR_ prefix indicates
signals that are driven by the IROM LMI module and received by the ROM. The IRR_ prefix indicates
signals that are driven by ROM and received by the IROM LMI. The CFG_ prefix identifies configuration
ports on the IROM LMI that are typically wired to constant values. Lexra supplies the Verilog module that
makes all required connections to these wires. The width of the index and data lines depends upon the ROM
connected to the LMI, and can be inferred from Table 22.

The CFG_ wires define where IROM is mapped into the physical address space. This configuration
information defines the local bus address region of the IROM. It also determines the address of the external
resources which are accessed when an IROM miss occurs. The lconfig utility supplied by Lexra will verify
that the configured address range does not interfere with other regions defined by the LX4189. Note that the
size of the memory region must be a power of two, and must be naturally aligned.

CFG_IWBASE[31:10] Configured base address (modulo 1K bytes).

CFG_IWTOP[17:10] Configured top address (bits that may differ from base).

Configuration IROM_DATA

no local instruction RAM no ROM required

1K bytes, direct mapped 256 x 32 bits

2Kbytes, direct mapped 512 x 32 bits

4K bytes, direct mapped 1,024 x 32 bits

8K bytes, direct mapped 2,048 x 32 bits

16K bytes, direct mapped 4,096 x 32 bits

32K bytes, direct mapped 8,192 x 32 bits

64K bytes, direct mapped 16,384 x 32 bits

128K bytes, direct mapped 32,768 x 32 bits

256K bytes, direct mapped 65,536 x 32 bits

Signal Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 43 - Release 1.9

Table 24: IROM ROM Interfaces

Note: <N> designates an available active-low version of a signal.

5.6. Direct Mapped Write Through Data Cache (DCACHE) LMI

The DCACHE LMI supplies the interface for a direct mapped, write through data cache attached to the
LX4189 local bus. The DCACHE LMI participates in cacheable data reads and writes, but only if the address
is not claimed by the DMEM LMI. The configurations supported by DCACHE, and the synchronous RAMs
required for each, are summarized in Table 25.

The direct mapped DCACHE module services word or twin-word read requests from the core in one cycle
when the request hits the cache. Byte or half-word reads that hit the data cache require an extra cycle for
alignment. The data cache can stream word and twin-word reads or writes that hit the cache at the rate of one
per cycle. If the LX4189 is configured to work with RAMs that have word write granularity, byte or half-
word writes that follow any write by one cycle and hit the cache require an extra cycle to merge the data with
the current cache contents. Alternatively, the LX4189 can be configured to work with RAMs support byte
write granularity, which eliminates the extra cycle.

Writes that are serviced by the data cache may require extra time to be serviced by the LBC if its write buffer
is full. Also, when a cache write operation is immediately followed by a cache read, the cache must delay the
read for one cycle while the write completes.

When a miss occurs, the cache obtains a cache line (4, 8, 16, or 32 words) of data from the Lexra Bus
Controller (LBC). Write operations that hit the data cache are simultaneously written into the cache and
forwarded to the write buffer of the LBC. Thus, if the core subsequently reads the data, it will likely be
available from the cache. For main memory systems that support byte writes, all data writes that miss the
cache are forwarded to the write buffer of the LBC, without disturbing any data currently in the cache. For
main memory systems that can only write with word granularity, a byte or half-word write that misses the
cache causes the cache to perform a line fill from main memory. The cache then merges the partial write data
with the full word data obtained from memory, and writes the word to the system bus.

Table 25: DCACHE Configurations

Signal Description

IR_INSTINDEX IROM index.

IRR_INSTRD Instruction read data.

IR_INSTRE<N> Instruction ROM read enable.

IR_INSTCS<N> Instruction ROM chip select.

CFG_IRBASE[31:10] Configured base address (modulo 1K bytes).

CFG_IRTOP[17:10] Configured top address (bits that may differ from base).

Configuration DCACHE_DATA RAM DCACHE_TAG RAM

no data cache no RAM required no RAM required

1K bytes, direct mapped 256 x 32 bits 64 x 23 bits

2K bytes, direct mapped 512 x 32 bits 128 x 22 bits

4K bytes, direct mapped 1,024 x 32 bits 256 x 21 bits

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 44 - Release 1.9

Table 26 lists the DCACHE signals that are connected to application specific modules. The DC_ prefix
indicates signals that are driven by the DCACHE LMI module and received by the RAMs. The DCR_ prefix
indicates signals that are driven by the DCACHE RAMs and received by the DCACHE LMI. Lexra supplies
the Verilog module that makes all required connections to these wires. The width of the index and data lines
depends upon the RAM connected to the LMI, and can be inferred from Table 25.

Table 26: DCACHE RAM Interfaces

Note: <N> designates an available active-low version of a signal.

5.7. Scratch Pad Data Memory (DMEM) LMI

The DMEM LMI supplies the interface for a scratch pad data RAM attached to the LX4189 local bus. The
DMEM module services in any cacheable or uncacheable data read or write operation that falls within its
configured range.

Byte or half-word reads that hit the DMEM require an extra cycle for alignment. DMEM can stream word
and twin-word reads or writes that hit DMEM at the rate of one per cycle. If the LX4189 is configured to
work with RAMs that have word write granularity, byte or half-word writes that follow any write by one
cycle and hit DMEM require an extra cycle to merge the data with the current DMEM contents. Alternatively,
the LX4189 can be configured to work with RAMs support byte write granularity, which eliminates the extra
cycle. Also, because a write operation to the DMEM is never sent to the LBC, writes to DMEM will not
cause the LBC to stall the processor due to a full write buffer condition.

8K bytes, direct mapped 2,048 x 32 bits 512 x 20 bits

16K bytes, direct mapped 4,096 x 32 bits 1,024 x 19 bits

32K bytes, direct mapped 8,192 x 32 bits 2,048 x 18 bits

64K bytes, direct mapped 16,384 x 32 bits 4,096 x 17 bits

Signal Description

DC_TAGINDEX Tag and state RAM address.

DCR_TAGRD Tag and state RAM read path.

DC_TAGWR Tag and state RAM write path.

DC_TAGWE<N> Tag and state RAM write enable.

DC_TAGRE<N> Tag and state RAM read enable.

DC_TAGCS<N> Tag and state RAM chip select.

DC_DATAINDEX Data RAM address (word).

DCR_DATARD Data RAM read path.

DC_DATAWR Data RAM write path.

DC_DATAWE<N>[1:0] Data RAM write enable.

DC_DATARE<N> Data RAM read enable.

DC_DATACS<N> Data RAM chip select.

Configuration DCACHE_DATA RAM DCACHE_TAG RAM

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 45 - Release 1.9

The DMEM configurations and the synchronous RAMs required for each are summarized in the Table 27.

Table 27: DMEM Configurations

Table 28 lists the DMEM signals that are connected to application specific modules. TheDW_ prefix
indicates signals that are driven by the DMEM LMI module and received by RAMs. TheDWR_ prefix
indicates signals that are driven by RAMs and received by the DMEM LMI. TheCFG_ prefix identifies
configuration ports on the DMEM LMI that are typically wired to constant values. The width of the index and
data lines depends upon the RAM connected to the LMI, and can be inferred from Table 27.

TheCFG_ wires define where DMEM is mapped into the physical address space. It is not possible for any
DMEM reference to result in an operation on the system bus. Thelconfig utility supplied by Lexra will verify
that the configured address range does not interfere with other regions defined for LX4189. The size of the
memory region must be a power of two, and must be naturally aligned.

The DMEM LMI can also be used as a ROM controller simply by tying off the write enable and data input
lines in the RAM wrapper, and instancing a ROM in the RAM wrapper.

Table 28: DMEM RAM Interfaces

Note: <N> designates an available active-low version of a signal.

Configuration DMEM_DATA RAM (64-bit) DMEM_DATA RAM (128-bit)

no local data RAM no RAM required no RAM required

1K bytes 256 x 32 bits 256 x 32 bits

2K bytes 512 x 32 bits 512 x 32 bits

4K bytes 1,024 x 32 bits 512 x 32 bits

8K bytes 2,048 x 32 bits 1,024 x 32 bits

16K bytes 4,096 x 32 bits 2,048 x 32 bits

32K bytes 8,192 x 32 bits 4,096 x 32 bits

64K bytes 16,384 x 32 bits 8,192 x 32 bits

128K bytes 32,768 x 32 bits 16,384 x 32 bits

256K bytes 65,536 x 32 bits 32,768 x 32 bits

Signal Description

DW_DATAINDEX Decoded data RAM index.

DWR_DATARD Data RAM read data.

DW_DATAWR Data RAM write data.

DW_DATAWE<N> Data RAM write enable.

DW_DATARE<N> Data RAM read enable

DW_DATACS<N> Data RAM chip select

CFG_DWBASE[31:10] Configured base address (modulo 1K bytes).

CFG_DWTOP[17:10] Configured top address (bits that may differ from base).

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 46 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 47 - Release 1.9

6. LX4189 System Bus

6.1. Connecting the LX4189 to internal devices

The Lexra System Bus (LBus) is the connection between the LX4189 and other internal devices, such as
system memory, USB, IEEE-1394 (Firewire), and an external bus interface. The LBC uses a protocol similar
to that of the Peripheral Component Interface (PCI) bus. This is a well-known and proven architecture.
Adding new devices to the Lexra Bus is straightforward and the performance approaches the highest that can
be achieved without adding a great deal of complexity to the protocol.

Figure 3: Lexra System Bus Diagram

The Lexra bus supports multiple masters. This allows for mastering I/O controllers with DMA engines to be
connected to the bus. The bus has a pended architecture, in which a master holds the bus until all the data is
transferred. This simplifies the design of user-supplied bus agents and reduces latency for cache miss
servicing.

The Lexra bus is a synchronous bus. Signals are registered and sampled at the positive edge of the bus clock.
Certain logical operations may be made to the sampled signals and then new signals can be driven
immediately, such as for address decoding. This allows for same-cycle turn-around. The LBC provides an
optional asynchronous interface between the CPU and the Lexra bus, allowing the Lexra bus speed can be set
to be any speed equal to or less than the CPU clock frequency.

The Lexra bus data path for the LX4189 is 32 bits wide. Therefore, the bus can transfer one word, halfword,
or byte in one bus clock. The bus supports line and burst transfers in which several words of data are
transferred. The Lexra bus accomplishes this by transferring words of data from incremental addresses on
successive clock cycles.

The LBC contains a write buffer. When the CPU issues a write request to a Lexra Bus device, the address and
data are saved in the buffer and sent to the device sometime later. The CPU can continue processing, having
safely assumed that the write will eventually happen. This is described more thoroughly in Section 6.7.2.

The LBC drives enabling signals to control muxes or tristate buffers. This allows the Lexra bus to have either
a bi-directional or point-to-point topology.

6.2. Terminology

The Lexra bus borrows terminology from the PCI bus specification, on which the Lexra bus is partially based.

Bus transactions take place between two busagents. One bus agent requests the bus and initiates a transfer.
The second responds to the transfer.

Lexra
Bus

Controller
(LBC)

Bus
Bridge

USBFireWire

Bus to CPU
and Local
Memory
Interfaces

Lexra System Bus

External Bus
(e.g. PCI)

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 48 - Release 1.9

The agent initiating a transfer is called thebus initiator. It is also referred to as thebus master. Both terms are
used interchangeably in this document.

The responding agent is known as the bustarget. It samples the address when it is valid, and determines if the
address is within the domain of the device. If so, indicates as such to the initiator and becomes the target.

A read transfer is a bus operation whereby the master requests data from the target.

A write transfer is a bus operation whereby the master requests to send data to the target.

A single-cycle bus operation is used to transfer one word, halfword, or byte of data. This amount of data can
be transferred in one bus cycle, not including the address cycle and device latencies.

A line transfer is a read or write operation where an entire cache line of data is transferred in successive
cycles as fast as the initiator and target can send/receive the data.

A burst transfer is a read or write operation where a large amount of data needs to be sent. The initiator
presents a starting address and data is transferred starting at that address in successive cycles; for each word
transferred, the address is incremented by the devices internally.

Some signals on the Lexra bus areactive low. That is, they are considered logically true when they are
electrically low and logically false when electrically high. A deviceasserts a signal when it drives it to its
logical true electrical state.

6.3. Bus Operations

The purpose of the Lexra bus is to connect together the various components of the system, including the
LX4189 CPU, main system memory, I/O devices, and external bus bridges. Different devices have different
transfer requirements. For example, the LX4189 CPU will request the bus to fetch a cache line of data from
memory. I/O devices will request large blocks of data to be sent to and from memory. The Lexra bus supports
the various types of transfers needed by both I/O and the processor.

The six types of bus operations are single-cycle read, line read, burst read, single-cycle write, line write
(though this won’t be used by the LX4189 core) and burst write.

6.3.1. Single-Cycle Read

The single-cycle read operation reads a single word, halfword, or byte from the target device. This operation
is usually used by the CPU to read data from uncachable address space. (If the read address was in cacheable
address space, either a hit would occur resulting in no bus activity, or a miss would occur resulting in a read
line transaction.)

6.3.2. Read Line

The read line operation reads a sequence of data from memory corresponding to the size of a cache line. The
cache line size affects how many cycles are required to transfer the full line. The LX4189 and the Lexra bus
support a configurable line size, specified throughlconfig. The default line size of four words (16 bytes) is
assumed here.

There are two ways that the target could transfer the data back to the initiator. The conventional way is to
transfer four words of data in sequence, starting at the nearest 16-byte-aligned address smaller or equal to the
address that the initiator drives. In other words, the target starts the transfer at the beginning of the line
containing the requested address.

Some memory devices may implement a performance optimization calleddesired-word-first. If the address is

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 49 - Release 1.9

not aligned to a 16-byte boundary, then the first data returned by the target is the word corresponding to the
address instead of the first word of the line. The second word is the next sequential word of data and so on. At
the end of the line, the target wraps around and returns the first word of line.

The LX4189 supports two ways of incrementing the address of a line refill. One is bylinear wrap, where the
address is simply incremented by one. The other is byinterleaved wrap, where the next address is determined
by the logical xor of the cycle count and the first word address. The interleave sequence is shown in the table
below. The low-order address bits 3:2 for the first data beat are the obtained from the address of the line read
request. The low order address bits for the subsequent data indicate the corresponding interleave order.

Table 29: Line Read Interleave Order

6.3.3. Burst Read

The burst read operation transfers an arbitrary amount of data from the target to the initiator. The initiator first
presents a starting address to the target. The target responds by providing multiple cycles of data words in
sequence, starting at the initial address. The initiator indicates to the target when to stop providing data.

Burst read operations are used by I/O devices for block DMA transfers. The LX4189 will never issue a burst
read operation.

Note that there is a difference between a 4-cycles burst and a line read. A line read may use a desired-word-
first increment and wrap. A burst will always increment and will never wrap.

6.3.4. Single-Cycle Write

The single-cycle write operation writes a single word, a halfword, or a byte to the target.

The LX4189 uses a cache with a write-through policy. All CPU instructions that write to memory generate a
single-cycle write operation. (Unless the address is in the local scratchpad memory, in which case the write
operation will not make it out to the Lexra bus).

6.3.5. Line Write

The line write operation is not used by the LX4189. This operation could be used by a processor that has a
data cache that implements a write-back policy.

6.3.6. Burst Write

A burst write is an operation where the initiator sends an address and then an indefinite sequence of data to
the target. The initiator will inform the target when it has finished sending data. This operation is used by I/O
devices for DMA transfers. It is not used by the processor.

Interleaved Address[3:2]

1st data beat 00 01 10 11

2nd data beat 01 00 11 10

3rd data beat 10 11 00 01

4th data beat 11 10 01 00

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 50 - Release 1.9

6.4. Signal Descriptions

Table 30: LBus Signal Description

6.5. LBus Commands

The initiator drives BCMD during the cycle that BFRAME is asserted.

BCMD[6] 0=read, 1=write

BCMD[5:4] 54

 00 burst, fixed length 1

 01 burst, unlimited number of words

 10 line, interleaved wrap 2

 11 line, linear wrap

Signal Name
Source
(Initiator/Target/Ctrl)

Description

BCLOCK Ctrl Bus Clock

BCMD[6:0] Initiator Encoded command. Active during first cycle that
BFRAME is asserted.

BADDR[31:0] Initiator Address; Target indicates valid address by asserting
BFRAME.

BFRAME Initiator Asserted by initiator a beginning of operation with
address and command signals; de-asserted when
initiator is ready to accept or send last piece of data.
Other bus masters sample this and BIRDY to indicate
that the bus will be available on the next cycle.

BIRDY Initiator For writes, indicates that initiator is driving valid data;
on reads, indicates that initiator is ready to accept
data.

BDATA[31:0] Initiator on write/Target on
read

Data; if driven by initiator, BIRDY indicates valid data
on bus; if driven by target, BTRDY indicates valid data
on bus.

BTRDY Target For writes, indicates that target is ready to accept
data; on reads, indicates that target is driving valid
data.

BSEL Target Asserted by selected target after initiator asserts
BFRAME; indicates that target has decoded address
and will respond to the transaction (i.e. has been
selected).

1. The number of words comes from BCMD[2:0]
2. Length is determined by the Line size, not BCMD[3:0]

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 51 - Release 1.9

BCMD[3:0] 3210
 1000 1 byte
 1001 2 bytes
 1010 3 bytes
 1011 1 word
 1100 2 words
 1101 reserved
 111x reserved
 0000 4 words
 0001 8 words
 0010 16 words
 0011 32 words
 01xx reserved

6.6. Byte Alignment

The Lexra Bus is a big endian bus. Transactions must have their data driven to the appropriate bus rails. The
bus mapping is as shown in Table 31.

Table 31: LBus Byte Lane Assignment

The Lexra Bus does not define unaligned data transfers, such as a halfword transfer that starts at
ADDR[1:0]=01, or transfers that would need to wrap to the next word.

6.7. Lexra Bus Controller

The Lexra Bus Controller (LBC) is the element of the LX4189 that connects to the Lexra Bus. It forwards all
transaction requests from the LX4189 CPU to the Lexra Bus. It is an initiator and will never respond to
requests from other Lexra Bus initiators.

6.7.1. LBC Commands

The LBC issues the only the LBus commands listed in the table below.

Lexra Bus data byte lanes used

BCMD[1:0] ADDR[1:0] 31:24 23:16 15:8 7:0

00 00 X

00 01 X

00 10 X

00 11 X

01 00 X X

01 10 X X

10 00 X X X

10 01 X X X

11 00 X X X X

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 52 - Release 1.9

Table 32: LBus Commands Issued by the LBC

6.7.2. LBC Write Buffer and Out-of-Order Processing

The LBC contains a write buffer with a depth that is configurable withlconfig. All write requests from the
CPU are posted in the write buffer. The CPU will not wait for the write to complete. Write operations
complete in the order they are entered into the queue. If the queue fills, then the CPU must wait until an entry
becomes available.

When the CPU issues a read operation, the LBC will attempt to forward that request to the Lexra Busahead
of any pendingwriteoperations. This significantly improves performance since the CPU needs to wait for the
read operation to complete and would waste time if it had to also wait for unnecessary or irrelevant writes to
complete.

There are a few cases when the LBC will not allow the read operation to pass pending writes:

1. The address of a pending write is within the same cache line as the read. The LBC will hold the
read operation until the matching write operation, and all write operations ahead of it, com-
plete. If the read is for an instruction fetch, it can still pass a pending write that is inside the
same cache line.

2. The read is to uncacheable address space. All writes will complete before the read is issued.
This avoids any problems with I/O devices and their associated control/status registers.

3. A pending write is to uncachable address space. The LBC will hold the read operation until all
writes up to and including the write to uncacheable address space complete. This further avoids
I/O device problems.

The write buffer bypass feature can be disabled so that reads will never pass writes.

6.7.3. LBC Read Buffer

The LBC contains a read buffer with a depth that is configurable withlconfig. All incoming read data from
the system bus passes through the read buffer. This allows the LBC to accept incoming data as a result of a
cache line fill operation without having to hold the bus.

When the LBC is configured with an asynchronous interface, a larger read buffer improves system and
processor performance in the event of cache miss. When the LBC is configured with a synchronous interface,
the cache can accept the data as fast as the LBC can read it. Therefore, there is no need for a large read buffer.
Customers may reduce the size of the read buffer to a minimum size of two 32-bit entries.

Command BCMD[5:4] BCMD[3:0] Circumstances

Read Line 10 or 11,
depending on
configuration

0000 A cache miss during a read by the
CPU

Read Single
(word/halfword/byte)

00 10xx A read by the CPU from an
address in uncachable address
space

Write Single
(word/halfword/byte)

00 10xx A write by the CPU into cacheable
or uncachable address space

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 53 - Release 1.9

In some cases, there is a need to minimize the number of gates. The read buffer size may be reduced to two or
four entries for the asynchronous case. This causes a penalty in terms of Lbus utilization since now the LBC
may have to de-assert IRDY if it cannot hold part of the line of data. When the read buffer is the size of a
cache line, this will be relatively rare since simultaneous instruction cache and data cache misses are
relatively rare. For a smaller read buffer, IRDY deassertion is almost a certainty.

6.7.4. Transfer Descriptions

This section describes the various types of read and write transfers in detail. These operations follow certain
patterns and rules. The rules for driving and sampling the bus are as follows:

1. Agents that drive the bus do so as early as possible after the rising edge of the bus clock. There
is some time to perform some combinational logic after the bus clock goes high, but the
amount of time is determined by the speed of the bus clock and the number of devices on the
bus.

2. Agents sample signals on the bus at the rising edge of the bus clock.

3. All bus signals must be driven at all times. If the bus is not owned, and external device must
drive the bus to a legal level.

4. A change in signal ownership requires one dead cycle. If an initiator gives up the bus, another
initiator needs to wait for one dead cycle before it can drive the bus. If the same initiator issues
a read operation and then needs to issue a write operation, it also must wait one extra cycle for
the data bus to turn around.

5. Agents that own signals must drive the signals to a logical true or logical false; all other agents
must disable (tristate) their output buffers.

The Lexra Bus protocol is based on the PCI Bus protocol1. The Lexra Bus signals BFRAME, BTRY, BIRDY,
and BSEL have a similar function to the PCI signals FRAME#, TRDY#, IRDY#, and DEVSEL#,
respectively. In general, the protocol for the Lexra bus is as follows:

1. The initiator gains control of the bus through arbitration (described later in this chapter).

2. During the first bus cycle of its ownership (before the first rising clock edge), the initiator
drives the address for the bus transaction onto BADDR. At the same time, it asserts BFRAME
to indicate that the bus is in use. It will de-assert BFRAME before it send or accepts the last
word of data. In most cases, the initiator will asserts BIRDY to indicate that it is ready to
receive data (or read operations) or is driving valid data (for write operations). If the operation
is a write, the initiator will drive valid data onto BDATA.

3. At the rising edge of the first clock, all agents sample BADDR and decode it to determine
which agent will be the target.

4. The agent that determines that the address is within its address space asserts BSEL sometime
after the first rising edge of the bus clock. BSEL stays asserted until the transaction is com-
plete.

5. The initiator and the target transfer data either in one cycle or in successive cycles. The agent
driving data (the initiator for a write, the target for a read) indicates valid data by asserting its
ready signal (IRDY or TRDY for writes and reads, respectively). The agent receiving data (tar-
get for a write, initiator for a read) indicates its ability to receive the data by asserting its ready

1. The Lexra Bus is not PCI compatible; it merely borrows concepts from the PCI Bus specification.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 54 - Release 1.9

signal. Either agent may de-assert its ready signal to indicate that it cannot source or accept
data on this particular clock edge.

6. When the initiator is ready to send or receive the last word of data, that is, when it asserts
BIRDY for the last time, it also de-asserts BFRAME. It will deassert BIRDY when the last
word of data is transferred.

7. The arbiter grants the bus to the next initiator, and may do so during a bus transfer by a differ-
ent initiator. The new initiator must sample BFRAME and BIRDY. When both BIRDY and
BFRAME is sampled de-asserted and the new initiator has been given grant, it can assert
BFRAME the next cycle to start a new transaction.

NOTE: in the examples below, the signals BADDR and BDATA are often shown to be in a high-impedance
state. In reality, internal bus signals should always be driven, even if they are not being sampled. The Hi-Z
states are shown for conceptual purposes only.

6.7.5. Single Cycle Read with No Waits

This operation is used to read a word, halfword or byte from memory, usually in uncachable address space.

This is a simple read operation where the target responds immediately with data. This is unlikely, since most
bus memory will require one or more cycles to fetch data. This example illustrates the most basic read
operation without waits.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate to initiator that a target is responding. In this example, there is
an immediate fetch of data, so Target drives data and asserts BTRDY to indicate to target that it
is driving data. The Initiator de-asserts BFRAME and asserts BIRDY to indicate that the next
piece of data received will be the last.

3. Initiator de-asserts IBIRDY and the target de-asserts BSEL and BTRDY to indicate the end of
the transaction. The Initiator that has been given grant owns the bus this cycle.

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0000

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 55 - Release 1.9

6.7.6. Single Cycle Read with Target Wait

This is the same as the single-cycle read, except that the target needs time to fetch the data from memory.

This is a common single-cycle read operation.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate that it has decoded the address and is acknowledging that it is
the target device. However, it is not ready to send data, so it does not assert BTRDY. Initiator
de-asserts BFRAME and asserts BIRDY to indicate that the next piece of data will be the last it
wants.

3. Target has not asserted BTRDY so no data is transferred.

4. After a second wait cycle, target drives data and asserts BTRDY to indicate that data is on the
bus.

5. Target de-asserts BSEL and BTRDY. Initiator de-asserts BIRDY. Another initiator may drive
the bus this cycle.

6.7.7. Line Read with No Waits

This operation is used to service a cache miss. Four words of data are transferred in sequence. In this
example, the target is supplying four words of data without any waits.

1. Initiator drives BADDR and asserts BFRAME to indicate beginning of transaction.

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0001

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0002

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 56 - Release 1.9

2. Target asserts BSEL to indicate that it had decoded the address and will send data when it is
ready. Initiator asserts BIRDY to indicate that it is ready to receive data.

3. Target drives data and asserts BTRDY.

4. Target drives second word of data and continues to assert BTRDY.

5. Target drives third word of data and continues to assert BTRDY.

6. Target drives last word of data. Initiator de-asserts BFRAME to indicate that the next word of
data it receives will be the last it needs.

7. Target de-asserts BTRDY and BSEL; initiator de-asserts BIRDY. Another master may gain
ownership of the bus this cycle.

6.7.8. Line Read with Target Waits

This illustrates what happens when a target needs extra time to fetch data it needs to service a cache miss.

1. Initiator asserts BFRAME and drives BADDR.

2. Target asserts BSEL to indicate that it is acknowledging the operation. Initiator asserts BIRDY
to indicate that it is ready to receive data.

3. Target waits until it has the data.

4. Target drives first word of data and asserts BTDRY.

5. Target drives second word of data and asserts BTRDY.

6. Target cannot get third word of data, so it de-asserts BTRDY.

7. Target drives third word of data and asserts BTRDY.

8. Target cannot get fourth word of data, so it de-asserts BTRDY.

9. Target drives fourth word of data and asserts BTRDY.

6.7.9. Line Read with Initiator Waits

This occurs when a line of data is requested from the target and the initiator cannot accept all of the data in

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0003

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 57 - Release 1.9

successive cycles.

1. Initiator drives address and asserts BFRAME.

2. Target asserts BSEL. It doesn’t have data, so it does not assert BTRDY. Initiator asserts BIRDY
to indicate that it can accept data

3. Target now has data, so it drives the data and asserts BTRDY.

4. Target drives second word of data; initiator cannot accept it, so it de-asserts BIRDY.

5. Target holds second word of data; initiator can accept it and asserts BIRDY.

6. Target drives third word of data; initiator accepts it.

7. Target drives fourth word of data; initiator cannot accept it and de-asserts BIRDY. initiator hold
BFRAME until it can assert BIRDY.

8. Initiator asserts BIRDY to accept fourth word of data. It de-asserts BFRAME to indicate this is
the last word of data.

6.7.10. Burst Read

This is identical to the read line.

6.7.11. Single-Cycle Write with No Waits

A single-cycle write operation occurs almost every time the LX4189 processor executes a store instruction.
This is because the cache used in the processor uses a write-through policy. Of course, writes to uncacheable
address space and to an I/O device will also generate a single-word write. Single-word write operations are
used to write words, halfwords and bytes.

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0004

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 58 - Release 1.9

A single-word write without waits requires two cycles.

1. Initiator asserts BFRAME and drives address.

2. Target samples address and asserts BSEL. Initiator drives data and asserts BIRDY. In this case,
target is also able to accept data, so it asserts BTRDY. Initiator also de-asserts BFRAME to
indicate that it is ready to send the last (and only) word of data.

3. Target accepts data, de-asserts BTRDY and BSEL. Initiator de-asserts BIRDY.

6.7.12. Single-Cycle Write with Waits

This is an example of a single-cycle write operation where the target cannot immediately accept data and
must insert wait states.

This is the same description as the above example, except that the target inserts two wait states until it asserts
BIRDY to indicate acceptance of data.

6.7.13. Burst Write with No Waits

A burst write operation is generally used to transfer large amounts of data from an I/O device to memory via

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0005

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0006

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 59 - Release 1.9

a DMA transfer. The following illustrates a best-case scenario with no wait states.

1. Initiator drives address and asserts BFRAME.

2. Target asserts BSEL and BTRDY to indicate it will accept data. Initiator drive data and asserts
BIRDY.

3. Initiator drives next word of data; target continues to accept data and indicates as such by con-
tinuing to assert BTRDY.

4. Initiator drives third word of data; target continues to accept.

5. Initiator drives fourth word of data and de-asserts BFRAME to indicate that this will be its last
word sent; target accepts data.

6. Target de-asserts BTRDY and BSEL; initiator gives up control of the bus by de-asserting
BIRDY.

6.7.14. Burst Write with Target Waits

This example is similar to the above example, except that during the third and fourth data word transfer, the
target cannot accept the data quickly enough, so it de-asserts BTRDY which indicates to the initiator that it
should hold the data for an additional cycle.

6.7.15. Burst Write with Initiator Waits

The example illustrates what happens when the initiator cannot supply data fast enough and has to insert

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0007

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0008

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 60 - Release 1.9

waits.

6.8. LBC Signals

The table below summarizes the LX4189 LBC ports. The "LBC Port" column indicates the name of the port
supplied by the LBC. The "Bus Signal" column indicates the corresponding Lexra bus signal. The LBC ports
are strictly uni-directional, while the bus signals (at least conceptually) include multiple sources and sinks.
The manner in which LBC ports are connected to bus signals is technology dependent, and may employ tri-
state drivers or logic gating in conjunction with the LBC’s LCoe, LDoe and LToe outputs.

Table 33: LBC Interface Signals

I/O LBC Port Bus Signal Description

output LAddrO[31:0] BADDR[31:0] LBC address

output LDataO[31:0] BDATA[31:0] LBC data

input LDataI[31:0] BDATA[31:0] System data

output LIrdy BIRDY LBC initiator ready

input LIrdyI BIRDY System initiator ready

output LFrame BRAME LBC transaction frame

input LFrameI BFRAME System transaction frame

input LSel BSEL System slave select

input LTrdy BTRDY System target ready

output LCmd[6:0] BCMD[6:0] LBC command

output LReq - LBC bus request

input LGnt - System bus grant

output LCoe[9:0] - LBC command output enable terms

output LDoe[7:0] - LBC data output enable terms

output LToe] - LBC transaction output enable terms

CLOCK

BFRAME

BADDR

BDATA

BIRDY

BTRDY

BSEL

D0009

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 61 - Release 1.9

6.9. Arbitration

6.9.1. Rules

The following are the rules for arbitration (GNT=grant, REQ=request):

1. Master asserts REQ at the beginning of a cycle and may start sampling for asserted GNT in the
same cycle (in case GNT is already asserting in the case of a “park”).

2. If bus is idle or it is the last data phase of the previous transaction when master samples
asserted GNT, master may assert FRAME on next cycle.

3. If the bus is busy when the master samples GNT, is must also snoop FRAME, IRDY and Trdy.
One cycle after FRAME is not asserted and both IRDY and TRDY are asserted (indicating the
last data phase), if GNT is still asserted, master may now drive FRAME (i.e. GNT &
~Frame_R & (Irdy_R & Trdy_R)).

6.9.2. LBC behavior

The LBC, when it need access to the bus, asserts REQ and in the same cycle samples GNT, ~FRAME, and
either ~IRDY or (IRDY & TRDY). If these are true, then the LBC will on the next cycle take ownership of
the bus. REQ is deasserted on the cycle after LBC asserts FRAME. If the bus is busy, LBC continues to
snoop these four signals for this condition. All other Lbus arbitration rules can be based on this behavior of
the LBC.

6.10. Connecting Devices to the Bus

There are three sets of output enables: TOE(valid for the length of the transaction), COE (valid for only the
first cycle of a transaction), and DOE (valid for data transfers, asserted by the master for writes and by the
slave for reads).

TOE is intended to qualify:

FRAME
IRDY

COE is intended to qualify:

CMD
ADDR

DOE is intended to qualify:

DATA

There is no output enable to qualify TRDY and SEL. These are defined by customer logic for slave devices.

Instead of using TOE it may be desirable to instead OR all of the FRAME signals, either centrally or one OR
gate for each target and master. The same holds true for IRDY, TRDY, and SEL. This simplifies the
connections when a relatively few number of devices are used and there are no off-chip devices connected
directly to the Lexra Bus.

Therefore, it is defined that masters and slaves not taking part in a transaction always keep FRAME, IRDY,
TRDY, and SEL driven and de-asserted.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 62 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 63 - Release 1.9

7. LX4189 Coprocessor Interface

The LX4189 processor provides customer access points for the Coprocessor Interfaces. This section provides
a description of these access points. Attachment of memory devices to the LMIs, the System Bus, and the
EJTAG interface are described in separate chapters.

7.1. Attaching a Coprocessor Using the Coprocessor Interface (CI)

A coprocessor may contain up to 32 general registers and up to 32 control registers. Each of these registers is
up to 32 bits wide. Typically, programs use the general registers for loading and storing data on which the
coprocessor operates. Data is moved to the coprocessor’s general registers from the core’s general registers
with the MTCz instruction. Data is moved from the coprocessor’s general registers to the core’s general
registers with the MFCz instruction. Main memory data is loaded into or stored from the coprocessor’s
general registers with the LWCz and SWCz instructions.

Programs may load and store the coprocessor’s control registers from the core’s general registers with the
CTCz and CFCz instructions respectively. Programs may not load or store the control registers directly from
main memory.

The coprocessor may also provide a condition flag to the core. The condition flag can be a bit of a control
register or a logical function of several control register values. The condition flag is tested with the BCzT and
BCzF instructions. These instructions indicate that the program should branch if the condition is true (BCzT)
or false (BCzF).

7.2. Coprocessor Interface (CI) Signals

The CI provides the mechanism to attach the custom coprocessor to the core. The CI snoops the instruction
bus for coprocessor instructions and then gives the coprocessor the signals necessary for reading or writing
the general and control registers.

Table 34: Coprocessor Interface Signals

Signal I/O Description

C<z>condin input Cop branch flag.

C<z>rd_addr[4:0] output Cop read address.

C<z>rhold output Cop hold condition, one stalls coprocessor.

C<z>rd_gen output Cop general register read command.

C<z>rd_con output Cop control register read command.

C<z>rd_data[31:0] input Cop read data.

C<z>wr_addr[4:0] output Cop write address.

C<z>wr_gen output Cop general register write command.

C<z>wr_con output Cop control write address command.

C<z>wr_data[31:0] output Cop write data.

C<z>invld_M output Cop invalid instruction flag, one indicates
invalid instruction in M stage.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 64 - Release 1.9

The addresses, output data, and control signals are supplied to the user’s Coprocessor on the rising edge of the
system clock. In the case of a read cycle, the coprocessor must supply the data from either the control or
general register on C<z>rd_data by the end of the same cycle. Similarly, the write of data from C<z>wr_data
to the addressed control or general register must be complete by the end of the cycle.

The CI incorporates a forwarding path so that data which is written in instruction (N) can be read in
instruction (N + 2). The Coprocessor registers should be implemented as positive-edge flip-flops using the
LX4189 system clock.

7.3. Coprocessor Write Operations

During a coprocessor write, the CI sends C<z>wr_addr and C<z>wr_data, and asserts either C<z>wr_gen or
C<z>wr_con. The coprocessor must ensure that the coprocessor completes the write to the appropriate
register on the subsequent rising edge of the clock. The target register is a decoding of C<z>wr_addr,
C<z>wr_gen and C<z>wr_con. Use these instructions to cause a coprocessor write: LWCz, MTCz, and
CTCz.

7.4. Coprocessor Read Operations

During a coprocessor read, the CI sends C<z>rd_addr and asserts either C<z>rd_gen or C<z>rd_con. The
coprocessor must return valid data through C<z>rd_data in the following clock cycle. If the core asserts
C<z>rhold, indicating that it is not ready to accept the coprocessor data, the coprocessor must hold the
previous value of C<z>rd_data. The target register for the read is a decoding of C<z>rd_addr, C<z>rd_gen,
and C<z>rd_con. The instructions causing a coprocessor read are SWCz, MFCz, and CFCz.

The CPU stalls the pipeline so that the program can access data read by a coprocessor instruction in the
immediately following instruction. For example, if an MFCz instruction reads data from the coprocessor and
stores it in the core’s general register $4, the program can get access to that data in the following instruction:

When the core initiates a coprocessor read, the coprocessor must return valid data in the following clock
cycle. The coprocessor cannot stall the CPU. Applications must ensure that the source code does not access
invalid coprocessor data if the coprocessor operations take several clock cycles to complete. This is done in
one of three ways:

• Ensure that code does not access data from the coprocessor until N instructions after the
coprocessor operation has stared. This is the least desirable method as it depends on the
relative execution of the core and coprocessor. It can also complicate software debug.

• Have the coprocessor send an interrupt to the core, and the service routine for that
interrupt accesses the appropriate coprocessor registers.

• Have the coprocessor set the C<z>condin flag when its operation is complete. The source

C<z>xcpn_M output Cop exception flag, one indicates exception
in M stage.

mfc2 $4, $3 # Move from COP2 to CPU register $4
subu $5, $4, $2 # Subtract $R2 from $R4 and store in $5

Signal I/O Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 65 - Release 1.9

code can poll the flag as shown in the example below:

7.5. Coprocessor Interface and Pipeline Stages

Coprocessor writes occur in the W stage of the instruction pipeline. For coprocessor reads, the core generates
address, rd_gen, and rd_con signals during the S stage, and the coprocessor returns data during the E stage
which is passed by the CI to the core in the M stage. The core introduces a pipeline bubble after coprocessor
instructions to ensure that the result of a MTCz instruction can be used by the immediately following
instruction.

In particular, if there are back-to-back MTCz and MFCz instructions that access the same coprocessor
register, the pipeline bubble still does not allow a cycle between the W stage write and E stage read as
required. In this case a special forwarding path within the CI is used. That is, the “true” data from the
coprocessor is ignored. Instead the exact data from the MTCz is used.

mtc2 I D S E M W
bubble I D
mfc2 I D S E M W # data forwarded by CI from mtc2
 wr_gen (W) X
 rd_gen (S) X
 rd_data(E) X

The forwarding path can cause side effects if the coprocessor does not implement all of the bits of a register,
contains read-only bits, or updates the register value upon reading the register. In such cases, the mfc2
instruction returns different data from what it would if the core did not activate the forwarding path. To avoid
the forwarding path, another instruction must be inserted between the mtc2 and mfc2:

mtc2 I D S E M W
bubble I D
foo I D S E M W
mfc2 I D S E M W # read data from coprocessor
 wr_gen (W) X
 rd_data(E) X

7.5.1. Pipeline Holds

The coprocessor must register the read address and the control signals rd_gen and rd_con. It must hold the (E
stage) registered values of these signals when C<z>_rhold is active high, and should make the read data
output a function of the (E stage) registered read address and control signals.

The wr_addr, wr_data, wr_gen and wr_con signals need not be registered. The coprocessor may decode these
(W stage) signals directly to the appropriate register.

7.5.2. Pipeline Invalidation

Under certain circumstances the instruction pipeline can contain an instruction that must be discarded. This

mtc2 $2, $3 # store data to COP2 general register $3
ctc2 $3, $5 # set COP2 control register $5 to start
nop
loop:
bc2f loop # branch back to loop if C<z>condin bit off
nop # branch delay slot
mfc2 $4, $7 # get results from COP2 general register $7

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 66 - Release 1.9

can be due to mispredicted branches, cache misses, exceptions, inserted pipeline bubbles etc. In such cases,
the CI may decode an instruction that must actually be discarded.

For the coprocessor write-type instructions, the CI will only issue the W stage control signals wr_gen and
wr_con for valid instructions. The coprocessor does not need to qualify these controls.

For the coprocessor read-type instructions, the CI may issue the S stage control signals rd_gen and rd_con for
instructions that must be discarded. If the coprocessor can tolerate speculative reads then it need not qualify
those signals. However, if the coprocessor performs “destructive” reads, such as updating a FIFO pointer
upon read, then it must use the qualifying signals C<z>_xcpn_m and C<z>_invld_m as follows:

The signal C<z>_xcpn_m signal is used to discard any S stage (from CI) rd_gen or rd_con signal and any E
stage (registered in the coprocessor) rd_gen or rd_con signal. It indicates that a preceding instruction in the
pipe has taken an exception and that subsequent instructions in the pipe must be discarded.

The signal C<z>_invld_m signal is used to invalidate the operation of the current instruction in the M stage.
This can be for various reasons not limited to an exception on a preceding instruction. If the coprocessor
cannot tolerate speculative reads, it must register an M stage version of rd_gen and rd_con. The coprocessor
must use the C<z>_rhold signal to hold this M stage version (as well as the E stage version). If
C<z>_invld_m is asserted, then any such M stage signals must be discarded. To summarize, a rd_gen or
rd_con instruction can “retire” only if it reaches the M stage and neither C<z>_rhold nor C<z>_invld_m is
asserted.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 67 - Release 1.9

8. LX4189 EJTAG

8.1. Introduction

Given the increasing complexity of SoC designs, the nature of embedded processor-design debug, hardware
and software, and the time-to-market requirements of embedded systems, a debug solution is needed which
allows on-chip processor visibility in a cost-effect, I/O constrained manner.

Lexra’s EJTAG solution meets all such requirements. It uses existing IEEE JTAG pins as well as fast bring-up
on new designs. It provides a way of debugging all devices accessible to the processor in the same way the
processor would access those devices itself. Using EJTAG, a debug probe can access all the processor
internal registers and caches. It can also access devices connected to the Lexra Bus, bypassing internal caches
and memories.

Software debug is enhanced by EJTAG features that allow single-stepping through code and halting on
breakpoints (hardware and software, address and data with masking). For debugging problems that are
artifacts of real-time interactions, EJTAG gives real-time Program Counter trace capabilities from which an
accurate program execution history is derived. For the code-system perspective, PC profiling provides
statistical analysis of code usage to aim code optimization.

8.2. Overview

A debug host computer communicates to the EJTAG probe through either a serial or parallel port or Ethernet
connection. The probe, in turn, communicates to the LX4189 EJTAG hardware via the included IEEE 1149.1
JTAG interface. Through the use of the JTAG TAP controller, probe data is shifted into to the EJTAG data and
control registers in the LX4189 to respond to processor requests, DMA into system memory, configure the
EJTAG control logic, enable single-step mode, or configure the EJTAG breakpoint registers. Through the use
of the EJTAG control registers, the user can set hardware breakpoints on the instruction cache address, data
cache address or data cache data values.

Physical address range 0xFF20_0000 to 0xFF3F_FFFF is reserved for EJTAG use only and should not be
mapped to any other device.

Currently, Embedded Performance Inc. (EPI) and Green Hills Inc. provide EJTAG debuggers and probes for
the LX4189. Information on these products is available at the following web sites.

EPI Inc.: http://www.epitools.com

Green Hills Inc.: http://www.ghs.com

LX4189 EJTAG implements all required features of version 2.0.0 of the EJTAG specification, and includes
support for the following features:

• Processor access of host via addressing of probe memory space.

• Host probe can DMA directly into system memory or I/O devices.

• Hardware breakpoints on internal instruction and data busses.

• Single-step execution mode.

• Real-time Program Counter Trace.

• Debug exception and two new debug instructions: one for raising a debug exception via
software, and one for returning from a debug exception.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 68 - Release 1.9

8.2.1. IEEE JTAG-specific Pinout

IEEE JTAG pins used by EJTAG are shown below. These are required for all EJTAG implementations.
JTAG_TRST_N is an optional pin.

Table 35: EJTAG Pinout

Table 36: EJTAG AC Characteristics 1

Table 37: EJTAG Synthesis Constraints 2

8.3. Single Processor PC Trace

The LX4189 EJTAG includes support for real-time Program Counter Trace (PC Trace). When in PC Trace

Signal Name I/O Description

JTAG_TDO_NR output Serial output of EJTAG TAP scan chain.

JTAG_TDI Input Serial input to EJTAG TAP scan chain.

JTAG_TMS Input Test Mode Select. Connected to each EJTAG TAP controller.

JTAG_CLOCK Input JTAG clock. Connected to each EJTAG TAP controller

JTAG_TRST_N Input TAP controller reset. Connected to each EJTAG TAP controller.a

a. This pin is optional in multiprocessor configurations

Signal Parameter Condition Min Max Unit

JTAG_CLOCK Frequency <1 40 MHz

Duty Cycle 40/60 60/40 %

JTAG_TMS Setup to TCK rising edge 1.8V 5 ns

Hold after TCK rising edge 1.8V 5 ns

JTAG_TDI Setup to TCK rising edge 1.8V 5 ns

Hold after TCK rising edge 1.8V 5 ns

JTAG_TDO_NR Output Delay TCK falling edge to TDO 1.8V 0 7 ns

1. Based on EPI Interface Specifications for MAJICTM and MAJICPLUS TM

Signal Name Probe Budget Core Budget Slack remaining for other logic

JTAG_TDO_NR 0 to -7ns 11.5ns 13.5 to 20.5ns

JTAG_TDI 5ns 13.5ns 6.5ns

JTAG_TMS 5ns 13.5ns 6.5ns

2. Based on 25ns JTAG clock period.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 69 - Release 1.9

mode, the LX4189 will serially output a new value of the program counter whenever a change in program
control occurs (i.e. branch or jump instruction, or an exception).

When the PC Trace option is set to EXPORT in lconfig, the following signals will be output from the
LX4189: DCLK, PCST, and TPC. These are described in more detail in the following subsections.

The DCLK output is used to synchronize the probe with the LX4189’s SYSCLK.

The PCST (PC Trace Status) signals are used to indicate the status of program execution. Example status
indications are sequential instruction, pipeline stall, branch, or exception.

The TPC pins output the value of the PC every time there is a change of program control.

8.3.1. PC Trace DCLK - Debug Clock

The maximum speed allowed for the Debug Clock (DCLK) output is 100MHz (as an EPI probe
requirement). As cores typically run in excess of this speed DCLK can be set to a divided down value of
SYSCLK. This is set by the DCLK N parameter inlconfig, which indicates the ratio of SYSCLK frequency
to DCLK: 1, 2, 3 or 4.

8.3.2. PC Trace PCST - Program Counter Status Trace

The Program Counter Status (PCST) output comprises N sets of 3-bit PCST values, where N is configurable
as 1, 2, 3 or 4 vialconfig. A PCST value is generated every SYSCLK cycle. When DCLK is slower than the
LX4189’s SYSCLK, up to N PCST values are output simultaneously.

8.3.3. PC Trace TPC - Target Program Counter

The bus width of the Target Program Counter (TPC) output is user configured in lconfig via the “M”
parameter to be one of 1, 2, 4 or 8 bits. When change in program flow occurs the current PC value is sent out
of TPC. As the PC is 32-bits wide, the number of TPC pins affects how quickly the PC is sent. For example,
if the TPC is 4 bits wide the PC will take 8 DCLK cycles to be sent. If another change in flow occurs while
the PC of the previous change is being transmitted, the new PC will be sent and the remainder of the previous
PC will be lost.

The TPC bus also outputs the exception type when an exception occurs. The exception type field-width is
either 3- or 4-bits depending on whether or not vectored interrupts are present. This is covered in more detail
below.

To reduce pinout, the TDO output is used for the least significant bit of TPC (or the only bit if “M” is set to 1).

8.3.4. Single-Processor PC Trace Pinout

Table 38: Single-Processor PC Trace Pinout.

Signal Name I/O Description

JPT_TPC_DR
M bits

O/P The PC value is output on these pins when a PC-discontinuity occursa

JPT_PCST_DR
N*3 bits

O/P PC Trace Status: Outputs current instruction type every DCLK

JPT_DCLK O/P PCST and TPC clock. Frequency determined as a fraction of SYSCLK
via the N parameter. Maximum frequency of DCLK is 100MHz.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 70 - Release 1.9

Table 39: Single-Processor PC Trace AC Characteristics 1

8.3.5. Vectored Interrupts and PC Trace

The EJTAG PC Trace facility specifies a 3-bit code be output on the TPC output when an exception occurs
(the PCST pins give the EXP code). In order to distinguish the eight vectored interrupts in the LX4189 from
all other exceptions, a 4-bit code is used instead.

For all exceptionsother than vectored interrupts, the most significant bit of the 4-bit code is zero and the
remaining 3-bits are the standard 3-bit code. Note that this includes the standard software and hardware
interrupts numbered 0 through 7.

For vectored interrupts, the most significant bit is always 1. The 4-bit code is simply the number of the
vectored interrupt (from 8 through 15) being taken.

Since the target of the vectored interrupt is determined by the contents of the INTVEC register, the debug
software which monitors the EJTAG PC Trace codes must be aware of the contents of this register in order to
trace the code after the vectored interrupt is taken.

For probes that do not support a 4-bit exception code, the LX4189 can be configured via the
EJTAG_XV_BITS lconfig option to use only the 3-bit standard codes. In that case, if a vectored interrupt is
taken, the 3-bit code for RESET will be presented.

8.3.6. Demultiplexing of TDO and TDI During PC Trace

In normal EJTAG PC Trace, TDI and TDO are multiplexed with the debug interrupt (DINT) and the lsb of
the TPC (TPC[0]) when in PC Trace mode. This reduces the number of pins required by PC Trace, but has
the unfortunate side-affect of preventing any access to EJTAG registers during PC Trace.

In order to allow access to EJTAG registers during PC Trace, and to facilitate PC Trace in multiprocessor
environments, the lconfig option JTAG_TRST_IS_TPC=YES causes TDI and TDO to be demultiplexed
such that TRST is used as TPC[0] and DINT is generated via EJTAG registers. Note: setting this option may
require changes in EJTAG probe hardware. Check with probe manufacturer for details.

a. TPC[0] is multiplexed with TDO in the single-processor PC Trace solution.

Signal Parameter Min Max Unit

JTAG_DCLK Frequency DC 100 MHz

DCLK High Time 4 ns

Low Time 4 ns

TPC Setup to DCLK falling edge at probe 0 ns

Hold after DCLK falling edge 4 ns

PCST Setup to DCLK falling edge at probe 0 ns

Hold after DCLK falling edge 4 ns

1. Based on EPI Interface Specifications for MAJICTM and MAJICPLUS TM

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 71 - Release 1.9

9. Multiply-Divide-Accumulate (Optional)

The Multiply-Divide-Accumulate (MAC-DIV) module is an optional feature of the LX4189 processor. This
chapter discusses the operation and features of the MAC-DIV module.

9.1. Summary of Instructions

Table 40 provides a summary of the optional Multiply-Divide-Accumulate module.

Table 40: Summary of MAC-DIV Instructions.

Mnemonic Operation Description

MTHI HI <- Rs pre-load accumulator, or restore saved HI

MTLO LO <- Rs pre-load accumulator, or restore saved LO

MFHI Rd <- HI read accumulator, or part of 64 bit result

MFLO Rd <- LO read accumulator, or part of 64 bit result

MULT {HI,LO} <- Rs * Rt 32x32 signed multiply 64bit result

MULTU {HI,LO} <- Rs * Rt 32x32 unsigned multiply, 64bit result

MAD {HI,LO}<- {HI,LO} + (Rs * Rt) 32x32 signed multiply, with 64bit signed add
to accum

MADU {HI,LO}<- {HI,LO} + (Rs * Rt) 32x32 unsigned multiply, with 64bit
unsigned add to accum

MSUB {HI,LO}<- {HI,LO} - (Rs * Rt) 32x32 signed multiply, with 64bit signed add
to accum

MSUBU {HI,LO}<- {HI,LO} - (Rs * Rt) 32x32 unsigned multiply, with 64bit
unsigned add to accum

MADH HI <- HI + (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, with 32 bit signed
add to accum

MADL LO <- LO + (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, with 32 bit signed
add to accum

MAZH HI <- 0 + (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, add to pre-zeroed
32bit accum

MAZL LO <- 0 + (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, add to pre-zeroed
32bit accum

MSBH HI <- HI - (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, with 32 bit signed
sub from accum

MSBL LO <- LO - (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, with 32 bit signed
sub from accum

MSZH HI <- 0 - (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, sub from pre-zeroed
32bit accum

MSZL LO <- 0 - (Rs[15:0] * Rt[15:0]) 16x16 signed multiply, sub from pre-zeroed
32bit accum

DIV HI <- Rs%Rt; LO <- Rs/Rt 32 by 32 signed divide with remainder

DIVU HI <- Rs%Rt; LO <- Rs/Rt 3 by 32 unsigned divide with remainder

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 72 - Release 1.9

The stall matrix for MAC is shown below. It shows the number of intervening instructions required to avoid a
processor stall. A dash (‘-‘) indicates that two instructions can be initiated back to back. The MAC is fully
interlocked; the processor will stall if two instructions are issued without allowing enough intervening
instructions, and the MAC will compute the correct result.

Table 41: MAC-DIV Operation Stall Matrix

9.2. MAC-DIV Instruction Overview

• MULT, MULTU provide MIPS instruction set 32 x 32 bit signed and unsigned multiply
operations, producing a 64-bit result.

• MAD, MADU, MSUB, MSUBU provide signed and unsigned 32 x 32 bit multiply-add
and multiply-subtract operations, accumulating to a 64-bit result.

• MAZH, MAZL, MSZH, MSZL provide 16 x 16-bit multiply or multiply and negate, with
the result going to the 32-bit high or low accumulators.

• MADH, MADL, MSBH, MSBL provide 16 x 16-bit multiply-add or multiply-subtract
operations to a 32-bit high or low accumulator.

• All ops except Move-to-accumulator and 32-bit multiply-accumulate functions are
supported in M16 mode as well as M32 for best code compression.

• Independent 32-bit HI and LO accumulators for 16-bit Multiply-accumulate allow
optimal performance in the FIR filter, or other applications which allow generation of a
new result while the previous result is pending.

• Multiply-subtract instructions eliminate the need to negate coefficients.

• In case of resource conflicts, hardware manages all hazards simplifying software debug.

• There are no coding restrictions.

1st OP

2nd OP
MULT, MULTU, MAD,
MADU, MSUB,
MSUBU

MTHI, MTLO, MADH,
MADL, MAZH, MAZL,
MSBH, MSBL, MSZH,
MSZL, MFHI, MFLO DIV, DIVU

MULT, MULTU, MAD,
MADU, MSUB,

MSUBU, MADH,
MADL, MAZH, MAZL,
MSBH, MSBL, MSZH,

MSZL

1 cycle - 19 cycles

DIV, DIVU 1 cycle - 19 cycles

MFHI, MFLO 3 cycles 2 cycles 19 cycles

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 73 - Release 1.9

9.3. Op-codes for standard mode (32-bit) instructions

31 26 25 21 20 16 15 6 5 0

Mnemonic Major Op Base Rt Immediate Subop

MFHI 000000 Rs Rt 0000000000 010000

MTHI 000000 Rs Rt 0000000000 010001

MFLO 000000 Rs Rt 0000000000 010010

MTLO 000000 Rs Rt 0000000000 010011

MULT 000000 Rs Rt 0000000000 011000

MULTU 000000 Rs Rt 0000000000 011001

MAD 011100 Rs Rt 0000000000 00000

MADU 011100 Rs Rt 0000000000 000001

MSUB 011100 Rs Rt 0000000000 000100

MSUBU 011100 Rs Rt 0000000000 000101

DIV 000000 Rs Rt 0000000000 011010

DIVU 000000 Rs Rt 0000000000 011011

MADH 111100 Rs Rt 0000000000 000000

MADL 111100 Rs Rt 0000000000 000010

MAZH 111100 Rs Rt 0000000000 000100

MAZL 111100 Rs Rt 0000000000 000110

MSBH 111100 Rs Rt 0000000000 010000

MSBL 111100 Rs Rt 0000000000 010010

MSZH 111100 Rs Rt 0000000000 010100

MSZL 111100 Rs Rt 0000000000 010110

6 5 5 10 6

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 74 - Release 1.9

9.4. Op-codes for MIPS-16 (16 bit) mode instructions

15 11 10 8 7 5 4 0

Mnemonic major op base rt subop

MFHI 11101 rx ry 10000

MTHI not supported by MIPS-16 architecture

MFLO 11101 rx ry 10010

MTLO not supported by MIPS-16 architecture

MULT 11101 rx ry 11000

MULTU 11101 rx ry 11001

MAD not supported by MIPS-16 architecture

MADU not supported by MIPS-16 architecture

MSUB not supported by MIPS-16 architecture

MSUBU not supported by MIPS-16 architecture

DIV 11101 rx ry 11010

DIVU 11101 rx ry 11011

MADH 11111 rx ry 00000

MADL 11111 rx ry 00010

MAZH 11111 rx ry 00100

MAZL 11111 rx ry 00110

MSBH 11111 rx ry 10000

MSBL 11111 rx ry 10010

MSZH 11111 rx ry 10100

MSZL 11111 rx ry 10110

5 3 3 5

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 75 - Release 1.9

9.5. Non-Standard Instruction Descriptions

Table 42: 16-bit Multiply and Multiply-Accumulate Instructions

Signed 16-bit Multiply
to {HI,LO}

MAZH rS, rT
MAZL rS, rT
The contents of rS[15:0] is multiplied by rT[15:0], treating the operands as signed
2's complement values. The 32-bit product is stored in the {HI,LO} register.
{HI,LO} <- 0 + Rs * Rt

Signed 16-bit Multiply-
Accumulate to {HI,LO}

MADH rS, rT
MADL rS, rT
The contents of rS[15:0] is multiplied by rT[15:0], treating the operands as signed
2's complement values. The 32-bit product is added to {HI,LO}, ignoring any
overflow. The result is stored in the {HI,LO} register.
{HI,LO} <- {HI,LO} + Rs * Rt

Signed 16-bit Multiply-
Negate to {HI,LO}

MSZH rS, rT
MSZL rS, rT
The contents of rS[15:0] is multiplied by rT[15:0], treating the operands as signed
2's complement values. The 32-bit product is negated (subtracted from zero) and
stored in the {HI,LO} register.
{HI,LO} <- 0 - Rs * Rt

Signed 16-bit Multiply-
Subtract from {HI,LO}

MSBH rS, rT
MSBL rS, rT
The contents of rS[15:0] is multiplied by rT[15:0], treating the operands as signed
2's complement values. The 32-bit product is subtracted from {HI,LO}, ignoring
any overflow. The result is stored in the {HI,LO} register.
{HI,LO} <- {HI,LO} - Rs * Rt

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 76 - Release 1.9

Table 43: 32-bit Multiply-Accumulate Instructions

Notes:
The 32-bit op-codes are unchanged (from the MIPS-I standard) for the existing MULT, DIV, MF, and MT
instructions. The MAD, MADU, MSUB, and MSUBU are new Special2 opcodes, also standard to several
processors. In M32 mode, the new instructions are all R-format with bits 31:26 = 6'b111100. Bits 5:0
determine the specific operation, as shown. In M16 mode, the new instructions are all RR-format with bits
15:11 = 5'b11111. Bits 4:0 determine the specific operation, as shown in Section 9.4.

The upper 16 bits of both operand registers are ignored by 16-bit instructions.

The MxxH and MxxL instructions can be freely interleaved. That is, adds and subtracts from either
accumulator can be combined in a sequence with the two accumulators functioning "in parallel."

The MxZx instructions can be used as stand-alone 16-bit signed multiply. This removes the need for a
"MTHI, zero" instruction at the beginning of a multiply-accumulate sequence, for example:

Signed 32-bit Multiply-
Accumulate

MAD rS, rT
The contents of rS is multiplied by rT, treating the operands as signed 2's
complement values. The 64-bit product is added to the concatenation HI and LO
to form a 64-bit result ignoring any overflow. The upper 32-bits of the 64-bit result
are stored in the HI register. The lower 32-bits are stored in the LO register.
t <- {HI,LO} + Rs * Rt
LO <- t<31:0>
HI <- t<63:32>

32-bit Multiply-
Accumulate

MADU rS, rT
The contents of rS is multiplied by rT, treating the operands as unsigned values.
The 64-bit product is added to the concatenation HI and LO to form a 64-bit result
ignoring any overflow. The upper 32-bits of the 64-bit result are stored in the HI
register. The lower 32-bits are stored in the LO register.
t <- {HI,LO} + Rs * Rt
LO <- t<31:0>
HI <- t<63:32>

Signed 32-bit Multiply-
Subtract

MSUB rS, rT
The contents of rS is multiplied by rT, treating the operands as signed 2's
complement values. The 64-bit product is subtracted from the concatenation HI
and LO to form a 64-bit result ignoring any overflow. The upper 32-bits of the 64-
bit result are stored in the HI register. The lower 32-bits are stored in the LO
register.
t <- {HI,LO} - Rs * Rt
LO <- t<31:0>
HI <- t<63:32>

32-bit Multiply-Subtract MSUBU rS, rT
The contents of rS is multiplied by rT, treating the operands as unsigned values.
The 64-bit product is subtracted from the concatenation HI and LO to form a 64-
bit result ignoring any overflow. The upper 32-bits of the 64-bit result are stored in
the HI register. The lower 32-bits are stored in the LO register.
t <- {HI,LO} - Rs * Rt
LO <- t<31:0>
HI <- t<63:32>

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 77 - Release 1.9

 MAZH r1,r2
 MADH r3,r4
 MADH r5,r6
 MADH r7,r8
 any op that doesn't write HI
 any op that doesn't write HI
 MFHI r9

In the above sequence, the two non-HI ops are not necessary for correct operation but the pipeline will stall if
they are not used, so it is more efficient to perform useful work in those slots.

For the MULTx, MADx or MSUBx instructions, the most efficient use is:

 MULTx r1,r2
 MADx r3,r4
 MSUBx r5,r6
 any op that doesn't write HI or LO
 any op that doesn't write HI or LO
 any op that doesn't write HI or LO
 MFLO r7 /* LO or HI is available this cycle*/
 MFHI r8

9.6. Multiplier Pipelining

The MAD, MAZ, MSB, MSZ instructions, which have 16-bit operands are implemented in a pipelined
fashion, with single cycle throughput and 3 cycle latency.

The MSxx instructions are implemented by negating the multiplier for the 16-bit multiplication but are
otherwise identical to the corresponding MAxx instructions. This subtracts the product of the original
operands from the accumulator.

The MULT, MAD and MSUB instructions, which have 32-bit operands use the same hardware in an iterative
fashion to generate the 64 bit result, with 4 cycle latency for both the low and high order 32 results.

The HI and LO registers are used as two independent 32-bit accumulators for the 16 bit multiply instructions
or as a paired 64-bit result for the 32-bit multiply instructions.

Note: There is no indication of overflow for the 32-bit add portion of the 16-bit multiply-accumulate
instructions. The MFHI(LO) instruction will stall the pipeline until the results of the most recent instruction
which stores into HI(LO) has completed.

9.7. Accessing HI and LO after multiply instructions

The MFLO (MFHI) instruction reads the contents of the LO (HI) register during the E cycle of the pipeline.
The following descriptions indicate how the latency of the multiply instructions affects the usage of the MF
instructions. The most efficient sequence is shown. If the MF instruction is coded earlier, the correct result
will still be obtained because the hardware will stall the MF instruction in the E-cycle until the result is valid.

During the E cycle of any multiply operation, the initial operands are re-coded and loaded into the
MANDHW and MIERHW (MBOOTH) registers. For the MULTx operations, the multiply cycles can be
labeled M1 through M3. Then the following timing diagram is valid:

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 78 - Release 1.9

 MULTx I S E M1 M2 M3 LO/HI valid X
 any op I S E M W
 any op I S E M W
 MFLO I S E M W
or MFHI I S E M W

For the MADx operations, the pipeline cycles after E can be labeled as C (carry save), and A (accumulate).
Then the following timing diagram is valid:

 MAZH0 I S E C A
 MADH1 I S E C A
 MADH2 I S E C A
 MADH3 I S E C A
 any op I S E M W
 any op I S E M W
 MFHI I S E M W
 HI contains A0 A1 A2 A3

9.8. Divider Overview and Register Usage

Given a dividend DEND, and divisor DVSR, the divider generates a quotient QUOT and remainder REM
that satisfy the following conditions, regardless of the signs of DEND and DVSR:

 DEND = DVSR * QUOT + REM,
 0 <= abs(REM) < abs(DVSR)

where REM and DEND have the same sign.

It is worth noting that the requirement that REM and DEND have the same sign is not universally accepted if
DEND and DVSR are not both positive. (For example the Modula-3 language expects: -5DIV3=-2, -
5MOD3=+1, whereas the divider generates QUOT=-1, REM=-2 in agreement with FORTRAN and others.)
These examples show the possible combinations of signs:

 DEND DVSR QUOT REM
 ---- ---- ---- ---
 +19 +5 +3 +4
 -19 +5 -3 -4
 +19 -5 -3 +4
 -19 -5 +3 -4

The divider is an iterative circuit that generates 2 quotient bit per cycle, with an additional 3 cycles required
due to pipelining considerations.

Thus the pipeline flow of a division instruction and the most efficient subsequent read of the quotient (using
MFLO) is as shown in the following diagram, assuming that all the intervening instructions complete in one
cycle. If the MFLO is issued earlier it will stall until the divide completes. Less than 19 instructions may be
issued if some of them take more than one cycle to complete (due to cache misses or data dependent stalls, for
example).

 DIV I S E D0 D1 D2 ... D17 D18
 ...
 18 instructions
 ...
 MFLO I S E M W

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 79 - Release 1.9

Appendix A. LX4189 Lconfig Forms

A.1. Configuration Options for the LX4189 Processor

This section provides a summary of the configuration options available withlconfig. Refer tolconfig forms
for a detailed description of these form options.

PRODUCT -- Lexra Processor name
PRODUCT_TYPE -- indicates product type
TECHNOLOGY -- identifies target technology
TESTBED_ENV -- identifies simulation testbed environment type
RESET_TYPE -- flip-flop reset method
RESET_DIST -- reset distribution method
SLEEP -- include clock SLEEP support
RESET_BUFFERS -- reset buffers at top-level module
CLOCK_BUFFERS -- clock buffers at top-level module
RAM_CLOCK_BUFFERS -- LMI RAM clock distribution method
COP1 -- coprocessor interface 1
COP2 -- coprocessor interface 2
COP3 -- coprocessor interface 3
CE0 -- custom engine 0
CE1 -- custom engine 1
M16_SUPPORT -- 16-bit opcode support
MEM_LINE_ORDER -- cache line fill beat ordering
MEM_FIRST_WORD -- cache line fill first word
MEM_GRANULARITY -- main memory system partial word write support
SYSTEM_INTERFACE -- system bus interface type
LBC_WBUF -- Lexra Bus Controller write buffer depth
LBC_RBUF -- Lexra Bus Controller read buffer depth
LBC_RDBYPASS -- Lexra Bus Controller read bypass enable
LBC_SYNC_MODE -- LBC synchronous/asynchronous selection
LINE_SIZE -- cache line size, in words
ICACHE -- instruction cache size
DCACHE -- data cache size
IMEM -- local instruction RAM with line valid bits
IROM -- local instruction ROM
DMEM -- local scratch pad data RAM
LMI_DATA_GRANULARITY -- DCACHE and DMEM write granularity
LMI_RANGE_SOURCE -- source of LMI address ranges
LMI_RAM_ARB -- allow external agents to arbitrate for LMI RAMs
JTAG -- Internal JTAG Tap controller with EJTAG support
EJTAG -- EJTAG Debug Support
EJTAG_INST_BREAK -- Number of instruction breaks to be compiled
EJTAG_DATA_BREAK -- Number of data breaks to be compiled
JTAG_TRST_IS_TPC -- TRST pin is TPC out, instead of TDO/TPC mux
PC_TRACE -- EJTAG PC trace pins
EJTAG_DCLK_N -- EJTAG PCTrace DCLK N parameter
EJTAG_TPC_M -- EJTAG PCTrace TPC M parameter
EJTAG_XV_BITS -- EJTAG PCTrace number of Exception Vector bits
EJTAG_PC_ISABIT -- EJTAG PCTrace include ISA as PC Bit0
SCAN_INSERT -- Controls scan insertion and synthesis
SCAN_MIX_CLOCKS -- scan chains can cross clock boundaries with

lock-up latches
SCAN_NUM_CHAINS -- number of scan chains

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 80 - Release 1.9

SCAN_SCL -- scan collar insertion on RAM interfaces
SEN_DIST -- scan enable distribution method
SEN_BUFFERS -- scan enable buffering
RAM_BIST_MUX -- include test RAM mux and ports

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 81 - Release 1.9

Appendix B. LX4189 Port Descriptions

All ports must be connected to valid logic-level sources.

The timing information indicates the point within a cycle when the signal is stable, in terms of percent. The
timing information also includes parenthetical references to these notes:

1. Clocked in the JTAG_CLOCK domain.

2. Clocked in the BUSCLK domain if crossbar or LBC are asynchronous. Otherwise, clocked in
the SYSCLK domain.

3. Does not require a constraint (e.g., a clock).

4. A constant that is treated as false path for timing analysis. These inputs must not change after
the processor is taken out of reset.

5. Timing is specified with a symbol in techvars.scr script (e.g. RAM timing).

6. A test-related input or output that is treated as false path for timing analysis. Such inputs must
not change during normal at-speed operation.

7. An asynchronous input.

If no clock domain is specified, the signal is clocked in the SYSCLK domain.

The table below shows the possible port connections for the top level module of the LX4189 processor,
known as lx2. The actual ports that are present depends uponlconfig settings. The timing information and
notes have the same meaning as for the previous table.

Names that include _N indicate active low signals. All other signals are active high unless otherwise
indicated.

For single bit signals, the signal name and signal description indicate the action or function when the signal is
in the active state.

Table 44: LX4189 Processor Port Summary

Port Name I/O Timing Description

Clocking, Reset, Interrupts and Control

SYSCLK input (3) Processor clock.

SYSCLKF input (3) Free running processor clock, if proces-
sor is configured with sleep support.

SL_SLEEPSYS_R output 30% Clock gating term for SYSCLK, if pro-
cessor is configured with sleep support.

BUSCLK input (3) Bus clock, if processor is configured
with async LBC.

BUSCLKF input (3) Free running bus clock, if processor is
configured with async LBC sleep sup-
port.

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 82 - Release 1.9

SL_SLEEPBUS_BR output 30% Clock gating term for BUSCLK, if pro-
cessor is configured with async LBC
and sleep support.

ResetN input 10% Warm reset (or reset "button"), active
low.

CResetN input 10% Cold reset (or power on), active low.

RESET_D1_R_N input 30% SYSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_D1_BR_N input 30% BUSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_PWRON_C1_N input 30% Power on reset copy for JTAG.

RESET_PWRON_D1_LR_N input 30% SYSCLK domain power on reset for
EJTAG.

RESET_D1_R_N_O output 30% SYSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_D1_BR_N_O output 30%, (2) BUSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_PWRON_C1_N_O output 30% Power on reset copy for JTAG.

RESET_PWRON_D1_LR_N_O output 30% SYSCLK domain power on reset for
EJTAG.

INTREQ_N[15:2] input (7) Interrupt requests.

EXT_HALT_P input 50% External stall line.

EXT_SLEEPREQ_R input 30% External sleep request.

Configuration

CFG_TLB_DISABLE input (4) Disable TLB mappings even if tlb is
present.

CFG_SLEEPENABLE input (4) Sleep enable configuration.

CFG_RAD_LEXOP[5:0] input (4) LEXOP encoding. Must be 011111 for
LX4189.

CFG_RAD_DISABLE input (4) LEXOP disable configuration. Must be
one for LX4189.

CFG_SINGLEISSUE input (4) Forces single instruction issue. Must be
zero for LX4189, which issues at most
one instruciton per clock.

CFG_HLENABLE input (4) Strap to one to enable internal HI/LO
registers.

CFG_MACENABLE input (4) Strap to one to enable internal MAC (if
present).

CFG_MEMSEQUENTIAL input (4) Strap to one if line reads return words
in sequential order, zero if interleave
order.

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 83 - Release 1.9

CFG_MEMZEROFIRST input (4) Strap to one if line reads return word
zero first, zero if desired word first.

CFG_MEMFULLWORD input (4) Strap to one if main memory must be
written with 32-bit words, zero if byte
and halfword writes are allowed.

CFG_LBCWBDISABLE input (4) Strap to one to disable read bypass of
LBC write buffer, zero to allow read
bypass.

CFG_EJTNMINUS1[1:0] input (4) Strap with EJTAG DCLK N minus 1
configuration (0-3=1-4).

CFG_EJTMLOG2[1:0] input (4) Strap with EJTAG M log2 (0-3=1,2,4,8)
configuration.

CFG_EJT3BITXVTPC input (4) Strap with ETJAG 3-bit TPC configura-
tion.

CFG_EJTBIT0M16 input (4) Strap with EJTAG PC bit0 in TPC con-
figuration.

CFG_DWBASE[31:10] input 30% Strapped with DMEM base address
configuration value.

CFG_DWTOP[23:10] input 30% Strapped with DMEM top address con-
figuration value.

CFG_IWBASE[31:10] input 30% Strapped with IMEM base address con-
figuration value.

CFG_IWTOP[`23:10] input 30% Strapped with IMEM top address con-
figuration value.

CFG_IWROM input (4) Strap to one to treat IMEM like a ROM.
(Note, new applications should use
IROM instead of ROM-like IMEM.)

CFG_IROFF input (4) Strap to one to disable IROM.

CFG_DWDISW input (4) Strap to one to disable processor
DMEM writes. Must be zero for
LX4189.

CFG_EJDIS input (4) Must be strapped to zero.

Test and Debug

JTAG_RESET_O output 20%, (1) JTAG is in TEST-LOGIC-RESET state,
active low.

JTAG_RESET input (6) JTAG is in TEST-LOGIC-RESET state,
active low.

TAP_RESET_N_O output 20%, (1) TAP controller reset.

TAP_RESET_N input (6) TAP controller reset.

JTAG_TDO_NR output 50%, (1) Test data out, active low.

JTAG_TDI input 60%, (1) Test data in.

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 84 - Release 1.9

JTAG_TMS input 60%, (1) Test mode select.

JTAG_CLOCK input (3) Test clock.

JTAG_TRST_N input (6) Test reset.

JTAG_CAPTURE output 20%, (1) JTAG is in DATA REGISTER CAP-
TURE state

JTAG_SCANIN output 50%, (1) Scan input to chain

JTAG_SCANOUT input 50%, (1) Scan output from chain

JTAG_IR[4:0] output 20%, (1) Contents of INSTRUCTION REGIS-
TER

JTAG_SHIFT_IR output 20%, (1) JTAG is in SHIFT INSTRUCTION REG-
ISTER state

JTAG_SHIFT_DR output 20%, (1) JTAG is in SHIFT DATA REGISTER
state

JTAG_RUNTEST output 20%, (1) JTAG is in RUN-TEST state

JTAG_UPDATE output 20%, (1) JTAG is in DATA REGISTER UPDATE
state

EJC_ECRPROBEEN_R output 30% One indicates EJTAG probe is active.

JPT_PCST_DR[M-1:0] output 30% EJTAG PC trace status; M= 1, 2, 4 or 8.

JPT_TPC_DR(N*3-1:0] output 30% EJTAG PC trace value, N= 1, 2, 3 or 4.

JPT_DCLK output (3) EJTAG PC trace clock.

SEN input (6) Scan enable, active high.

TMODE input (6) Test mode, active high.

SIN[<k>:0] input (6) Scan Input. <k> can range from 7 to 0.

SOUT[<k>:0] output (6) Scan Output. <k> can range from 7 to
0.

RBC_SEL[7:0] input (6) RAM BIST RAM select code:
10000000 - instruction MEM
01000000 - data MEM
00100000 - dcache data store
00010000 - dcache tag store
00001000 - icache tag store, set 1
00000100 - icache inst store, set 1
00000010 - icache tag store, set 0
00000001 - icache inst store, set 0

RBC_WE[<k>:0] input (6) RAM BIST write enable, where <k> is 1
for word write granularity, 7 for byte
write granularity.

RBC_RE input (6) RAM BIST read enable.

RBC_CS input (6) RAM BIST select.

RBC_ADDR[15:0] input (6) RAM BIST address.

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 85 - Release 1.9

RBC_DATAWR[63:0] input (6) RAM BIST write data.

RBM_DATARD[63:0] output (6) RAM BIST read data.

LBC Interface (to LBus)

LAddrO[31:0] output (2), 20% Address.

LCmdO[6:0] output (2), 20% LBC command.

LDataO[31:0] output (2), 20% LBC data.

LDataI[31:0] input (2), 50% System data.

LIrdyO output (2), 20% LBC initiator ready.

LIrdyI input (2), 30% System initiator ready.

LFrameO output (2), 20% LBC transaction frame.

LFrameI input (2), 30% System transaction frame.

LSel input (2), 30% System slave select.

LTrdyI input (2), 30% System target ready.

XBRdVld input (2), 30% Crossbar read data valid.

XBRdSize input (2), 30% Split read data size.

SpltRdFull output (2), 30% Read data queue full.

LId output (2), 20% Instruction/data.

LUc output (2), 20% Bus request.

LCoe[9:0] output (2), 20% Command output enable.

LToe output (2), 20% Transaction output enable.

LDoe[7:0] output (2), 20% Data output enable.

LReq output (2), 50% Bus request.

LGnt input (2), 30% Bus grant.

Shared RAM Request/Grant Interface

EXT_IWREQRAM_R input 30% External hardware drives to one to
request access to IMEM.

IW_GNTRAM_R output 30% Cpu drives to one to grant external
IMEM access request.

EXT_DWREQRAM_R input 30% External hardware drives to one to
request access to DMEM.

DW_GNTRAM_R output 30% Cpu drives to one to grant external
DMEM access request.

EXT_ICREQRAM_R input 30% External hardware drives to one to
request access to ICACHE.

IC_GNTRAM_R output 30% Cpu drives to one to grant external
ICACHE access request.

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 86 - Release 1.9

EXT_DCREQRAM_R input 30% External hardware drive to one to
request access to DCACHE.

DC_GNTRAM_R output 30% Cpu drives to one to grant external
DCACHE access request.

Coprocessor Interface

C<z>condin input 80% Cop branch flag.

C<z>rd_addr[4:0] output 50% Cop read address.

C<z>rhold output 45% Cop hold condition, one stalls copro-
cessor.

C<z>rd_gen output 50% Cop general register read command.

C<z>rd_con output 50% Cop control register read command.

C<z>rd_data[31:0] input 80% Cop read data.

C<z>wr_addr[4:0] output 20% Cop write address.

C<z>wr_gen output 20% Cop general register write command.

C<z>wr_con output 20% Cop control write address command.

C<z>wr_data[31:0] output 30% Cop write data.

C<z>invld_M output 60% Cop invalid instruction flag, one indi-
cates invalid instruction in M stage.

C<z>xcpn_M output 60% Cop exception flag, one indicates
exception in M stage.

C<z>rd_cntx[2:0] output 40% Cop read context number.

C<z>wr_cntx[2:0] output 30% Cop write context number.

C3cnt_iparet output 20% Count instructions retired Pipe A

C3cnt_ipbret output 20% Count instructions retired Pipe B

C3cnt_ifetch output 20% Count instruction fetches

C3cnt_imiss output 20% Count icache misses

C3cnt_istall output 20% Count icache stalls

C3cnt_dmiss output 20% Count dcache misses

C3cnt_dstall output 20% Count dcache stalls

C3cnt_dload output 20% Count data load operations

C3cnt_dstore output 20% Count data store operations

Custom Engine Interface

CEI_CE1HOLD output 45% CPU is halting Custom Engine.

CEI_CE1INVLD_M output 40% Instruction is not valid, M stage.

CEI_CE1INVLDP_S_R output 30% Instruction is not valid, S stage.

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 87 - Release 1.9

CEI_XCPN_M_C1 output 40% CPU reports exception.

CEI_CE1OP_S_R[11:0] output 30% Custom Engine op code.

CEI_INSTM32_S_R_C1_N output 30% One indicates 32-bit instruction mode;
zero indicates 16-bit instruction mode.

CEI_CE1AOP_E_R[31:0] output 35% A operand.

CEI_CE1BOP_E_R[31:0] output 35% B operand.

CE1_RES_E[31:0] input 45% Result from Custom Engine.

CE1_SEL_E_R input 30% One indicates Custom Engine opcode
is present in E stage.

CE1_HALT_E_R[2:0] input 20% Custom Engine stalls processor by
driving to ones, allows processor to run
by driving to zeros. (Copies must be
supplied from multiple registers to meet
timing requirements.)

Port Name I/O Timing Description

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 88 - Release 1.9

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 89 - Release 1.9

Appendix C. LX4189 Pipeline Stalls

This section documents stall conditions that may arise in the LX4189.

C.1. Stall Definitions

Issue stall: an invalid instruction enters the pipe, while any other valid instructions in the pipe advance.

Pipeline stall: All instructions in either pipe stay in the same stage, and do not advance.

Stall: if not otherwise qualified, means pipeline stall.

C.2. Instruction Groupings

These instruction groupings are used to describe stall conditions that are based on the type of instructions in
the pipeline.

Table 45: Instruction Groupings For Stall Definition

C.3. Non-Sequential Program Flow Issue Stall

M-I JR, JALR:
Two issue stalls after the delay slot instruction.

M-I J, JAL, and M-I taken branches:
NO stall cycles after the delay slot instruction.

M-I not-taken branches
Two issue stalls after the delay slot instruction.

The branch rules are a consequence of the fact that all branches are predicted to be taken.

Group Name Instructions in Group

M-I-LoadStore: LB, LH, LW, LBU, LHU, LWC1, LWC2, LWC3
SB, SH, SW, SWC1, SWC2, SWC3

M-I-Control J, JAL(X), JR, JALR
BLTZAL, BGEZAL, (linked branches)
SYSCALL, BREAK
All COPz (MFCz, CFCz, MTCz, CTCz, BCFz, BCTz, RFE)
LWCz, SWCz (also in LoadStore group)

M-I-UnlinkedBranch BEQ, BNE, BLEZ, BGTZ, BLTZ, BGEZ

M-I-General All remaining M-I instructions.

MIV-CMove MOVZ ,MOVN

EJTAG-Control DERET, SDBBP, M16SDBBP

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 90 - Release 1.9

C.4. Load Subword Stall

Load instructions which have Byte or Halfword operands always cause a one-cycle stall.

C.5. Store-Load Stall

A Load instruction which follows a Store instruction by one cycle causes a one-cycle stall if the Store
instruction hits in the Dcache or has a Byte or Halfword operand.

C.6. StoreAny - StoreSubword Stall

If the LX4189 is configured to work with RAMs that have word write granularity, a Store instruction which
has a Byte or Halfword operand, and which follows any Store instruction by one CYCLE, always causes a
one-cycle stall. Alternatively, the LX4189 can be configured to work with RAMs support byte write
granularity, which eliminates the stall.

C.7. Load/Store Ops Stall Matrix

The following table summarizes the stall rules related to Load and Store instructions described above. In this
table, the "2nd OP" refers to an instruction which issues in the CYCLE after the "1st OP".

Table 46: Load/Store Ops Stall Matrix

Notes: - means no stalls
xU indicates unconditional stall for the indicated number of cycles
xS indicates stall only if 2ndOp Source = 1stOp Load-target
xW indicates stall if data RAMs have word-write granularity

C.8. MVCz Stall

The coprocessor move instructions (M-I: LWCz, MTCz, MFCz, and MTLXC0, MFLXC0) are always
followed by a single cycle issue stall.

C.9. IMMU Stall

When the program jumps, branches, or increments between the two most recently used pages, a single cycle
stall is incurred.

When the program jumps, branches or increments to a third page a two-cycle stall is incurred.

1st OP

2nd OP M-I, LW, LT M-I, LB(U), LH(U) SB, SH SW

non load-store - 1U - -

LW, LB(U), LH(U)) - 1U 1W 1U

SB, SH - 1U 1W 1U

SW - 1U - -

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 91 - Release 1.9

C.10. IMMU Issue Stall

When an IMMU stall occurs due to incrementing across a page boundary, AND there is any of the following
instructions found anywhere in the last doubleword of the page, then there is one issue stall in addition to the
IMMU stalls:

M-I branch of any kind
M-I J, JAL
EJTAG DRET

C.11. Icache Miss Stall

When an instruction cache miss occurs, the processor is stalled for the duration of the cache line fill
operation.

The number of cycles required to complete the line fill is system dependent.

C.12. Dcache Miss Stall

When a data cache miss occurs as the result of a load instruction, the processor stalls while it waits for the
data. The data cache releases the stall condition after the required word is supplied to the processor, even if
additional words must still be filled into the data cache. However, if the processor issues another load or store
operation to the data cache while the remainder of the line fill is in progress, the cache will again stall the
processor until the line fill operation is completed.

When a data cache miss occurs as a result of a load byte or load halfword, the processor stalls for the duration
of the cache line fill operation.

The number of cycles required to complete the line fill is system dependent.

C.13. Pipeline Timing Diagrams for Stalls

C.13.1. Non-Sequential Program Flow Issue Stalls

M-I JR,JALR

JR I D S E M W
delayslot I D S E M W
notvld I . . .
notvld I . .
target I D S E

M-I J, JAL, and M-I taken branches

J I D S E M W
delayslot I D S E M W
target I D S E M

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 92 - Release 1.9

M-I not-taken branches

B-ntkn I D S E M W
delayslot I D S E M W
notvld I . . .
notvld I . . .
delay+4 I D S

C.13.2. Load Subword Stall

lb I D S E M M W
foo2 I D S E E M W
foo4 I D S S E M W

RHOLD X

C.13.3. Store-Load Stall

sw s0,4(a0) I D S E M W
lw s2,0(a0) I D S E M M W
foo3 I D S E E M W

RHOLD X

C.13.4. StoreAny - Store Subword Stall

sw s0,4(a0) I D S E M W
sb s2,0(a0) I D S E M M W
foo3 I D S E E M W

RHOLD X

sh s0,4(a0) I D S E M M W
sb s2,0(a0) I D S E E M M W
foo2 I D S S E E M W

RHOLD X X

C.13.5. MVCz Stall

mtc0 I D S E M W
foo I D D S E M W
foo1 I D S E M W

C.13.6. LWCz Stall

lwc0 I D S E M W
foo I D D S E M W
foo1 I D S E M W

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 93 - Release 1.9

C.13.7. Icache Miss Stall

foo0 I D S E M M M M M M W
foo2 I D S E E E E E E M W
foo4 I ~d . . . I D S E M W

RHOLD X X X X X

C.13.8. Dcache Miss Stall

lw I D S E M W
foo2 I D S E M M M M M W
foo4 I D S E E E E E M W

RHOLD X X X X

April 11, 2001 LX4189

Lexra Proprietary & Confidential - 94 - Release 1.9

	LX4189 Data Sheet
	1. LX4189 Product Overview
	1.1. Introduction
	1.2. LX4189 Processor Overview
	1.3. System Level Building Blocks
	1.3.1. SMMU
	1.3.2. Local Memory Interface
	1.3.3. Coprocessor Interface
	1.3.4. Custom Engine Interface
	1.3.5. Lexra Bus Controller
	1.3.6. Building Block Integration

	1.4. RTL Core & SmoothCore
	1.5. EDA Tool Support
	Table 1: EDA Tool Support

	2. LX4189 Architecture
	2.1. Hardware Architecture
	2.1.1. Module Partitioning
	2.1.2. Six Stage Pipeline

	2.2. RALU Data Path
	2.3. System Control Coprocessor (CP0)
	Table 2: CP0 Registers

	2.4. Low-Overhead Prioritized Interrupts
	Table 3: Prioritized Interrupt Exception Vectors

	3. LX4189 RISC Programming Model
	3.1. Summary of MIPS-I Instructions
	3.1.1. ALU Instructions
	Table 4: ALU Instructions

	3.1.2. Load and Store Instructions
	Table 5: Load and Store Instructions

	3.1.3. Conditional Move Instructions
	Table 6: Conditional Move Instructions

	3.1.4. Branch and Jump Instructions
	Table 7: Branch and Jump Instructions

	3.1.5. Control Instructions
	Table 8: Control Instructions

	3.1.6. Coprocessor Instructions
	Table 9: Coprocessor Instructions

	3.2. Opcode Extension Using the Custom Engine Interface (CEI)
	3.2.1. CEI Operations
	Table 10: Custom Engine Interface Operations

	3.2.2. Interface Signals
	Table 11: Custom Engine Interface Signals

	3.3. Memory Management
	Table 12: SMMU Address Mapping

	3.4. Exception Processing
	Table 13: List of Exceptions
	3.4.1. Exception Processing Registers
	3.4.2. Exception Processing: Entry and Exit

	3.5. The Coprocessor Interface (CI)
	3.6. Power Savings Mode

	4. MIPS16
	4.1. MIPS16 Instructions
	Table 14: MIPS I Instructions Not Supported by MIPS16
	Table 15: MIPS16 Instructions that Support MIPS I
	Table 16: New MIPS16 Instructions
	Table 17: PC-Relative Addressing

	4.2. Mode switching
	4.3. Exceptions
	4.4. No Delay Slots

	5. LX4189 Local Memory
	5.1. Local Memory Overview
	Table 18: Local Memory Interface Modules

	5.2. Cache Control Register: CCTL
	5.3. Instruction Cache (ICACHE) LMI
	Table 19: ICACHE Configurations
	Table 20: ICACHE RAM Interfaces

	5.4. Instruction Memory (IMEM) LMI
	Table 21: IMEM Configurations
	Table 22: IMEM RAM Interfaces

	5.5. Instruction ROM (IROM) LMI
	Table 23: IROM Configurations
	Table 24: IROM ROM Interfaces

	5.6. Direct Mapped Write Through Data Cache (DCACHE) LMI
	Table 25: DCACHE Configurations
	Table 26: DCACHE RAM Interfaces

	5.7. Scratch Pad Data Memory (DMEM) LMI
	Table 27: DMEM Configurations
	Table 28: DMEM RAM Interfaces

	6. LX4189 System Bus
	6.1. Connecting the LX4189 to internal devices
	6.2. Terminology
	6.3. Bus Operations
	6.3.1. Single-Cycle Read
	6.3.2. Read Line
	Table 29: Line Read Interleave Order

	6.3.3. Burst Read
	6.3.4. Single-Cycle Write
	6.3.5. Line Write
	6.3.6. Burst Write

	6.4. Signal Descriptions
	Table 30: LBus Signal Description

	6.5. LBus Commands
	6.6. Byte Alignment
	Table 31: LBus Byte Lane Assignment

	6.7. Lexra Bus Controller
	6.7.1. LBC Commands
	Table 32: LBus Commands Issued by the LBC

	6.7.2. LBC Write Buffer and Out-of-Order Processing
	1. The address of a pending write is within the same cache line as the read. The LBC will hold th...
	2. The read is to uncacheable address space. All writes will complete before the read is issued. ...
	3. A pending write is to uncachable address space. The LBC will hold the read operation until all...

	6.7.3. LBC Read Buffer
	6.7.4. Transfer Descriptions
	1. Agents that drive the bus do so as early as possible after the rising edge of the bus clock. T...
	2. Agents sample signals on the bus at the rising edge of the bus clock.
	3. All bus signals must be driven at all times. If the bus is not owned, and external device must...
	4. A change in signal ownership requires one dead cycle. If an initiator gives up the bus, anothe...
	5. Agents that own signals must drive the signals to a logical true or logical false; all other a...
	1. The initiator gains control of the bus through arbitration (described later in this chapter).
	2. During the first bus cycle of its ownership (before the first rising clock edge), the initiato...
	3. At the rising edge of the first clock, all agents sample BADDR and decode it to determine whic...
	4. The agent that determines that the address is within its address space asserts BSEL sometime a...
	5. The initiator and the target transfer data either in one cycle or in successive cycles. The ag...
	6. When the initiator is ready to send or receive the last word of data, that is, when it asserts...
	7. The arbiter grants the bus to the next initiator, and may do so during a bus transfer by a dif...

	6.7.5. Single Cycle Read with No Waits
	1. Initiator asserts BFRAME and drives BADDR.
	2. Target asserts BSEL to indicate to initiator that a target is responding. In this example, the...
	3. Initiator de-asserts IBIRDY and the target de-asserts BSEL and BTRDY to indicate the end of th...

	6.7.6. Single Cycle Read with Target Wait
	1. Initiator asserts BFRAME and drives BADDR.
	2. Target asserts BSEL to indicate that it has decoded the address and is acknowledging that it i...
	3. Target has not asserted BTRDY so no data is transferred.
	4. After a second wait cycle, target drives data and asserts BTRDY to indicate that data is on th...
	5. Target de-asserts BSEL and BTRDY. Initiator de-asserts BIRDY. Another initiator may drive the ...

	6.7.7. Line Read with No Waits
	1. Initiator drives BADDR and asserts BFRAME to indicate beginning of transaction.
	2. Target asserts BSEL to indicate that it had decoded the address and will send data when it is ...
	3. Target drives data and asserts BTRDY.
	4. Target drives second word of data and continues to assert BTRDY.
	5. Target drives third word of data and continues to assert BTRDY.
	6. Target drives last word of data. Initiator de-asserts BFRAME to indicate that the next word of...
	7. Target de-asserts BTRDY and BSEL; initiator de-asserts BIRDY. Another master may gain ownershi...

	6.7.8. Line Read with Target Waits
	1. Initiator asserts BFRAME and drives BADDR.
	2. Target asserts BSEL to indicate that it is acknowledging the operation. Initiator asserts BIRD...
	3. Target waits until it has the data.
	4. Target drives first word of data and asserts BTDRY.
	5. Target drives second word of data and asserts BTRDY.
	6. Target cannot get third word of data, so it de-asserts BTRDY.
	7. Target drives third word of data and asserts BTRDY.
	8. Target cannot get fourth word of data, so it de-asserts BTRDY.
	9. Target drives fourth word of data and asserts BTRDY.

	6.7.9. Line Read with Initiator Waits
	1. Initiator drives address and asserts BFRAME.
	2. Target asserts BSEL. It doesn’t have data, so it does not assert BTRDY. Initiator asserts BIRD...
	3. Target now has data, so it drives the data and asserts BTRDY.
	4. Target drives second word of data; initiator cannot accept it, so it de-asserts BIRDY.
	5. Target holds second word of data; initiator can accept it and asserts BIRDY.
	6. Target drives third word of data; initiator accepts it.
	7. Target drives fourth word of data; initiator cannot accept it and de-asserts BIRDY. initiator ...
	8. Initiator asserts BIRDY to accept fourth word of data. It de-asserts BFRAME to indicate this i...

	6.7.10. Burst Read
	6.7.11. Single-Cycle Write with No Waits
	1. Initiator asserts BFRAME and drives address.
	2. Target samples address and asserts BSEL. Initiator drives data and asserts BIRDY. In this case...
	3. Target accepts data, de-asserts BTRDY and BSEL. Initiator de-asserts BIRDY.

	6.7.12. Single-Cycle Write with Waits
	6.7.13. Burst Write with No Waits
	1. Initiator drives address and asserts BFRAME.
	2. Target asserts BSEL and BTRDY to indicate it will accept data. Initiator drive data and assert...
	3. Initiator drives next word of data; target continues to accept data and indicates as such by c...
	4. Initiator drives third word of data; target continues to accept.
	5. Initiator drives fourth word of data and de-asserts BFRAME to indicate that this will be its l...
	6. Target de-asserts BTRDY and BSEL; initiator gives up control of the bus by de-asserting BIRDY.

	6.7.14. Burst Write with Target Waits
	6.7.15. Burst Write with Initiator Waits

	6.8. LBC Signals
	Table 33: LBC Interface Signals

	6.9. Arbitration
	6.9.1. Rules
	1. Master asserts REQ at the beginning of a cycle and may start sampling for asserted GNT in the ...
	2. If bus is idle or it is the last data phase of the previous transaction when master samples as...
	3. If the bus is busy when the master samples GNT, is must also snoop FRAME, IRDY and Trdy. One c...

	6.9.2. LBC behavior

	6.10. Connecting Devices to the Bus

	7. LX4189 Coprocessor Interface
	7.1. Attaching a Coprocessor Using the Coprocessor Interface (CI)
	7.2. Coprocessor Interface (CI) Signals
	Table 34: Coprocessor Interface Signals

	7.3. Coprocessor Write Operations
	7.4. Coprocessor Read Operations
	7.5. Coprocessor Interface and Pipeline Stages
	7.5.1. Pipeline Holds
	7.5.2. Pipeline Invalidation

	8. LX4189 EJTAG
	8.1. Introduction
	8.2. Overview
	8.2.1. IEEE JTAG-specific Pinout
	Table 35: EJTAG Pinout
	Table 36: EJTAG AC Characteristics
	Table 37: EJTAG Synthesis Constraints

	8.3. Single Processor PC Trace
	8.3.1. PC Trace DCLK - Debug Clock
	8.3.2. PC Trace PCST - Program Counter Status Trace
	8.3.3. PC Trace TPC - Target Program Counter
	8.3.4. Single-Processor PC Trace Pinout
	Table 38: Single-Processor PC Trace Pinout.
	Table 39: Single-Processor PC Trace AC Characteristics

	8.3.5. Vectored Interrupts and PC Trace
	8.3.6. Demultiplexing of TDO and TDI During PC Trace

	9. Multiply-Divide-Accumulate (Optional)
	9.1. Summary of Instructions
	Table 40: Summary of MAC-DIV Instructions.
	Table 41: MAC-DIV Operation Stall Matrix

	9.2. MAC-DIV Instruction Overview
	9.3. Op-codes for standard mode (32-bit) instructions
	9.4. Op-codes for MIPS-16 (16 bit) mode instructions
	9.5. Non-Standard Instruction Descriptions
	Table 42: 16-bit Multiply and Multiply-Accumulate Instructions
	Table 43: 32-bit Multiply-Accumulate Instructions

	9.6. Multiplier Pipelining
	9.7. Accessing HI and LO after multiply instructions
	9.8. Divider Overview and Register Usage
	1. Clocked in the JTAG_CLOCK domain.
	2. Clocked in the BUSCLK domain if crossbar or LBC are asynchronous. Otherwise, clocked in the SY...
	3. Does not require a constraint (e.g., a clock).
	4. A constant that is treated as false path for timing analysis. These inputs must not change aft...
	5. Timing is specified with a symbol in techvars.scr script (e.g. RAM timing).
	6. A test-related input or output that is treated as false path for timing analysis. Such inputs ...
	7. An asynchronous input.
	Table 44: LX4189 Processor Port Summary
	Table 45: Instruction Groupings For Stall Definition
	Table 46: Load/Store Ops Stall Matrix

