
�Copyright 1995 by Dallas Semiconductor Corporation.
All Rights Reserved. For important information regarding
patents and other intellectual property rights, please refer to
Dallas Semiconductor data books.

Application Note 74
Reading and Writing iButtons

via Serial Interfaces

APPLICATION NOTE 74

040797 1/40

I. INTRODUCTION
An iButtonTM is a chip housed in a stainless steel enclo-
sure. The electrical interface is reduced to the absolute
minimum, i.e., a single data line plus a ground refer-
ence. The energy needed for operation is either “stolen”
from the data line (“parasitic power”) or is taken from an
embedded lithium cell. The logical functions range from
a simple serial number to password–protected memory,
to 64K bits and beyond of nonvolatile RAM or EPROM,
to a Temperature iButton, to a real time clock plus 4K bits
of nonvolatile RAM. Common to all iButtons is a globally
unique registration number, the serial 1–WireTM proto-
col, presence detect, and communication in discrete
time slots. Table 1 gives an overview of the available
devices.

For read operations all devices are satisfied with a 5kΩ
pull–up resistor to supply energy and to terminate the
1–Wire bus. iButton devices based on non–volatile
RAM (DS1991 to DS1996) can also be written using this
same interface. Due to their different technology,
EPROM based iButtons (DS1982 to DS1986) also
require pulses of up to 12V for programming. Since they
cannot be erased, EPROM iButtons are referred to as
Add–Only Memories. Another device, the DS1920 Tem-
perature iButton, gets its energy for temperature con-
version through a low impedance active pull–up to 5V.
Different requirements for writing or special functions
are the reason for several types of interfaces.

iButton DEVICES Table 1

Device Family Serial Memory Bits Protected Real Time Interval CycleDevice
Type

Family
Code

Serial
Number

Memory Bits
Type

Protected
NV RAM bits

Real Time
Clock

Interval
Timer

Cycle
Counter

DS1990A 01H yes ––– ––– ––– ––– –––

DS1991 02H yes 512, NVRAM 3 * 384 ––– ––– –––

DS1992 08H yes 1K, NVRAM ––– ––– ––– –––

DS1993 06H yes 4K, NVRAM ––– ––– ––– –––

DS1994 04H yes 4K, NVRAM ––– yes yes yes

DS1995 0AH yes 16K, NVRAM ––– ––– ––– –––

DS1996 0CH yes 64K, NVRAM ––– ––– ––– –––

DS1982 09H yes 1K, EPROM ––– ––– ––– –––

DS1985 0BH yes 16K, EPROM ––– ––– ––– –––

DS1986 0FH yes 64K, EPROM ––– ––– ––– –––

DS1920 10H yes 16, EEPROM TEMPERATURE iButton

APPLICATION NOTE 74

040797 2/40

II. 1–WIRE INTERFACE
A. General Information
iButtons are self–timed silicon devices. The timing logic
provides a means of measuring and generating digital
pulses of various widths. Data transfers are bit–sequen-
tial and half–duplex. Data can be interpreted as com-
mands (according to the prearranged format identified by
the family code) that are compared to information already
stored in the iButton to make a decision, or can simply be
stored in the iButton for later retrieval. iButtons are con-
sidered slaves, while the host reader/writer is considered
a master.

B. DC Requirements
iButtons operate in an open drain environment on volt-
age levels ranging from 2.8V (minimum pull–up voltage)
to 6V (maximum pull–up voltage). All voltages greater
than 2.2V are interpreted as logic 1 or HIGH, voltages
less than 0.8V are considered as logic 0 or LOW. The
pull–up voltage must be a minimum of 2.8V to recharge
an internal storage capacitor that is used to supply
power during periods when the data line is low. The size
of this capacitor is about 800 pF. This capacity is seen
for a short time when an iButton is contacted by a probe.
After the capacitor is charged, only a very small fraction
of this capacity is recognizable, according to the charge
required to refill to full charge. The total time constant to
charge the capacitor is defined by the capacitor itself, the
internal resistances of about 1 kΩ, the resistance of the
cable and contacts, the cable capacitance, and the resis-
tor pulling up the data line.

C. AC Requirements
Timing relationships in iButtons are defined with respect
to time slots. Because the falling slope is the least sensi-
tive to capacitive loading in an open drain environment,
iButtons use this edge to synchronize their internal tim-
ing circuitry. By definition the active part of a 1–Wire time
slot (tSLOT) is 60 µs. After the active part of the time slot,
the data line needs to be inactive for a minimum of 1 µs

at a voltage of 2.8V or higher to recharge the internal
capacitor.

Under nominal conditions, an iButton will sample the
line 30 µs after the falling edge of the start condition. The
internal time base of iButton may deviate from its nomi-
nal value. The allowed tolerance band ranges from 15
µs to 60 µs. This means that the actual slave sampling
may occur anywhere between 15 and 60 µs after the
start condition, which is a ratio of 1 to 4. During this time
frame the voltage on the data line must stay below
VILMAX or above VIHMIN.

C.1. Write Time Slots
In the 1–Wire system, the logical values of 1 and 0 are
represented by certain voltage levels in special wave-
forms. The waveforms needed to write commands or
data to iButtons are called write–1 and write–0 time
slots. The duration of a low pulse to write a 1 (tLOW1, Fig-
ure 1) must be shorter than 15 µs. To write a 0, the dura-
tion of the low pulse (tLOW0, Figure 2) must be at least 60
µs to cope with worst–case conditions.

The duration of the active part of a time slot can be
extended beyond 60 µs. The maximum extension is lim-
ited by the fact that a low pulse of a duration of at least
eight active time slots (480 µs) is defined as a Reset
Pulse. Allowing the same worst–case tolerance ratio, a
low pulse of 120 µs might be sufficient for a reset. This lim-
its the extension of the active part of a time slot to a maxi-
mum of 120 µs to prevent misinterpretation with reset.

At the end of the active part of each time slot, iButton
needs a recovery time tREC of a minimum of 1 µs to pre-
pare for the next bit. This recovery time is the inactive
part of a time slot, since it must be added to the duration
of the active part to obtain the time it takes to transfer
one bit. The wide tolerance of the time slots and the
non–critical recovery time allow even slow micropro-
cessors to meet the timing requirements for 1–Wire
communication easily.

APPLICATION NOTE 74

040797 3/40

WRITE–ONE TIME SLOT Figure 1

60 µs

tREC

tLOW1

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

60 µs < tSLOT < 120 µs

1 µs < tLOW1 < 15 µs

1 µs < tREC < �

15 µs

SAMPLING WINDOW

tSLOT

RESISTOR

MASTER

iButton

iButton

WRITE–ZERO TIME SLOT Figure 2

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

RESISTOR

MASTER

tSLOT

tREC

tLOW0

60 µs < tLOW0 < tSLOT < 120 µs

1 µs < tREC < �

SAMPLING WINDOW

60 µs

15 µs

iButton

iButton

APPLICATION NOTE 74

040797 4/40

C.2. Read Time Slots
Commands and data are sent to iButtons by combining
Write–Zero and Write–One time slots. To read data, the
master has to generate Read–Data time slots to define
the start condition of each bit. The Read–Data time slot
looks essentially the same as the Write–One time slot
from the master’s point of view. Starting at the high–to–
low transition, the iButton sends one bit of its addressed
contents. If the data bit is a 1, the iButton leaves the
pulse unchanged. If the data bit is a 0, the iButon will pull
the data line low for tRDV or 15 µs (Figure 3). In this time
frame data is valid for reading by the master. The dura-
tion tLOWR of the low pulse sent by the master should be
a minimum of 1 µs with a maximum value as short as
possible to maximize the master sampling window. In
order to compensate for the cable capacitance of the
1–Wire line the master should sample as close to 15 µs
after the synchronization edge as possible. Following
tRDV there is an additional time interval, tRELEASE, after
which the iButton releases the 1–Wire line so that its
voltage can return to VPULLUP. The duration of tRELEASE
may vary from 0 to 45 µs; its nominal value is 15 µs.

C.3. Reset and Presence Detect
The Reset Pulse provides a clear starting condition that
supersedes any time slot synchronization. It is defined
as a single low pulse of minimum duration of eight time
slots or 480 µs followed by a Reset–high time tRSTH of
another 480 µs (Figure 4). After a Reset Pulse has been
sent, the iButton will wait for the time tPDH and then gen-
erate a Presence Pulse of duration tPDL. No other com-
munication on the 1–Wire bus is allowed during tRSTH.
The Presence Pulse can be used to trigger a hardware
interrupt or to automatically power up equipment like
Touch Pens. If an iButton is disconnected from the

probe, it will pull its data line low via an internal current
source of 5 µA. This simulates a Reset Pulse of unlim-
ited duration. As soon as the iButton detects a high level
on the data line, it will generate a Presence Pulse.

The nominal values are 30 µs for tPDH and 120 µs for
tPDL. With the same worst–case tolerance band, the
measured tPDH value indicates the internal time base of
the fastest device. The sum of the measured tPDH and
tPDL values is five times the internal time base of the
slowest device. If there is only one device on the line,
both values will deviate in the same direction. This cor-
relation can be used to build an adaptive system. Spe-
cial care must be taken to recalibrate timing after every
reset since the individual timing characteristics of the
devices vary with temperature and load.

The accuracy of the time measurements required for
adaptive timing is limited by the characteristics of the
master’s input logic, the time constant of the 1–Wire line
(pullup resistor x cable capacitance) and the applied
sampling rate. If the observed rise time or fall time
exceeds 1 µs or the highest possible sampling rate is
less than 1 MHz, adaptive timing should not be
attempted.

C.4. Example Pulse Train
For illustrative purposes, a reference pulse train has
been defined (Figure 5) to explain how the waveforms
are generated rather than showing a complete session.
It starts with a reset sequence including a Presence
Pulse. Further time slots show all waveforms of reading
and writing 1s and 0s. Any communication session can
be constructed from the waveforms of this pulse train.

APPLICATION NOTE 74

040797 5/40

READ–DATA TIME SLOT Figure 3

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

tSLOT tREC

tRDV

tLOWR

60 µs < tSLOT < 120 µs

1 µs < tLOWR < 15 µs

0 < tRELEASE < 45 µs

1 µs < tREC < �

tRDV = 15 µs

tRELEASE

MASTER SAMPLING
WINDOW

RESISTOR

MASTER

iButton

RESET AND PRESENCE PULSE Figure 4
tRSTH

tRSTL
tR

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

480 µs < tRSTL < � *

480 µs < tRSTH < � (includes recovery time)

15 µs < tPDH < 60 µs

60 µs < tPDL < 240 µs

tPDH

tPDL

RESISTOR

MASTER

iButton

* In order not to mask interrupt signalling by other devices on the 1–Wire bus, tRSTL + tR should always be less than
 960 µs.

M
A

T
E

R
 W

R
IT

E
 “

0”
 S

LO
T

M
A

S
T

E
R

 W
R

IT
E

 “
1”

 S
LO

T
M

A
S

T
E

R
 R

E
A

D
 “

0”
 S

LO
T

M
A

S
T

E
R

 R
E

A
D

 “
1”

 S
LO

T

M
A

S
T

E
R

 T
X

M
A

S
T

E
R

 R
X

G
N

D

V
C

C
1–

W
IR

E

“R
E

S
E

T
 P

U
LS

E
”

“P
R

E
S

E
N

C
E

P
U

LS
E

”

B
U

S

APPLICATION NOTE 74

040797 6/40

REFERENCE PULSE TRAIN Figure 5

APPLICATION NOTE 74

040797 7/40

III. FUNDAMENTALS
A. TTL Interface
This category includes all logic families and micropro-
cessors that use positive logic with a maximum 0.8V for
a logical 0 or LOW and a minimum of 2.2V for a logical 1
or HIGH. These voltages combined with a current
source capability of at least 1 mA and a sink capability of
more than 4 mA interface to a broad class of digital elec-
tronics.

Since the 1–Wire bus is an open drain system, an open
drain/collector driver is required to connect the output
port to the bus (Figure 6). This driver can be a general
purpose NPN transistor with a resistor connected
between base and output port or an n–channel MOS-
FET or any open drain/collector driver available in the
logic family as long as the pullup voltage is equal to the
driver voltage. Even a tri–state driver with its logic input
tied to ground can be used, connecting the output gate
to the tri–state control input. Depending on the charac-
teristics of the driver (inverting/non–inverting), it may be
required to complement the logic value of the output
gate to compensate for the driver’s signal inversion.

Reading from the 1–Wire bus can usually be accom-
plished by directly connecting the 1–Wire bus to the
input port of the master. If the pullup–voltage of the
1–wire bus is too low or if the capacity of the cable pro-
duces slopes too slow for the logic family, it may be
required to employ a comparator as interface and to
adjust the reference voltage to optimize noise margins
and timing characteristics. If the comparator inverts the
signal, this inversion needs to be compensated by the
software.

Generally it is recommended to test this type of interface
carefully, starting with reset pulses generated by soft-
ware and watching the slopes with an oscilloscope. If
the timing specifications of Figure 4 are met, and the
presence pulse is seen, one may proceed and test the
software to generate the Write–Zero and Write–One
time slots. After this works properly, the next step is
reading the ROM. This is done by performing a reset
cycle first, followed by 2 Write–One time slots, 2 Write–
Zero time slots, 2 Write–One time slots and 2 Write–
Zero time slots (this is equivalent to sending 33H, least
significant bit first). After this, 64 Read Data time slots
need to be generated.

Since all timing depends on the clock frequency of the
microcontroller, it is required to count the number of
clock cycles for the execution of each command within
the loop. The level of an output pin of a microprocessor
will usually not change at the end of a command, but a
few clock cycles earlier. The actual reading from any
input pin also occurs some clock cycles before the end
of the command. If the description of the microproces-
sor does not give sufficient details on this, a test series
with different clock frequencies may be required. As
long as the microprocessor is executing time–sensitive
code, i.e., reading from the 1–Wire bus or writing to it,
jumps or calls may occur only while the 1–Wire bus is
idle. Interrupts from other sources than the 1–Wire bus
must be disabled.

B. RS232 Interface
This section covers all interfaces that use a special con-
troller to generate all timing and reference signals
required for serial communication. The typical controller
for this type of interface is the UART 8250. It relieves the
microprocessor of the burden of time–critical software
execution. The microprocessor simply puts the charac-
ter code to be transmitted into the transmit register of the
UART and the UART will do the work. A character is
received by the microprocessor just by reading the
UART’s receive register. If the serial transmission is fin-
ished or if there is data for the microprocessor, this
condition is signalled by the UART through flags that
can be polled or by interrupts.

To function properly, the UART requires configuration
with respect to baud rate, number of data bits per char-
acter, parity and number of start and stop bits. These
terms are common for serial communication, but fit the
needs of 1–Wire networks with their time slots and sep-
arate synchronization if a bit rather than a character is
framed by the start condition. For 1–Wire communica-
tion the UART is set up for a high baud rate and each
character delivered by the UART represents a bit on the
1–Wire bus. The microprocessor must separate the bits
of a byte, least significant bit first, and write them as
appropriate characters to the UART. To read data, the
microprocessor has to assemble the bits received
through characters back into bytes. These functions are
not time–sensitive and can easily be programmed in a
high level language.

APPLICATION NOTE 74

040797 8/40

TTL INTERFACING Figure 6

IN

OUT

VPULLUP

RPULLUP

DATA

GROUND

1–WIRETTL

RS232 Conventions
Unlike TTL logic, RS232 has been established to trans-
port data over long lines. Therefore different current
drive characteristics and higher voltages are required to
represent the logic levels 0 and 1.

The values to be expected are:
+3V to +15V for 0,
which is identical to the polarity of the start bit and
–3V to –15V for 1,
which is identical to the polarity of the stop bit and

the idle state. The voltage range from –3V to +3V is
undefined.

All voltages are measured with respect to ground. The
receive channel and the transmit channel are indepen-

dent wires, called RXD and TXD. Since RS232 ports are
often used for communication via phone lines, several
control signals are also included in the standard. Not all
of these control signals need to be implemented with a
communication device. For 1–Wire applications only
the control signals DTR (Data Terminal Ready) and RTS
(Request to send) are needed. Other signals often
found with RS232 are DSR (Data Set Ready), which is
the response to DTR, and CTS (Clear To Send), which is
the response to RTS. How these signals are provided
on a connector is detailed in Table 2. Full documentation
on RS232 is beyond the scope of this application note.
For a complete description please refer to other litera-
ture.

Table 2

SIGNAL
9–PIN

CONNECTOR
25–PIN

CONNECTOR DESCRIPTION FUNCTION

RXD 2 3 Receive Data input

TXD 3 2 Transmit Data output

DTR 4 20 Data Terminal Ready output

RTS 7 4 Request to Send output

GND 5 7 Ground (reference)

DSR 6 6 Data Set Ready input

CTS 8 5 Clear to Send input

APPLICATION NOTE 74

040797 9/40

Hardware Simplified Model
The standard hardware of a RS232 interface is shown in
Figure 7a. The UART is hooked to the system bus like
an 8–bit memory device. The three address inputs A0 to
A2 make the UART appear as a block of 8 read/write
memory locations. On the other side there are the serial
communication signals and the control signals men-
tioned above. Since the UART is a 5V device, special
drivers and receivers for handling higher voltages are
required. Circuit diagrams of bipolar integrated drivers
(1488) and receivers (1489) are shown on Figures 7b
and 7c. CMOS drivers and receivers are also available
as standard products.

By design, the output current of an RS232 driver is lim-
ited to ±10 mA typically. Since the voltage definitions for
1 and 0 on the RS232 channel are reversed with respect
to the conventions of positive logic, RS232 drivers and
receivers are actually inverting devices. The inversion
in the transmit channel is compensated through an
inversion in the receive channel. Thus a 1 written to the
transmit register will appear as a 1 at the serial output,
as –15V at TXD, as a 1 at the serial input of the receiver
and finally be read as a 1 in the receive register of the
receiving UART.

For energy efficiency with battery operated equipment,
the RS232 drivers and receivers are often replaced by
simple 5V inverting drivers. This is definitely not com-
patible with the RS232 standard, but may be sufficient to
control a modem or to transfer data through a short
cable. Interfaces like this are called 5V RS232 within
this application note. They run on the same software as
the standard RS232, but are electrically almost the
same as the TTL interface.

Programmer’s Model
To write software for the 8250 UART one must know the
basic address where the registers of the UART are
hardwired to. This address is generally an equipment
specific variable, and therefore will be referenced by the
name SPA (Serial Port Address) rather than by a physi-
cal address. Of the 8 theoretically accessible addresses
within the UART only 7 are really implemented, using
the relative addresses 0 to 6. The names of these regis-
ters are as follows:

address:
SPA +0 Receive (read)/Transmit (write)

Data Register

+1 Interrupt Enable Register
+2 Interrupt Identification Register

(read only)
+3 Line Control Register
+4 Modem Control Register
+5 Line Status Register
+6 Modem Status Register

The meaning of the UART’s control bits and their posi-
tion within the control registers is detailed in Figure 8.
For 1–Wire communication, the Interrupt Identification
Register and Modem Status Register are not used.

To define the speed or baud rate of a serial communica-
tion, there is a 16 bit register, called Divisor Latch. This
register is accessed as two bytes using the same
addresses as the Data Register (least significant byte)
and the Interrupt Enable Register (most significant
byte). To access the Divisor Latch, the Divisor Latch
Access Bit DLAB must be set to 1. DLAB is the most sig-
nificant bit of the Line Control Register. As long as DLAB
is set, the Data Register and the Interrupt Enable Regis-
ter are not accessible. For the commonly used crystal
frequency of 1.8432 MHz, the divisor latch must
contain a number between 2304 (900hex, 50 bps) and
1 (115.2k bps).

1–Wire Communication through the UART
As mentioned above, to write one bit to the 1–Wire bus,
the UART is programmed to transmit one character.
Since the receive and transmit channels of the UART
are operating independently, but using the same com-
munication setup, reading from and writing to the
1–Wire bus can occur at the same time. The start condi-
tion generated at the UART’s serial output is fed to the
1–Wire bus and is simultaneously returned to the serial
input, triggering the process of reading one character.
The waveform is completely defined by the baud rate,
the polarity of the start and stop bits and the bit pattern of
the character. The serial output of the UART is high
(~ 5V, idle) between characters, low (~0V) for the start
bit and equal to the value of the data bit being trans-
mitted. An idle (~5V) to low (~0V) transition at the
UART’s serial input triggers the process of receiving a
character. The first bit is understood as start bit; the
remaining bits are shifted into the receive register in the
same polarity as they arrive at the serial input. Bits
received after the receive register is full, are ignored.

APPLICATION NOTE 74

040797 10/40

HARDWARE OVERALL CONCEPT Figure 7a

ADS

CS2

WR

RD

DCO

DSR

CTS

RI

OUT2

OUT1

RTS

DTR

BAUDOUT

16

17

15

9

33

32

34

31

39

38

37

36

11

10

30

24

23

29

RS–232
CONNECTOR

20

4

8

6

2

3

7

1

DTR

RTS

DSR

CTS

TXD

RXD

GND

+5V

XIN

XOUT

RCLK

SOUT

SIN

INTR

CSOUT

DDIS

NC

A0–A2

CS0

CS1

D0–D7

MR

RD

WR

8250
(UART)

20 40

12

13

21

18

35

22

19

25

14

GND
VSS

+5V
(VCC)

5

APPLICATION NOTE 74

040797 11/40

TYPICAL DRIVER Figure 7b

GND

VCC

INPUT

INPUT

VEE

300
70

707k

10k

3.6k

8.2k 6.2k

OUTPUT

TYPICAL RECEIVER Figure 7c

RESPONSE CONTROL

INPUT

VCC

OUTPUT

GROUND

10k

9k 5k 1.7k

3.8k
RF

RF

RF IS EITHER 6.7 OR 1.6 kΩ

APPLICATION NOTE 74

040797 12/40

Figure 8

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

SPA + 1 bit 15 baud rate divisor most significant byte bit 8 DLAB=1

SPA + 0 bit 7 baud rate divisor least significant byte bit 0 DLAB=1

SPA + 0 receive/transmit data register DLAB=0

SPA + 1 0 0 0 0 Interrupt enable; 0=disabled DLAB=0

SPA + 2 0 0 0 0 0 Interrupt ident. register, not
used

DLAB=0

SPA + 3 DLAB,
Divisor
Latch

Address
Bit

Set
Break,
0=dis-
abled

Stick
Parity,
0=dis-
abled

Even
Parity
don’t
care

Parity
Enable,
0=dis-
abled

Nr. of
stop

bits, 0=1
stop bit

WLS1
Word

Length

WLS0
Word

Length

DLAB=0

SPA + 4 0 0 0 Loop Out2 Out1 RTS,
Request
to Send

DTR,
Data

Terminal
Ready

DLAB=0

SPA + 5 0 TSRE,
transmit
shift reg-

ister
empty

THRE,
transmit
hold reg-

ister
empty

Break
Interrupt

Framing
Error

Parity
Error

Overrun
Error

Data
Ready

DLAB=0

SPA + 6 Modem Status Register, not used DLAB=0

Reset and Presence Detect
The reset and presence detect cycle is performed by
setting the baud rate to 10473 bps (Divisor Latch =
11decimal), the character length to 8 bits (WLS0=1,
WLS1=1) and transmitting the character code F0.
Including the start bit, this produces a pulse of 5 x 95.5
µs low (start bit plus four 0’s) followed by 5 x 95.5 µs high
(four 1’s plus stop bit) at the serial output of the UART. If
an iButton is present, then it will assert its presence
pulse during the time interval where the most significant
bits of the character code are transmitted. If after the
transmission the receive data register reads F0, then
there is no iButton. If one or more bits of the transmitted
F are changed to 0s, than a presence pulse was
received.

Read/Write One Bit
To generate data time slots, the UART must be set to a
baud rate of 115.2k bps (Divisor Latch = 1). With a char-
acter length of 6 bits (WLS0=1, WLS1=0), any trans-
mitted character will consist of a pulse train of 8 x 8.68
µs, beginning with a low start bit, followed by true data
bits and a high stop bit. This matches the waveform for

fast 1–Wire communication. If the character code is 00,
than a Write–Zero time slot is generated. A character
code of FF will produce a Write–One time slot.

As long as writing to the 1–Wire bus is desired, all char-
acters received by the UART must be read and can be
discarded. To read data, Write–One time slots must be
generated. Bits received from the iButton are returned in
their true form in the least significant bit of the character
code found in the receive data register. If the iButton
sends a one, all bits of the character code will read one.
If the iButton sends a zero, one or more of the least sig-
nificant bits of the character code will be zero, depend-
ing on the internal time base of the iButton.

Not all UARTs behave exactly the same as the 8250.
Some of them do not support the character length of 6
bits. To circumvent potential problems from this restric-
tion, the software examples in this document always
use the character length of 8 bits. This extends the
transmission of one bit by 17.36 µs and reduces the
effective baud rate from 14.4k bps to 11.5k bps, but
remains well within the specification of 1–Wire timing.

APPLICATION NOTE 74

040797 13/40

IV. CIRCUITS FOR 5V INTERFACES (TTL
AND RS232)
A. TTL Read All
This is the simplest interface for iButton applications. It
is suitable for reading all iButtons and writing NVRAM
based devices. The circuit diagram (Figure 9) conforms
to the principle of Figure 6. The diodes D1 and D2 pro-
tect transistor Q1 and the input of the microprocessor,
respectively, against damage from electrostatic dis-
charge (ESD). R1 is the 1–Wire pullup resistor. If the
microprocessor runs on 5V, the same supply can
directly be connected to R1. If only a higher supply volt-
age than 5V is available, any monolithic or discrete posi-
tive 5V regulator can be used to provide the pullup volt-
age for the 1–Wire bus.

The characteristics of the components are not critical.
The transistor 2N7000 has been chosen since it is a
very common product and has a low threshold voltage.

If desired, a small signal bipolar transistor or any avail-
able open–drain or open–collector inverting driver can
be used instead of Q1. If Q1 is an npn–transistor, a
resistor bypassed by a small capacitor between the TX–
input and the base terminal is required to limit the input
current.

The logic level high at TX will produce a low on the
1–Wire bus. To generate a Write–One or Read Data
time slot, a short high pulse (1 µs < t < 15 µs) must be
applied to the TX input. A Write–Zero Time Slot is
formed by a 60 µs high pulse at TX. Data from iButtons is
received in its true form. If idle, TX must be held at a logic
low level. The reference pulse train and other relevant
waveforms for this circuit are shown on Figure 9a. The
timing for this type of interface is directly generated by
the microprocessor. A software example for this type of
interface is found later in this document.

TTL READ ALL CIRCUIT Figure 9

D2
D1

R1
4.7K

+5V

RXD

TXD

GND

1N5242
12V

1N5232
5.6V

M
A

T
E

R
 W

R
IT

E
 “

0”
 S

LO
T

M
A

S
T

E
R

 W
R

IT
E

 “
1”

 S
LO

T
M

A
S

T
E

R
 R

E
A

D
 “

0”
 S

LO
T

M
A

S
T

E
R

 R
E

A
D

 “
1”

 S
LO

T

M
A

S
T

E
R

 T
X

M
A

S
T

E
R

 R
X

G
N

D

V
C

C
1–

W
IR

E

“R
E

S
E

T
 P

U
LS

E
”

“P
R

E
S

E
N

C
E

P
U

LS
E

”

B
U

S

48
0

us

48
0

us

60
 u

s
60

 u
s

<
15

 u
s

15
 u

s
15

 u
s

T
X

=
R

X

APPLICATION NOTE 74

040797 14/40

TTL READ ALL WAVEFORMS Figure 9a

APPLICATION NOTE 74

040797 15/40

B. 5V RS232 Read All
This interface is required for equipment that uses a
UART to provide all timing but does not conform to the
voltage levels of the RS232 standard. The logic levels,
however, are the correct polarity so that it can be oper-
ated with the same software as the standard RS232
interface.

The circuit shown on Figure 10 is suitable for reading all
iButtons and writing NVRAM based devices. New
compared to Figure 9 are D3, Q2 and R2. D3 has the
same function as D2, i.e., ESD protection. Q2 and R2
form an inverter to restore the correct polarity for the
receive channel of the UART. Since there is no pin
defined as a power supply with RS232, the DTR signal
is used to provide the pullup voltage for the 1–Wire bus

and power for the inverter in the receive channel. Every-
thing else is identical to Figure 9.

The reference pulse train and other important wave-
forms for this circuit are shown on Figure 10a. Due to the
double inversion in both the transmit and the receive
channel (inverters between UART and RS232 connec-
tor in Figure 7, Q1 and Q2 in Figure 10) the logic levels of
the 1–Wire bus are the same as those at the UART. A 1
written to the UART’s transmit register will appear as a 1
on the 1–Wire bus, a zero on the 1–Wire bus will be
received as a 0. No software–inversion is needed. Fur-
ther details on programming the UART for 1–Wire com-
munication are found section III.b. For software exam-
ples please refer to a later section of this document.

5V RS232 READ ALL CIRCUIT Figure 10

+5V (OPTIONAL)

DTR

RXD

TXD

GND

D7
ERA–82–004

R2
2.2k

R1
4.7K

Q2
2N7000

D3
1N5232
5.6V

D1
1N5242
12V

Q1
2N7000

D2
1N5232
5.6V

T
X

D

D
T

R

R
X

D

P
C

–G
N

D

S
T

1
2

3
4

=
1–

W
IR

E
G

N
D

5
6

7
8

S
to

p
S

T
1

2
3

4
5

6
1

2
3

4
5

6
S

to
p

S
to

p
S

ta
rt

1
2

3
4

5
6

S
to

p
S

ta
rt

1
2

3
4

5
6

S
to

p
S

ta
rt

(5
V

)

0V

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

S
E

N
D

 F
0

H
E

X
10

47
3

B
P

S
8

D
A

TA
 B

IT
S

N
O

 P
A

R
IT

Y,
 1

 S
T

O
P

 B
IT

S
E

N
D

 0
0

H
E

X
(6

 B
IT

S
)

S
E

N
D

 3
F

 H
E

X
S

E
N

D
 3

F
 H

E
X

S
E

N
D

 3
F

 H
E

X

11
52

00
 B

P
S

6
D

A
TA

 B
IT

S
N

O
 P

A
R

IT
Y,

 1
 S

T
O

P
 B

IT

M
A

T
E

R
 W

R
IT

E
 “

0”
 S

LO
T

M
A

S
T

E
R

 W
R

IT
E

 “
1”

 S
LO

T
M

A
S

T
E

R
 R

E
A

D
 “

0”
 S

LO
T

M
A

S
T

E
R

 R
E

A
D

 “
1”

 S
LO

T

M
A

S
T

E
R

 T
X

M
A

S
T

E
R

 R
X

G
N

D

V
C

C
1–

W
IR

E

“R
E

S
E

T
 P

U
LS

E
”

“P
R

E
S

E
N

C
E

P
U

LS
E

”

B
U

S

48
0

us

48
0

us

60
 u

s
60

 u
s

<
15

 u
s

15
 u

s
15

 u
s

1
1

1
1

APPLICATION NOTE 74

040797 16/40

5V RS232 READ ALL WAVEFORMS Figure 10a

APPLICATION NOTE 74

040797 17/40

C. TTL R/W All (Voltage Converter)
The circuits described so far can read all iButtons and
write NVRAM–based devices. For other technologies,
however, voltage requirements other than 5V are nec-
essary. One important group of iButtons, called Add–
Only Memories, is based on EPROM technology and
therefore needs a programming pulse of 12V to copy
data from the scratchpad to the EPROM cells. Another
device, the Temperature iButton, will operate on 5V but
requires a low impedance pull–up to 5V while measur-
ing the temperature. To fulfill the requirements of these
and future devices, the circuits described above need to
be upgraded. These two new functions require two

more signals and the 12V programming supply can be
provided by a DC–to–DC voltage converter.

The complete circuit of such a universal interface in a
TTL–version is shown in Figure 11. It is a compatible
superset of Figure 9. The components Q1, R1, D1, D2
and their functions are the same as before. Additional
requirements include the control input PGMEN with the
diode D4 for ESD protection, the diode D5, the cas-
caded inverters R3, Q3, R4 and Q4 & R5, C1, the
pull–up switch Q5 and the controlled voltage converter
IC1 with its external components L1, D6 and C2.

TTL R/W ALL CIRCUIT Figure 11

b c

a

8

3

1

7

4

D

G

S

D

G

S

D

S

G

D

G

S

SHDN

+5V

PGMEN

RXD

TXD

GND

D1
1N5242

Q1
2N7000

D2
1N5242

Q4
2N7000Q3

2N7000

L1 D6
1N5818

D5
ERA–82–004

R1
4.7K

R3
R4
100K

Q5
BSS110

R5
47K

C2
10 uF

U1
LT1109CN8–12

SW

GND
SHDN

VCC

D4
1N5242

C1
150 pF

VOUT

(SEE TEXT)

12V

12V

100K

12V

APPLICATION NOTE 74

040797 18/40

PGMEN is the active low input to activate the pull–up
switch. If not connected, PGMEN will be held high
through R3 to avoid unwanted activation of the pull–up
switch. The voltage converter can be controlled in three
ways: a) hard–wired for continuous operation, b) acti-
vated by an external signal, or c) permanently shut
down. Case a) is intended for applications which never
require a strong 5V pull–up. If there is no control signal
available from the master and strong 5V pull–up as well
as EPROM programming is required, then a mechanical
switch can be used to switch between case a) and c).
Case b) offers the most flexibility. For EPROM program-
ming SHDN needs to be high, for strong 5V pull–up it
should be low. If the voltage converter is shut down, L1
and D6 together with a conducting Q5 provide the
required low–impedance path to 5V.

If the signal PGMEN becomes active (i.e., is low) then
the voltage at the gate of Q4 rises from 0V to approxi-
mately 5V, causing Q4 to conduct. This is equivalent to
feeding a low level from PGMEN to the gate of Q5. The
capacitor C1 between gate and drain of Q4 slows down
the rise and fall of Q4’s gate–source voltage and there-
fore determines the ramp rate of the programming
pulse. As soon as the gate voltage of Q5 changes from
the quiescent state of 5 or 12V (depending on mode of
operation) to 0V, the P–channel transistor becomes
conducting and pulls the 1–Wire bus either to 12V (if the
voltage converter is on) or to 5V, bypassing R1.

From the strictly logical point of view, the double inver-
sion (Q3, Q4) is unnecessary. The reasons for this cir-
cuit are to convert from a TTL–level system to a 12V
system (5 volts on the gate of Q5 is not sufficient to turn
the transistor off if the voltage converter is running), to
avoid high voltage feedback from the voltage converter
through R5 to the TTL–level control input and to extend
the rise and fall time of the 12V programming pulse to
the required minimum of 5 µs. High voltage feedback
from the 1–Wire bus to the receive input of the micropro-
cessor is avoided by the diode D5, which becomes con-
ducting only when the voltage on the 1–Wire bus is
lower than 5V.

The monolithic voltage converter IC1 requires L1, C2
and D6 for operation. It is activated by a low level at its
TTL–compatible input SHDN. The right choice of L1, D6
and C2 is essential for reliable operation. D6 is a
Schottky diode, recommended part number 1N5818,
C2 is a low ESR tantalum capacitor of 10 µF. L1 must be
a low ESR device between 20 to 100 µH, capable of

withstanding current peaks of approximately 0.5 A with-
out magnetic saturation. To avoid EMI problems, L1
should be a pot–core or toroid type; a rod core type is not
recommended. For further details on the voltage con-
verter and its external components please refer to the
appropriate data sheet and application notes. The
LT1109 is just one example of available parts. Other
manufacturer’s components or modules can be used as
well.

The duration of the programming pulse (pulse width of
PGMEN) or the strong pull–up is determined by soft-
ware. Program examples are given later in this docu-
ment.

D. 5V RS232 R/W All (Voltage Converter)
The universal upgrade of the interface of Figure 10 is
shown in Figure 12. The components Q1, R1, D1, D2,
Q2, R2, D3 and their functions are the same as before.
Additional requirements include the control signal RTS
with the diode D4 for ESD protection, the diodes D5, D7,
the cascaded inverters R3, Q3, R4 and Q4 & R5, C2, the
pull–up switch Q5 and the controlled voltage converter
IC1 with its external components L1, D6 and C2.

RTS is used to activate the pull–up switch Q5. DTR may
act as power supply, if it is able to source 5V at 25 mA.
The strong pull–up is made possible by L1 and D6 if the
voltage converter is shut down. If idle (i.e., the bit con-
trolling RTS in the Modem Control Register of the UART
is set to 1), RTS will be at 5V. To activate the pull–up
switch, the RTS bit in the UART (see Figure 8) must be
cleared to 0. This will cause a 0V level at the RTS pin of
the RS232 connector. The DTR bit in the Modem Con-
trol Register of the UART must be set to 1. If power is
supplied from the outside, the status of DTR becomes a
don’t care. In this case, D7 prevents driving the DTR line
with the external power supply.

For reliable operation of this circuit, DTR must reach a
high level of 5V minimum. If this is not possible, an exter-
nal 5V supply must be connected as shown in Figure 12.

The function of the other components of this circuit has
already been explained in the section IV.C. RTS is
equivalent to PGMEN in Figure 11. D5 now prevents
feedback from the 1–Wire bus to the internal power sup-
ply during the programming pulse. The duration of the
programming pulse (pulse width of RTS) cannot be con-
trolled by the UART alone. Software to provide the cor-
rect timing is found later in this document.

APPLICATION NOTE 74

040797 19/40

5V RS232 R/W ALL CIRCUIT Figure 12

D

G

S

D

G

S

D

G

S

D

G

S

S

D

G

3

4

81

7

SW

GND
SHDN

VCC VOUT

L1

U1
LT1109CN8–12

D6
1N5818

C2
10 uF

R5
47k

R3
100k

R4
100k

C1
150 pF

Q5
BSS110

Q4
2N7000Q3

2N7000

Q1
2N7000

Q2
2N7000

R2
4.7k

R1
4.7k

D5
ERA–82–004

D2
1N5242

D1
1N5242

D3
1N5242

D4
1N5242
12V

D7
ERA–82–004

SHDN

+5V
(OPTIONAL)

RTS

DTR

RXD

TXD

GND

(SEE TEXT)

12V

12V

12V

b c

a

DS9092
TOUCH
PROBE

DTR

GND

RXD

TXD

APPLICATION NOTE 74

040797 20/40

V. CIRCUITS FOR 12V RS232 INTERFACES
(COM PORT)
A. Read All
If equipment has a true RS232 port using current limited
drivers with voltage capabilities of at least ±8V, then a
simple passive circuit is sufficient to interface to the
1–Wire bus. Figure 13 shows all details; the waveforms
are found on Figure 13a. This interface operates on the
same software as the circuit shown in Figure 10. The
waveforms at RXD and TXD with respect to the comput-
er’s ground are basically the same. The major differ-
ence is that instead of 0V, a true negative voltage will be
found, representing the idle state or a logic 1. Neglecting
absolute voltage levels, the waveform observed at RXD
is essentially an inversion of the waveform that would be
observed on a 1–Wire data line for a 0V to 5V system.

The ground potential of the computer is different from
the 1–Wire ground. This allows the iButton to experi-
ence typical voltage levels (0V to 6V) on the 1–Wire data
line relative to the 1–Wire ground, while the serial port
generates both positive and negative voltages relative
to the serial port ground. D1 clamps the data line to a
constant potential of nominally 3.9V. The time slots for
1–Wire communication are generated by changing the
potential of the 1–Wire ground with respect to the
1–Wire data line. The 1–Wire pullup resistor is in the
path from the 1–Wire ground to TXD, which provides the
voltage for the 1–Wire bus. D2 limits the voltage swing
on the 1–Wire bus to a maximum value of 6.2 Volts.
Since DTR is kept at 3.9V, D2 also limits the most nega-
tive voltage occurring at RXD to –2.3V. D2 is conducting
only when the voltage at TXD is negative with respect to
the computer’s ground. D3 limits the voltage between
1–Wire ground and 1–Wire data when the voltage at
TXD is positive. D4 couples TXD with RXD when TXD is
positive and bypasses R1 to provide a low resistance
path to initiate a time slot on the 1–Wire bus. D4 is non-
conducting when the voltage at TXD is negative with
respect to the computer’s ground. If an iButton pulls the
1–Wire data line low (e. g. at a presence pulse or when
sending out a zero data bit), it shorts DTR to RXD,
resulting in a positive voltage at RXD. This positive volt-

age arrives as a zero in the UART’s receive data regis-
ter.

Probing the 1–Wire bus at the data contact and the
1–Wire ground with an oscilloscope, would show noth-
ing unusual, except that the voltage swing is at the
upper end of the tolerable range. Probing RXD and TXD
with another oscilloscope hooked up at the computer’s
ground, would also reveal quite normal waveforms. The
only thing one might be concerned about is the poor neg-
ative voltage of about –2.3V found at RXD. Probing all
three signals (1–Wire bus, TXD, RXD) with one oscillo-
cope hooked up at the computer’s ground, would show a
nearly constant voltage of 3.9V at the 1–Wire bus.

The positive voltage of approximately +4.1V at RXD is
well within the RS232–specification, the negative volt-
age is slightly out of specification. Since the total swing
on the 1–Wire bus is limited to approximately 6V by the
characteristics of iButtons, a more negative voltage
could be produced by replacing D1 by a zener diode of
3.2V, for example. Unfortunately, this would increase
the permanent current load for DTR.

Fortunately, real RS232 receivers are more sensitive to a
weak positive voltage than they are to a poor negative
voltage. Although it is not completely within the specifica-
tion of RS232, this interface with the components speci-
fied on Figure 13 has proven to be reliable with most desk-
top personal computers. Small computers, especially
battery powered models, might not have the required cur-
rent capability to run this interface. In case of difficulties,
one should use the 5V RS232 interface instead.

This interface is sold as COM Port Adapter DS9097. It is
applicable for reading all iButtons and writing to SRAM–
based devices. Due to the high pullup voltage and the
low pullup resistor, this interface together with the right
software also allows operation of the Temperature
iButton directly through the COM Port. Software to oper-
ate this interface is explained later in this document.

12V RS232 READ ALL CIRCUIT Figure 13

T
X

D

D
T

R

R
X

D

P
C

–G
N

D

S
T

1
2

3
4

5
6

7
8

S
to

p

S
T

1
2

3
4

5
6

1
2‘

3
4

5
6

S
to

p
S

to
p

S
ta

rt
1

2
3

4
5

6
S

to
p

S
ta

rt
1

2
3

4
5

6
S

to
p

S
ta

rt

=
1–

W
IR

E
G

R
O

U
N

D

3.
9V

 T
O

 P
C

–G
R

O
U

N
D

0V
 A

S
 R

E
F

E
R

E
N

C
E

4.
1V

3.
9V

4.
1V

4.
1V

4.
1V

3.
9V

4.
1V

–2
.3

V
–2

.3
V

–2
.3

V
–2

.3
V

–2
.3

V
–2

.3
V

0
0

0
0

1
1

1
1

0
0

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

4.
3V

4.
3V

4.
3V

4.
3V

4.
3V

–1
2V

–1
2V

–1
2V

–1
2V

–1
2V

S
E

N
D

 F
0

H
E

X
10

47
3

B
P

S
8

D
A

TA
 B

IT
S

N
O

 P
A

R
IT

Y,
 1

 S
T

O
P

 B
IT

S
E

N
D

 0
0

H
E

X
(

6
B

IT
S

)
S

E
N

D
 3

F
 H

E
X

S
E

N
D

 3
F

 H
E

X
S

E
N

D
 3

F
 H

E
X

11
52

00
 B

P
S

6
D

A
TA

 B
IT

S
N

O
 P

A
R

IT
Y,

 1
 S

T
O

P
 B

IT

M
A

T
E

R
 W

R
IT

E
 “

0”
 S

LO
T

M
A

S
T

E
R

 W
R

IT
E

 “
1”

 S
LO

T
M

A
S

T
E

R
 R

E
A

D
 “

0”
 S

LO
T

M
A

S
T

E
R

 R
E

A
D

 “
1”

 S
LO

T

M
A

S
T

E
R

 T
X

M
A

S
T

E
R

 R
X

G
N

D

V
C

C
1–

W
IR

E

“R
E

S
E

T
 P

U
LS

E
”

“P
R

E
S

E
N

C
E

P
U

LS
E

”

B
U

S

48
0

us

48
0

us

60
 u

s
60

 u
s

<
15

 u
s

15
 u

s
15

 u
s

APPLICATION NOTE 74

040797 21/40

12V RS232 READ ALL WAVEFORMS Figure 13a

APPLICATION NOTE 74

040797 22/40

B. R/W All
The simple adapter of Figure 13 can be upgraded for
programming Add–Only Memories. Figure 14 shows
the details. R1 and the diodes D1 to D4 are the same in
both circuits. There is a new signal in use, called RTS.
When doing normal 1–Wire communication, RTS is
constantly at a high positive voltage of nominally +12V.
As long as the voltage at RTS remains positive, Q1 and
Q2 are conducting. This allows D1 and D2 to provide the
same functions as in Figure 13. Since D1 and D2 are
conducting, there is not enough voltage across D5 and
D6 to draw any current. The gate–source voltage of Q3
is determined by R2, R4, the voltage between DTR and
RTS and the position of the contacts inside the connec-
tor for the external DC supply. D7 prevents current flow
from source to drain through the substrate diode of Q3
when VDS is negative. If no external power supply is
connected, R2 and R4 form a voltage divider providing a
negative VGS for Q3. With an external power supply
connected, R2 will hold the gate of Q3 at the same level
as the source (VGS = 0V). None of these conditions will
allow any current flow through Q3. With a positive volt-
age at RTS, the p–channel transistor Q4 remains non–
conducting, regardless if an external power supply is
connected or not. Thus the upgraded circuit behaves
the same as the simple COM–Port adapter.

To generate a programming pulse for EPROM based
devices, RTS needs to be switched to a negative volt-
age. This is done under software control by simply clear-
ing the associated control bit in the UART and resetting
the bit as soon as the programming pulse needs to be
ended. Depending on whether an external supply is
connected or not, the behavior of this circuit is slightly
different.

If there is no external supply, Q4 has no function and the
following sequence occurs (Figure 14a): A negative
voltage at RTS will switch off Q1 and Q2, activating D5
and D6 instead of D1 and D2. This increases the voltage
at DTR from 3.9V to 6.8V and defines a limit of 12V for
the voltage on the 1–Wire bus. Simultaneously, the neg-
ative voltage at RTS will make VGS of Q3 equal to the
voltage between DTR and RTS, which is a positive
value. This will switch Q3 into a conducting state, feed-

ing the negative voltage from RTS through D7 to the
1–Wire ground. As soon as the voltage on the 1–Wire
bus reaches 12V, D6 will become active as voltage lim-
iter. Thus the voltage on RTS is limited to approximately
–5.4V. During the programming pulse, the voltage at
RXD will be –5.2V instead of –2.3V. This has no impact
on the logic of the UART, since a positive voltage is
required to trigger the reception of a character.

The COM–Port powered mode of this circuit works
properly if the RS232–drivers are able to provide
enough current for programming. If more than one bit of
the addressed memory byte need to be altered, then
more current is needed during the programming pulse.
Depending on the RS232 drivers, the available energy
may not be sufficient for programming all bits of a byte.
There are two possible solutions to this problem. One
possibility uses an adaptive programming algorithm,
where multiple passes are made for each byte. For
example the software may program the first four bits of
every byte on the first pass, and the remaining bits on
the second pass. The other possibility is to provide an
auxiliary energy source, i.e., by connecting an external
12V DC supply.

If the external supply is connected and operating, the
contacts inside the connector will open. This prevents
any current flow through Q3. As the voltage at RTS goes
negative, Q1, Q2, D5, D6 will do the same as without the
external supply. Instead of having no function, Q4 now
will connect the negative end of the external voltage
source with the 1–Wire ground, providing the desired
low–impedance programming voltage. Since RTS has
no other load than the gates of four transistors, there will
be the full voltage swing. The voltages at RXD and TXD
are again determined by D5 and D6 and exhibit the
same waveforms as before.

This upgraded version of a COM–Port adapter is
shipped with the iButton Starter Kit DS9092K and is also
available as the DS9097E. It is applicable for reading
and writing all iButtons. Due to the high pullup voltage
and the low pullup resistor, this interface together with
the right software allows operation of the Temperature
iButton directly through the COM Port.

APPLICATION NOTE 74

040797 23/40

12V RS232 R/W ALL CIRCUIT Figure 14

R
T

S

D
T

R

G
N

D

R
X

D

T
X

D

R
1

1.
5K

 O
H

M

D

G

S

D
4

R
B

40
0D

D

G

S

S

G

D

D S

G

D
5

M
M

B
Z

52
35

B
Q

1
2N

70
02

D
1

M
M

B
Z

52
28

B

6.
8V

D
3

R
B

40
0D

D
7

R
B

40
0D

Q
3

2N
70

02

Q
2

2N
70

02

R
2

1M
 O

H
M

D
4

B
S

S
84

D
6

M
M

B
Z

52
42

B
D

2
M

M
B

Z
52

34
B

R
4

39
 O

H
M

D
S

90
92

P
R

O
B

E

N
C

G
N

D

3.
9V

6.
2V

12
V

– +

+
12

V•

P
A

R
T

 N
U

M
B

E
R

S
 A

R
E

 S
P

E
C

IF
IE

D
F

O
R

 S
U

R
FA

C
E

–M
O

U
N

T
 T

E
C

H
N

IQ
U

E
.

• • •

iB
ut

to
n

APPLICATION NOTE 74

040797 24/40

12V RS232 R/W ALL PROGRAMMING WAVEFORMS Figure 14a

–5.4V

6.8V (D5)

–5.2V (D6)

12V (D6)

12V 12V

3.9V (D1)

–2.3 (D2)

6.2 (D2)

3.9V (D1)

–2.3 (D2)

6.2V (D2)

–12V

RTS

DTR

RXD

TXD

1–WIRE
BUS

VI. INTRINSICALLY SAFE
A. Definition
iButtons satisfy a very high safety standard which
makes them well suited for applications in hazardous
environments. iButtons meet the UL#913 (4th Edit.)
requirements as Intrinsically Safe Apparatus, Approved
under the Entity Concept for use in Class I, Division 1,
Group A, B, C, and D Locations. Intrinsically safe means
that the probability of causing an explosion or accident
in hazardous locations is not increased when using
approved equipment, even if this equipment should be
faulty. Since iButtons have been certified as intrinsically
safe under the entity concept, they may reside in a haz-
ardous environment but cannot be read or written in that
environment unless the unit performing the reading or
writing has also been certified as intrinsically safe under
the same entity concept.

The iButton might be affixed to a tanker truck and con-
tain maintenance information. The truck could enter and
exit a hazardous location (fuel depot, for example) with-
out concern over an increased potential for an explosion
due to the iButton device. If no intrinsically safe reader/

writer is available, any updates to the iButton would
have to occur outside of the hazardous area. Should it
be necessary to read or update the iButton within the
hazardous area (record the fuel dispensed, for exam-
ple), a certified intrinsically safe reader/writer must be
used.

There are two options available to provide an intrinsi-
cally safe reader/writer. The first involves taking any
piece of equipment capable of reading or writing
iButtons and submitting it to an approved NRTL (Nation-
ally Recognized Testing LAB) to be tested and certified
under the same entity concept as the iButtons. The
second option takes advantage of reader/writer equip-
ment that has already been tested and certified as intrin-
sically safe (laptop computer, handheld reader, etc.)
and uses those test results along with a specially
designed iButton probe adapter to create an entire sys-
tem that is intrinsically safe. One such unit utilizing this
second option is the PSION Organizer II, Model LZ64.
This unit is used as an example to show how an intrinsi-
cally safe system can be realized.

APPLICATION NOTE 74

040797 25/40

B. Example of an Intrinsically Safe System
To use the LZ64 as an intrinsically safe iButton Reader/
Writer, an adapter is required. This adapter limits volt-
ages and currents to safe values in the event a fault
occurs. In the case of a fault, due to its internal construc-
tion, a maximum voltage of 17.22V at the 16–pin con-
nector of the LZ64 may occur allowing a current of up to
1.55A. The adapter discussed here limits these values
at the iButton Probe to a maximum voltage of 15V and a
maximum current of 10mA (Values required by the
iButtons in order to be certified as intrinsically safe).
These values together with the maximum inductance of
18 µH and maximum capacitance of 0.2nF of an iButton
fulfill the requirements for a complete system that is
intrinsically safe according to UL specifications.

Figure 15 shows the complete circuit of the adapter.
Essential components are the four current shunts
Q1/R1 to Q4/R4, three Zener diodes D2 to D4 and one
self–resetting fuse SS1. The Schottky diode D1 is
optional. It protects iButtons by suppressing negative
undershoots on the 1–Wire bus.

If by fault the LZ64 presents up to 17.22V at its connec-
tor and there is an open circuit at the iButton Probe, then
the 12V Zener diodes D2 to D4 will limit the voltage at
the iButton Probe to a value well below 15V. The intrinsi-
cally–safe regulations demand that this limitation will
work correctly even if two of the protecting devices
should fail. Therefore three Zener diodes are provided
instead of one. If a Zener diode fails, it will either repre-
sent a short or it will be non–conducting. In either case,
the voltage at the iButton Probe is limited to a safe value.

If by fault the LZ64 presents up to 17.22V at its connec-
tor and there is a short at the iButton Probe, then a cur-
rent will flow through the resistors R1 to R4. The voltage
drop across these resistors acts to turn on their respec-
tive transistors and causes base currents to flow. These
base currents multiplied by the current gain of the tran-
sistors will direct most of the current to ground and limit
the current at the iButton Probe to less than 10mA. Q1
will sink most of the current. Two of these Q/R stages
are required to limit the current available at the iButton
Probe under worst case conditions to less than 10 mA.
The other two current shunts are redundant since again
the circuit must operate correctly with up to two faults.

The self–resetting fuse with a trip point below 100mA
will open in less than one second and thus prevent ther-
mal damage to the transistors. It will also serve as an
indicator to the operator that a fault or malfunction has
occurred.

Although this adapter is designed for use with the LZ64,
it can be used with similar intrinsically safe equipment
with the same or lower faulted open–circuit voltage or
short–circuit current to form an iButton Reader/Writer.
This adapter does not impede writing to EPROM based
iButtons.

VII. COMMENTED SOFTWARE
A. Software Architectural Model
The software that manages data transfer to and from
iButtons is related to the ISO reference model of Open
System Interconnection (OSI). This model specifies a
layered protocol having up to seven layers, denoted as
Physical, Link, Network, Transport, Session, Presenta-
tion, and Application. The Application layer represents
the final application designed by the customer. A Ses-
sion layer may or may not be needed, depending on the
environment in which the iButtons are used.

According to the ISO model, the electrical and timing
requirements of iButton and the characteristics of the
1–Wire bus comprise the Physical layer. Details have
already been given in section II of this document.

The Link layer defines the basic communication func-
tions of iButtons, which are the hardware dependent
functions of Reset, Presence Detect and bit transfer.
Circuits for interfacing iButtons and general information
on the software to operate these interfaces have
already been presented in sections III, IV, and V. In this
section, the software itself, specifically the functions
TouchReset and TouchByte, are discussed in detail.

The Network layer provides the identification of iButtons
and the associated network capabilities based on the
unique lasered identification number. Software for this
layer is built up using the low–level functions of the Link
Layer. Since this software is independent of any particu-
lar interface, it is not within the scope of this document.

APPLICATION NOTE 74

040797 26/40

INTRINSICALLY SAFE ADAPTER (EXAMPLE) Figure 15
12

1516

16
 P

IN
 M

A
LE

D
U

L–
H

E
A

D
E

R

Q
1

Q
2

Q
3

Q
4

D
4

D
3

D
2

D
S

90
92

iB
ut

to
n

P
R

O
B

E

D
1

E
R

A
–8

2–
00

4
F

U
JI

S
C

H
O

T
T

K
Y

P
IN

 9
G

R
O

U
N

D

P
IN

 1
2

P
IN

 1
4

D
A

TA
 L

IN
E

P
O

W
E

R
 U

P
 L

IN
E

D
2,

 D
3,

 D
4

1N
47

42
M

O
TO

R
O

LA
12

V
 Z

E
N

E
R

S
S

1
R

X
E

–0
10

R
2

82
 O

H
M

0.
25

W
 5

%

R
1

82
 O

H
M

0.
25

W
 5

%

R
3

82
 O

H
M

0.
25

W
 5

%

R
4

82
 O

H
M

0.
25

W
 5

%

T
IP

32
A

T
IP

32
A

T
IP

32
A

T
IP

32
A

APPLICATION NOTE 74

040797 27/40

The Transport layer is responsible for the data transfer
between the non–ROM segments of iButtons and the
master, and the data transfer from the scratchpad to the
final storage areas and special registers of the iButton.
Due to their EPROM technology, Add–Only Memories
require special attention for writing data. The Tempera-
ture iButton may require special hardware together with
appropriate software to do a temperature measure-
ment. To comply these devices, the hardware specific
function PulWidth has been provided on the Transport
layer. Details are given in this chapter. All other software
of the transport layer is independent of the type of inter-
face, and therefore is not discussed here.

The layers Link, Network, and Transport are the founda-
tions of the Presentation layer. This layer provides a
DOS–like file system supporting functions like Format,
Directory, Type, Copy, Delete, Optimize, and integrity
check. Since the Presentation layer itself is based on
software of the lower layers, its software is independent
of any particular interface. Full details of the Presenta-
tion layer are given in the iButton TMEX Professional

Software Developer’s Kit DS0621–SDK. For software
examples beyond the hardware dependent functions
TouchReset, TouchByte and PulWidth, please refer to
the “Book of DS19xx iButton Standards” and the iButton
Starter Kit DS9092K.

A matrix that indicates which software of this section
matches with which hardware is given in Table 3. For the
5V TTL type interface, assembly language code for the
8051 has been provided. For the group of interfaces
based on the UART 8250, code examples in Pascal and
C are included. This particular software has been
adapted to and verified with IBM–compatible PCs
employing a 8253 timer at 2.3863633 MHz and running
under DOS. The timing is practically independent of the
CPU clock rate. Under WINDOWS there is a lot more
software being executed around an application pro-
gram. This overhead introduces a significant influence
from the CPU clock rate to the desired timing with the
function PulWidth. The functions TouchReset and
TouchByte are timed by the UART only and therefore
are independent of the operating system.

SOFTWARE/HARDWARE MATRIX Table 3

LANGUAGE 8051 ASM PASCAL AND C

TIMING CPU CRYSTAL 8250 UART (1.8 MHz) and
8253 TIMER (2.4 MHz)

Electric Type 5V TTL 5V RS232, 12V RS232

SRAM R/W
EPROM Read

TouchReset, TouchByte 1.8 or 11 MHz TouchReset and TouchByte Pascal or C–Lan-
guage

EPROM Write 0.5 ms pulsewidth:
PULWIDTH(1) at 1.8 MHz
PULWIDTH(6) at 11 MHz

0.5 ms pulsewidth:
PULWIDTH(1193)
under DOS

B. TTL–Interface R/W All
As a representative for all microprocessor timed 1–Wire
interfaces the industry–standard 8051 microcontroller
has been chosen. The following pages show two ver-
sions of assembly language code to provide the func-
tions TouchReset and TouchByte. The first example is
written for an 11.0592 MHz crystal, the second one for
1.8432 MHz. The higher frequency is very common
since it supports all standard baud rates with the highest
accuracy. The lower frequency is the lowest that can
comply with the 1–Wire timing. The port to be used as
1–Wire bus is defined in the parameter DATA_BIT.
Parameter passing from the subroutines TouchReset
and TouchByte is very simple: If an iButton is present on

the 1–Wire bus, TouchReset will return a set carry flag;
otherwise carry is cleared. To send one byte to the
1–Wire bus, the byte to be sent is loaded into the accu-
mulator before calling TouchByte. If one intends to read,
the accumulator is loaded with FFH. This generates cor-
rect Read Data Time Slots and returns data from the
1–Wire bus to the calling program through the accumu-
lator. These conventions are valid for both versions of
TouchReset and TouchByte.

The procedure to generate a programming pulse is the
same for both clock frequencies. It generates a 0.5 ms
LOW pulse at the port named PROGRAM. If the clock
frequency is 1.8 MHz, then the accumulator needs to be

APPLICATION NOTE 74

040797 28/40

loaded with 1 before calling this procedure. For a clock
frequency of 11 MHz the value of 6 loaded into the accu-
mulator will generate a pulse of the same duration. Soft-
ware considering the Temperature iButton will be pub-

lished as soon as the device is available. Generally, it is
not a difficult task to adapt the procedure PulWidth to a
pulsewidth of 2 seconds.

8051 ASSEMBLY LANGUAGE, 11.0592 MHz
DATA_BIT BIT P0.0

; The following 8051 code uses a bi–directional port pin (specified by
; DATA_BIT) for 1–wire I/O. This code was written for an 11.0592 MHz
; crystal.
;
; Procedure TouchReset
;
; This procedure transmits the Reset signal to the
; iButton and watches for a presence pulse. On return,
; the Carry bit is set if a presence pulse was detected,
; otherwise the Carry is cleared. The code is timed for
; an 11.0592 MHz crystal.
;
TOUCHRESET:
 PUSH B ; Save the B register.
 PUSH ACC ; Save the accumulator.
 MOV A, #4 ; Load outer loop variable.
 CLR DATA_BIT ; Start the reset pulse.
 MOV B, #221 ; 2. Set time interval.
 DJNZ B, $; 442. Wait with Data low.
 SETB DATA_BIT ; 1. Release Data line.
 MOV B, #6 ; 2. Set time interval.
 CLR C ; 1. Clear presence flag.
WAITLOW:
 JB DATA_BIT, WH ; Exit loop if line high.
 DJNZ B, WAITLOW ; Hang around for 3360
 DJNZ ACC, WAITLOW ; us if line is low.
 SJMP SHORT ; Line could not go high.
WH:
 MOV B, #111 ; Delay for presence detect.
HL:
 ORL C, /DATA_BIT ; 222. Catch presence pulse.
 DJNZ B, HL ; 222. Wait with Data high.
SHORT:
 POP ACC ; Restore accumulator.
 POP B ; Restore B register.
 RET ; Return.
;
; Procedure TouchByte
;
; The procedure TouchByte sends the byte in the accumulator
; to the iButton and simulatneously returns one
; byte from the iButton in the accumulator. Note that
; the NOPs in the following code are intended to give the

APPLICATION NOTE 74

040797 29/40

; optimum performance when using a 11.0592 MHz crystal.
; Their purpose is to make the pulses as long as
; possible consistent with the iButton timing
; constraints. When using other crystal frequencies,
; the delays in this code should be adjusted to conform
; to the timing requirements of the iButton.
;
TOUCHBYTE:
 PUSH B ; Save the B register.
 MOV B, #8 ; Setup for 8 bits.
BIT_LOOP:
 RRC A ; 1. Get bit in carry.
 CALL TOUCHBIT ; 2. Send bit.
 DJNZ B, BIT_LOOP ; 2. Get next bit.
 RRC A ; Get final bit in ACC.
 POP B ; Restore B register.
 RET ; Return to caller.
TOUCHBIT:
 CLR DATA_BIT ; 1. Start the time slot.
 NOP ; 1. Delay to make sure
 NOP ; 1. that the iButton
 NOP ; 1. sees a low for at
 NOP ; 1. least 1 microsecond.
 MOV DATA_BIT, C ; 2. Send out the data bit.
 NOP ; 1. Delay to give the
 NOP ; 1. data returned from
 NOP ; 1. the iButton
 NOP ; 1. time to settle
 NOP ; 1. before reading
 NOP ; 1. the bit.
 MOV C, DATA_BIT ; 1. Sample input data bit.
 PUSH B ; 2. Save B register.
 MOV B, #12H ; 2. Delay until the end
 DJNZ B, $; 36. of the time slot.
 POP B ; Restore B register.
 SETB DATA_BIT ; Terminate time slot.
 RET ; Return to caller.
;
 END ; End of module._

8051 ASSEMBLY LANGUAGE, 1.8432 MHz
; iButton I/O Procedures for use with a 1.8432 MHz crystal.

TOUCHRESET:
 CLR DATA_BIT ; – Pull the data line low.
 MOV B, #35 ; 2 Hold the data line
 DJNZ B, $; 70 low for 481.77
 NOP ; 1 microseconds.
 SETB DATA_BIT ; 1 Release the data line.
 MOV B, #130 ; 2 Short circuit timeout.

APPLICATION NOTE 74

040797 30/40

 CLR C ; 1 Presence pulse detector.
WAITLOW:
 JB DATA_BIT, WAITHIGH ; 260 Go look for Presence pulse.
 DJNZ B, WAITLOW ; 260 Abort on short circuit.
 SJMP ABORT ; Short circuit (3.8877 ms).
WAITHIGH:
 MOV B, #18 ; 2 Prepare for high period.
HL:
 ORL C, /DATA_BIT ; 36 Trap the Presence pulse.
 DJNZ B, HL ; 36 Wait out 481.77 microsec.
ABORT:
 RET Return.
TOUCHBYTE:
 MOV B, #8 ; Prepare to move 8 bits.
BIT_LOOP:
 RRC A ; Move LSB to Carry.
 JC SENDONE ; If Carry then send 1.
 CLR DATA_BIT ; Otherwise send 0.
 SJMP DELAYSET ; 2 Wait out rest of time slot.
SENDONE:
 CLR DATA_BIT ; Start read/write 1 slot.
 SETB DATA_BIT ; 1 Set data line.
 MOV C, DATA_BIT ; 1 Read data line.
DELAYSET:
 NOP ; 1 Delay 7 more cycles
 NOP ; 1 to produce enough
 NOP ; 1 delay to complete
 NOP ; 1 the time slot.
 NOP ; 1
 NOP ; 1
 NOP ; 1
 SETB DATA_BIT ; 1 Done (65.1 microseconds).
 DJNZ B, BIT_LOOP ; Repeat to send 8 bits.
 RRC A ; Align final result.
 RET ; Return.

8051 ASSEMBLY LANGUAGE PULSEWIDTH (1.8432 AND 11.0592 MHz)
PROGRAM BIT Pn.i
;
; This procedure generates a 0.5 ms low pulse on port
; Pn.i of an 8051 microprocessor, where 0 <= n <= 3
; and 0 <= i <= 7. The frequency of the crystal, in
; multiples of the minimum frequency 1.8432 MHz, must
; be passed in the accumulator.
;
PULWIDTH:
 MOV B, #38 ; Number of loops at 1.8432 MHz.
 MUL AB ; AB = # of loops given frequency.
 INC B ; Adjust count value for
 ; use with DJNZ instruction.

APPLICATION NOTE 74

040797 31/40

 PUSH PSW ; Preserve state of interrupts.
 CLR EA ; Inhibit all interrupts.
 CLR PROGRAM ; Bring the port pin low.
LOOP:
 DJNZ ACC, LOOP ; Count while
 DJNZ B, LOOP ; pin is low.
 SETB PROGRAM ; Bring the port pin high.
 POP PSW ; Restore state of interrupts.
 RET ; Return.

C. RS232 Interface R/W All
UARTs like the 8250 can be connected to any micropro-
cessor to implement a RS232 type interface. The soft-
ware to operate the UART mainly consists of reading
and writing the UART’s internal registers (Figure 8). This
can easily be done in any high level language. Depend-
ing on the computer, the physical address of the UART
will be different, but the crystal will usually be a 1.8432
MHz type. Not regarding the UART’s physical address,
the software examples for TouchReset and TouchByte
given on the following pages are very general. The lan-
guages C and Pascal are very common and a variety of
compilers is available.

Unfortunately, the UART does not control the timing of
the signals DTR and RTS. It only allows activation or
deactivation of these signals by setting or clearing bits
inside its control registers. The timing itself is left to the
microprocessor and its peripheral timing circuits. From
the software developer’s point of view this is a step
backwards to assembly language, where every com-
mand and its execution time at a specified clock fre-
quency need to be counted. For this reason it is not pos-

sible to provide machine–independent software to
generate the programming pulse.

The most common computer using a 8250 type UART to
implement a RS232 interface is the IBM–compatible
PC. These machines employ a programmable interval
timer 8253 running at 2.3863633 MHz for general timing
purposes. This timer is involved in controlling the timing
of the software examples of PulWidth. The pulsewidth is
specified by a formal parameter passed to PulWidth.
For 0.5 ms the value of this parameter is 1193 decimal.
Under DOS, the software examples given below will
perform accurately and almost independent of the CPU
clock. Due to a very different environment and use of
resources under WINDOWS, the pulses will be longer
and also dependent on the CPU clock. This can be com-
pensated for experimentally by reducing the value of the
parameter passed to PulWidth. Software considering
the Temperature iButton will be published as soon as
the device is available. For the 5V–type RS232 interface
a pulsewidth of 2 seconds will be required for the strong
pullup to 5V. The 12V RS232 interface has enough
power available to run one Temperature iButton without
extra power switching.

C LANGUAGE FOR UART 8250 SYSTEMS
/*
 In the following C language code, 1–wire I/O is accomplished using the
 serial port of an IBM PC or compatible. The serial port must be capable
 of a 115,200 bps data rate. Setup must be called before any of the
 touch functions to verify the existence of the specified com port and
 initialize it.

 ––
 The setup function makes sure that the com port number passed to it
 is from 1 to 4 and has a valid address associated with it.
*/
uchar Setup(uchar CmPt)
{
 uint far *ptr = (uint far *) 0x00400000;
 uint SPA;

APPLICATION NOTE 74

040797 32/40

 /* check to see if it is a valid com port number and address */
 SPA = *(ptr+CmPt–1); /* get the address */
 if (CmPt < 1 || CmPt > 4 || !SPA)
 return FL;

 /* serial port initialization */
 outportb(SPA+3,0x83); /* set DLAB */
 outportb(SPA ,0x01); /* bit rate is 115200 */
 outportb(SPA+1,0x00);
 outportb(SPA+3,0x03); /* 8 dta, 1 stp, no par */
 outportb(SPA+1,0x00); /* no interrupts */
 outportb(SPA+4,0x03); /* RTS and DTR on */

 return TR;
}

/*––
 * Do a reset on the 1 wire port and return 0 no presence detect
 * 1 presence pulse no alarm
 * 2 alarm followed by presence
 * 3 short circuit to ground
 * 4 no com port found
 *
 * The global variable ’com_port’ must be set to the com port that the
 * DS9097 COM Port Adapter is attached to before calling this routine.
 *
 */
uchar TouchReset(void)
{
 uint SPA,F,X,Y,tmp,trst=0;
 uint far *ptr = (uint far *) 0x00400000;
 ulong far *sysclk = (ulong far *) 0x0040006c;
 ulong M;

 /* get the serial port address */
 SPA = *(ptr+com_port–1);

 /* return if there is no address */
 if (!SPA) return 4;

 /* serial port initialization */
 outportb(SPA+3,0x83); /* set DLAB */
 outportb(SPA ,0x01); /* bit rate is 115200 */
 outportb(SPA+1,0x00);
 outportb(SPA+3,0x03); /* 8 dta, 1 stp, no par */
 outportb(SPA+1,0x00); /* no interrupts */
 outportb(SPA+4,0x03); /* RTS and DTR on */

 /* Initialize the time limit */
 M = *sysclk +1;

APPLICATION NOTE 74

040797 33/40

 /* loop to clear the buffers */
 do { tmp = inportb(SPA+5) & 0x60; } while (tmp != 0x60);

 /* flush input */
 while (inportb(SPA+5) & 0x1) X = inportb(SPA);

 outportb(SPA+3,0x83); /* set DLAB */
 outportb(SPA+1,0x00); /* baud rate is 10473 */
 outportb(SPA ,0x0B);
 outportb(SPA+3,0x03); /* 8 dta, 1 stp, no par */
 outportb(SPA ,0xF0); /* send the reset pulse */

 /* wait until character back or timeout */
 do
 {
 Y = inportb(SPA+5);
 F = Y & 0x1;
 } while (!F && (*sysclk <= M));

 if (F) X = inportb(SPA);
 else return 3;

 if (X != 0xF0) /* if more bits back than sent then there */
 { /* is a device if framing error or break */
 trst = TR;
 if ((Y & 0x18) != 0)
 {
 trst = 2;

 /* loop to clear the buffers */
 do { tmp = inportb(SPA+5) & 0x60; } while (tmp != 0x60);

 /* wait until character back or timeout */
 do
 {
 Y = inportb(SPA+5);
 F = Y & 0x1;
 } while (!F && (*sysclk <= M));

 if (F) X = inportb(SPA);
 else return 3;
 }
 }

 outportb(SPA+3,0x83); /* set DLAB */
 outportb(SPA ,0x01); /* bit rate is 115200 */
 outportb(SPA+3,0x03); /* 8 dta, 1 stp, no par */

 return trst;
}

APPLICATION NOTE 74

040797 34/40

/*––
 * This is the 1–Wire routine ’TouchByte’, sometimes called ’DataByte’.
 * It transmits 8 bits onto the 1–Wire data line and receives 8 bits
 * concurrently. The global variable ’com_port’ must be set to the
 * com port that the serial brick is attached to before calling this
 * routine. This com port must also be set to 115200 baud, 8 dta, 1 stp,
 * and no parity. This routine returns the uchar 8 bit value received.
 * If it times out waiting for a character then 0xFF is returned.
 */
uchar TouchByte(uchar outch)
{
 uchar inch=0,sendbit,Mask=1;
 uint SPA;
 uint far *ptr = (uint far *) 0x00400000;
 ulong far *sysclk = (ulong far *) 0x0040006c;
 ulong M;

 /* get the serial port address */
 SPA = *(ptr+com_port–1);

 /* Initialize the time limit */
 M = *sysclk +2;

 /* wait to TBE and TSRE */
 do {} while ((inportb(SPA+5) & 0x60) != 0x60);

 /* flush input */
 while ((inportb(SPA+5) & 0x1))
 inportb(SPA);

 /* get first bit ready to go out */
 sendbit = (outch & 0x1) ? 0xFF : 0x00;

 /* loop to send and receive 8 bits */
 do
 {
 outportb(SPA,sendbit); /* send out the bit */

 /* get next bit ready to go out */
 Mask <<= 1;
 sendbit = (outch & Mask) ? 0xFF : 0x00;

 /* shift input char over ready for next bit */
 inch >>= 1;

 /* loop to look for the incoming bit */
 for (;;)
 {
 /* return if out of time */
 if (*sysclk > M)
 return 0xFF;

APPLICATION NOTE 74

040797 35/40

 if (inportb(SPA+5) & 0x01)
 {
 inch |= ((inportb(SPA) & 0x01) ? 0x80 : 0x00);
 break;
 }
 }

 } while (Mask);

 return inch; /* return the input char */
}

C LANGUAGE PULSEWIDTH FOR SYSTEMS USING 8253 AND 8250
// standard include header file
#include <dos.h>

// function prototype
void PulWidth(unsigned int);

// global variable
int SPA;

//–––
// This procedure creates a fixed pulse width for programming that is
// approximately independent of system clock speed. X is in units of
// 0.419 microseconds for values greater than about 1000.
//
void PulWidth(unsigned int X)
{
 unsigned int N,M;

 disable(); // turn off interrupts
 outportb(SPA+4,(inportb(SPA+4) & 0xFD)); // apply program pulse to rts
 outportb(0x43,0); // freeze value in timer
 M = inportb(0x40); // read value in timer
 M |= (inportb(0x40) << 8);
 do
 {
 outport(0x43,0); // freese value in timer
 N = inportb(0x40); // read value in timer
 N |= (inportb(0x40) << 8);
 }
 while (X > (M – N));

 outportb(SPA+4,(inportb(SPA+4) | 0x02)); // remove program Voltage
 enable(); // turn interrupts on
}

APPLICATION NOTE 74

040797 36/40

PASCAL LANGUAGE FOR UART 8250 SYSTEMS
{
 In the following pascal code 1–wire I/O is accomplished using the
 serial port of an IBM PC or compatible. The serial port must be capable
 of a 115,200 bps data rate.
}
Const
 SPA : Word = 0; { Currently active serial port address }

Function TouchReset(N: Byte): Boolean;
{
 This function transmits the one–wire protocol reset sequence to
 the device connected to COM port number N. This sequence consists
 of a low pulse lasting a mimimum of 480 us followed by a high dead
 time lasting a mimimum of 480 us. The function returns True if a
 presence detect pulse occurs during the dead time, otherwise
 it returns False.
}
Const
 Init : Array[1..4] of Boolean = (True, True, True, True);

Var
 S : Array[1..4] of Word Absolute $40:0;
 T : LongInt Absolute $40:$6C;
 M : LongInt;
 F : Boolean;
 X, Y : Byte;

Begin
 SPA := 0; TouchReset := False; { Assume failure }
 If (N > 0) and (N < 5) and (S[N] > 0) then Begin { Legal port # }
 SPA := S[N]; { Save active serial port address }
 If Init[N] then Begin { Serial port requires initialization }
 Port[SPA +3] := $83; { Set the DLAB }
 Port[SPA] := 1; { Bit rate is }
 Port[SPA +1] := 0; { 115200 bps }
 Port[SPA +3] := 3; { 8 dta, 1 stp, no par }
 Port[SPA +1] := 0; { No interrupts }
 Port[SPA +4] := 3; { RTS and DTR on }
 Init[N] := False; { Initialization completed }
 End;
 M := T +1; { Initialize the time limit }
 Repeat until Port[SPA +5] and $60 = $60; { Await TBE & TSRE }
 While Odd(Port[SPA +5]) do X := Port[SPA]; { Flush input }
 Port[SPA +3] := $83; { Set DLAB }
 port[SPA+1] := 0; { Baud rate is 10473 }
 Port[SPA] := 11;
 Port[SPA +3] := 3; { 8 data, 1 stop, no parity }
 Port[SPA] := $F0; { Send the reset pulse }
 Repeat { Wait until character back or timeout }
 Y := Port[SPA +5];
 F := Odd(Y);

APPLICATION NOTE 74

040797 37/40

 until F or (T > M);
 If F then X := Port[SPA] else X := $F0;
 If (X <> $F0) Then Begin { If more bits back than sent }
 TouchReset := True; { then there is a device }
 If ((Y and $18) <> 0) Then Begin { Framing error or break }
 Repeat until Port[SPA +5] and $60 = $60; { TBE & TSRE }
 Repeat F := Odd(Port[SPA +5]) until F or (T > M);
 If F then X := Port[SPA];
 End;
 End;
 Port[SPA +3] := $83; { Set the DLAB }
 Port[SPA] := 1; { Bit rate is 115200 bps }
 Port[SPA +3] := 3; { 8 dta, 1 stp, no par }
 End;
End;

Function TouchByte(X: Byte): Byte;
{
 This function transmits the byte X to the device attached to the
 currently active serial port SPA, and returns a byte from the
 device as its value.
}
Var
 T : LongInt Absolute $40:$6C;
 M : LongInt;
 I, J : Byte;
Begin
 If SPA = 0 then TouchByte := X else Begin
 M := T +1; { Initialize the time limit }
 Repeat until Port[SPA +5] and $60 = $60; { Await TBE & TSRE }
 While Odd(Port[SPA +5]) do I := Port[SPA]; { Flush input }
 I := 0; J := 0; { Initialize output & input bit counters }
 Repeat
 If Odd(Port[SPA +5]) then Begin
 Inc(J); If Odd(Port[SPA]) then X := X or $80;
 End else If (I<=J) and (Port[SPA+5] and $20 = $20) then Begin
 If Odd(X) then Port[SPA] := $FF else Port[SPA] := 0;
 X := X shr 1; Inc(I);
 End;
 Until (J = 8) or (T > M);
 While (J < 8) do Begin
 X := X shr 1 or $80;
 Inc(J)
 End;
 TouchByte := X;
 End;
End;

APPLICATION NOTE 74

040797 38/40

PASCAL LANGUAGE PULSEWIDTH FOR SYSTEMS USING 8253 AND 8250
Procedure PulWidth(X : Word);
{
 This procedure creates a fixed pulse width for programming
 that is approximately independent of system clock speed. When
 used in an IBM PC or compatible computer operating under MS–
 DOS, X is in units of 0.419 microseconds for values of X
 greater than about 1000. The procedure can be used with any
 processor having an 8250 UART I/O mapped to base port address
 SPA and an 8253 timer mapped to base port address $40,
 operating with an input clock of 2.386363 MHz and with its
 count limit set to the maximum value.
}
Var
 M, N : Word;
Begin
 Inline($FA); {Turn off interrupts}
 Port[SPA +4] := Port[SPA +4] and $FD; {Apply Program Pulse on RTS}
 Port[$43] := 0; {Freeze value in timer}
 M := Port[$40] shl 8 or Port[$40]; {Read value in timer}
 Repeat {Loop to consume real time}
 Port[$43] := 0; {Freeze value in timer again}
 N := Port[$40] shl 8 or Port[$40]; {Read new value in timer}
 Until M – N >= X; {See if ”X” usec have elapsed}
 Port[SPA +4] := Port[SPA +4] or 2; {Remove Program Voltage}
 Inline($FB); {Turn interrupts on}
End;

VIII. SUMMARY
This application note explains the hardware of different
types of 1–Wire interfaces and software examples
adapted to this hardware. Depending on the types of
iButtons required for a project and the type of computer
to be used, the most economic interface is easily found.
The hardware examples shown are basically two differ-
ent types: 5V general interface and 12V RS232 inter-
face. Within the 5V group a common printed circuit
board could be used for all four circuits. The variations
can be achieved by different population of components
(Table 4). The same principle is used for the 12V RS232
interface. The population determines if it is a Read all or
a Read/Write all type of interface (Table 5).

There are other possible circuit implementations to
create a 1–Wire interface. The circuits described in this
application note cover many different configurations.
For a custom application, one of the described options
can be adapted to meet individual needs. The circuits
can be used for reading and writing SRAM based
iButtons, for individually programming EPROM based
iButtons and for temperature measurement with the
DS1920 Temperature iButton. For programming large
quantities of EPROM based iButtons with the same data
(gang programming) commercial programmers are
available from several independent companies. A list of
vendors is available from Dallas Semiconductor on
request.

APPLICATION NOTE 74

040797 39/40

PARTS LIST FOR 5V SERIAL TO 1–WIRE PORT ADAPTERS (FOUR OPTIONS) Table 4

POSITION TTL READ ALL 5V RS232 RD ALL TTL RW ALL 5V RS232 RW ALL

C1 empty empty 10µ tantalum 10µ tantalum

C2 empty empty 150p, ceramic 150p, ceramic

D1 1N5242 (12V) 1N5242 (12V) 1N5242 (12V) 1N5242 (12V)

D2 1N5232 (5.6V) 1N5232 (5.6V) 1N5242 (12V) 1N5242 (12V)

D3 empty 1N5232 (5.6V) empty 1N5242 (12V) optional

D4 empty empty 1N5242 (12V) 1N5242 (12V)

D5 empty empty ERA–82–004 ERA–82–004

D6 empty empty 1N5818 1N5818

D7 short short empty ERA–82–004 optional

IC1 empty empty LT1109CN8–12 LT1109CN8–12

Q1 2N7000 2N7000 2N7000 2N7000

Q2 short GD 2N7000 short GD 2N7000

Q3 empty empty 2N7000 2N7000

Q4 empty empty 2N7000 2N7000

Q5 empty empty BSS110 BSS110

R1 4.7 kΩ 4.7 kΩ 4.7 kΩ 4.7 kΩ

R2 empty 4.7 kΩ empty 4.7 kΩ

R3 empty empty 100 kΩ 100 kΩ

R4 empty empty 100 kΩ 100 kΩ

R5 empty empty 47 kΩ 47 kΩ

L1 empty empty see text see text

APPLICATION NOTE 74

040797 40/40

PARTS LIST FOR 12V COM PORT TO 1–WIRE ADAPTERS (TWO OPTIONS) Table 5

POSITION READ ALL RW ALL

D1 empty 1N5228 (3.9V)

D2 empty 1N5234 (6.2V)

D3 ERA–82–004 ERA–82–004

D4 ERA–82–004 ERA–82–004

D5 1N5228 (3.9V) 1N5235 (6.8V)

D6 1N5234 (6.2V) 1N5242 (12V)

D7 empty ERA–82–004

Q1 empty 2N7000

Q2 empty 2N7000

Q3 empty 2N7000

Q4 empty BSS110

R1 1.5 kΩ 1.5 kΩ

R2 empty 1000 kΩ

R3 empty empty

R4 empty 39 Ω

