
LibSWD
Serial Wire Debug Open Framework

for Low–Level Embedded Systems Access
Tomasz CEDRO, Marcin KUZIA, Antoni GRZANKA

ORANGE LABS POLAND, WARSAW / TP R&D
Obrzeżna 7, 02-691 Warsaw, Poland.

WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Electronics and Information Technologies

Nowowiejska 15/19, 00-665 Warsaw, Poland.
POLISH INTERDISCIPLINARY NEUROSCIENCE GROUP

http://www.tomek.cedro.info
tomek@cedro.info

Abstract—Modern microelectronics has settled for good in
embedded systems that run our everyday life in areas of home
entertainment, telecommunications, medical equipment, various
industrial applications, even military and aerospace systems.
Increasing complexity of these systems requires new tools for
development, testing and security analysis. Presented work is an
ongoing effort to create from scratch a Free and Open framework
for low–level access (In–Circuit–Emulation and On–Chip–Debug)
into ARM–Cortex [7] based devices that use new SWD bus
(a JTAG alternative). LibSWD [1] is a BSD–licensed software
library and it is being integrated into well known Open–Source
applications such as UrJTAG [11] and OpenOCD [12].

I. INTRODUCTION

A. Software and Hardware

MODERN embedded systems are the state of the art
mixture of hardware and software. Hardware (elec-

tronic components) makes it possible for software (computer
programs) to operate, but on the other hand it is the soft-
ware that makes hardware intelligent, communicative and user
friendly with help of the Operating System. Before device
reaches state of the final product it needs to conquer long
and hard road of design, development and testing, utilizing
unimaginable resources and thousands of minds at work. Only
few people really know how hard and important it is to
create basic components that makes Operating System (high–
level components) functional – bootloaders, drivers, compilers,
linkers, and many more low–level services that create a virtual
bridge between world of software and hardware. Figure 1
shows how many various peripherals are included in just one
simple chip of the modern microcontroller.

B. Low–Level Access

The hardware and physical parts of the system are often re-
ferred as low–level because they make operation of logical and
software structures (so called high–level functions) possible.
On the other hand it is still possible to access low–level system
resources with use of special physical interface connection,

even if the software is not yet operational (i.e. no bootloader
and operating system), to test the software components from
the hardware point of view (i.e. debugging the bootloader
or the operating system components), or simply to test the
hardware itself.

C. Standards

JTAG is the best known standard (IEEE1149.1 [3]) of
the low–level access method to various microcontroller ar-
chitectures internals such as CPU, Peripherals and Memory,
making it possible to take full control over target system
at the hardware level. This is very important feature for
developers, testers and security researchers to have unlimited
access to every information in the system. But as JTAG has
some limitations, the alternative solution called Serial Wire
Debug (SWD) was introduced by ARM Incorporated [4] and
implemented in their new ARM Cortex devices family.

This paper describes low–level access basics into modern
microprocessor systems with use of LibSWD software library
that implements the Serial Wire Debug transport in Platform
Independent, Free and Open–Source manner.

II. JOINT TEST ACTION GROUP (JTAG)

A. What is JTAG

As mentioned in previous section the JTAG is the well
known low–level access mechanism to access internals of
the microprocessor systems. The IEEE1149.1 [3] standard
defines a finite state machine (see Figure 2) that defines
access to the Test Access Port / Debug Access Port registers
(Instruction and Data Registers) in order to access system
internals such as CPU, Peripherals, Memory, Debug Unit, etc.

However, the internal organization of the specific regis-
ters and access ports itself is target dependent and vary
across different CPU architectures. Microprocessors designed
by ARM use ARM Debug Interface standard [5] (described
later in this paper), microprocessors designed by MIPS use

Fig. 1. ARM Cortex CPU in STM32 microcontroller, block diagram [9].

EJTAG standard [8], other devices will probably use their
own internal organization. This makes things complicated and
require target specific software implementation of the tools,
while the electrical interface and the access method remains
common for all JTAG aware devices.

B. Signalling

The JTAG Test Access Port requires following electrical
signals to operate:

• TDI (Test Data Input) that provides input bitstream into
scan chain.

• TDO (Test Data Output) that provides output bistream
from the scan chain.

• TCK (Test ClocK) that provides synchronous clock
source to the target system.

• TMS (Test Mode Selection) that provides operation mode
selection of the target system and is vital for proper state
machine operations.

• TRST (Test ReSeT) that can reset target access port.
• GND (Ground) that provides voltage reference point of

zero potential.
• VCC (Voltage Supply) that provides reference voltage for

interface input buffers and voltage level shifters.

Fig. 2. JTAG TAP/DAP State Machine [6].

• SRST (System ReSeT) that can reset whole target system
(useful for development purposes and remote manage-
ment).

C. Practice

For some systems TRST signal can be omitted and equiv-
alent functionality can be achieved only with use of TMS
and TCK pins, also SRST can be sometimes activated using
target internals. Therefore at least six signals are required for
JTAG connection to work (TRST and SRST can be ommited),
and those signals have corresponding pins somewhere on the
system PCB as a group of test points or even a dedicated
connector.

Finding JTAG connector on an unknown board is a very
complex subject (large enough for a separate publication) and
usually this requires knowledge obtainable from technical/ser-
vice specification of the target CPU/SoC, or even hardware
reverse–engineering techniques.

Accessing mentioned signals also brings some security risk
to the target system, therefore very often Test Access Port
functional block is disabled or at least hidden by spreading
test points across whole PCB.

D. Multiple Devices

Fig. 3. JTAG Scan Chain [10].

As presented on Figure 3 JTAG aware devices can be daisy–
chained together serially one after another, where input of the

chain (TDI) is the input to the first device, output of the first
device becomes input of the second device, and the last device
output is the chain output (TDO). In this case TCK, TMS and
TRST control signals are common to all devices, only one
interface is necessary to access all of the chain elements, only
one device can be active at time. Unfortunately, whole chain
is as fast as its slowest component and the malfunction of one
component breaks whole chain.

III. DEBUG ACCESS PORT

A. What is DAP

Although Serial Wire Debug (SWD) is somehow alternative
to JTAG method of low–level access to ARM Cortex devices,
both JTAG and SWD exist to transport commands to/from
Debug Access Port (DAP). Debug Access Port is a dedicated
silicon on–chip device that serves as a gateway between debug
host (software+interface) and the microprocessor internals
(memory, peripherals, debug unit, etc).

To understand how low–level access works in ARM micro-
processor based embedded systems it is essential to understand
how Debug Access Port (DAP) works, please read the „ARM
Debug Interface” specification [5] for detailed information.

DAP is far more complex than Bootloader or Operating
System Serial Port Console with Commandline Interface (CLI)
implementation because it works on a hardware register
transfer level not in a software domain. Its purpose is to
access dedicated on–chip functional blocks using Access Ports
(AP) as their interface. Reading and writing to selected AP
registers triggers operations that can result in memory access
(when using MEM–AP), general bus access (AHB–AP), debug
functionality, and others.

Not all internal peripherals have their corresponding Access
Ports, therefore only those functionalities with AP imple-
mented in the hardware can be accessed from outside by DAP.

B. Organization

Fig. 4. ARM Cortex Debug Access Port organization [6].

Figure 4 shows the internal organization of the Debug
Access Port. Debug Port Interface (also known as Test Access
Port in JTAG terminology) is the physical signalling connector.
DAP Internal Interface connects DAP to multiple Access Ports
(AHB–AP as example in this case).

C. Functionality

Depending on hardware capabilities, from the debugger
perspective, DAP can support JTAG transport (using JTAG–
DP), SWD transport (using SW–DP), or both. The block
responsible for decoding the transport bitstream is called Serial

Wire and JTAG Debug Port (SWJ–DP), it contains both SW–
DP and JTAG–DP. Methods for read, write and error handling
operations are a bit different for JTAG and SWD, but in
general they access the same DAP registers.

DAP registers makes it possible to read/write Access Ports
in order to perform operations on selected on–chip subsys-
tems. Therefore, DAP is only a gateway between debugger
host/software and the target on–chip subsystem, it can store
read/write results, error codes, AP addresses and eventually
abort their operations, but DAP alone without target AP is
pretty useless.

D. Registers

Debug Access Port consists of following registers:

• IDCODE – Identification Code Register that contains
unique 32–bit identification bitstream with manufacturer
code, device and version code according to the JEDEC
standard.

• ABORT – Abort Register is used to abort ongoing or
stalled operations, also to clear error flags on SW–DP.

• CTRL/STAT – Control/Status Register contains all im-
portant information on status of the DAP, also allows to
control DAP functions.

• SELECT – AP Select Register function is to select Access
Port address to be accessed and Register Bank within the
selected AP.

• RDBUFF – Read Buffer has different meaning in JTAG–
DP (to initiate a read operation) and SW–DP (to return
last AP read result, because reading the data register
in AP initiates a read and produces WAIT state by
default, however sequential reads from RDBUFF will
give unpredictabe result!).

• WCR – Wire Control Register has the same address as
CTRL/STAT but it is accessed when SELECT bit 0 value
is set to 1. Its purpose is to control physical SWD bus
parameters.

• RESEND – Read Resend Register is available only on
SW–DP and its purpose is to recover read data from
corrupted transfer without repeating AP transfer.

Fig. 5. Serial Wire and JTAG Debug Port organization [6].

IV. SERIAL WIRE DEBUG

A. What is SWD

As explained in previous sections Serial Wire Debug (SWD)
is an alternative to JTAG transport method to perform oper-
ations on on–chip Debug Access Port (DAP) and peripheral
specific Access Ports (AP) in ARM Cortex devices. To un-
derstand the complexity of its software implementation it is
first important to understand SWD basics. It is packed–based
half–duplex serial protocol, where each transfer is initialized
and controlled by a debugger host.

Fig. 6. Successful Read and Write SWD Operations [6].

Figure 7 presents example successful read and write oper-
ation diagrams (these are not exact timing diagrams!) which
nicely visualise SWD packet elements:

• REQUEST – defines access type (read, write) and lo-
cation (AP/DP register address). It also contains parity
control bit to avoid protocol errors.

• TRN – turnaround gives time for interface buffers to
switch bus direction from read to write. TRN length in
clock cycles can be set using WCR DP register.

• ACK – returns the Target response status – it can be
OK, WAIT (to retry transfer), FAULT (when unrecover-
able error occurs), or no response when Protocol Error
Sequence occurs (target is powered down, target does not
understand the request, etc).

• DATA – holds the 32–bit data payload.
• PARITY – even parity bit to control DATA integrity.

B. Signalling

Figure 9 tells more about SWJ–DP signalling. JTAG and
SWD use the same signal / port pins – JTAG TMS is the SWD
SWDIOTMS, TCK is the SWCLKTCK. SWD only use two
signal pins as opposed to five signal pins used by JTAG. To
activate SW–DP or JTAG–DP special 16–bit sequence should
be applied on the TMS signal, however JTAG–DP is active
by default for backward compatibility reasons. It is therefore
possible to use one Serial Wire and JTAG interface to access
SWJ enabled device, which is elegant solution.

V. LIBSWD

A. What is LibSWD

LibSWD is a first in the world platform and hardware
independent Open–Source framework to deal with with Se-
rial Wire Debug Port in accordance to ADI (Arm Debug
Interface, version 5.0 at the moment) specification [5]. It is

Fig. 7. SWD/JTAG connector tapped into a real hardware [2].

released under 3–clause BSD license and documented with
Doxygen. For more information please visit project website at
http://libswd.sf.net.

B. What it can do

Serial Wire Debug is an alternative to JTAG (IEEE1149.1)
transport layer for accessing the Debug Access Port in ARM-
Cortex based devices. LibSWD provides methods for access-
ing the Debug Access Port and various Access Ports registers
on the target.

From programmer and user perspective it is
as simple as calling swd_dap_detect() and
swd_{dp,ap}_{read,write} functions to perform
low–level operations on the target hardware. LibSWD takes
care of bitstream generation on the wire using simple but
flexible API that can reuse capabilities of existing applications
for easier integration, specifically the existing interface drivers
code.

Every bus operation such as control, request, turnaround,
acknowledge, data and parity packet is named a „command”
represented by a swd_cmd_t data type that builds up the
queue that later can be flushed into real hardware using
standard set of (application–specific) driver functions. This
way LibSWD is almost standalone and can be easily integrated
into existing utilities for low–level access and only requires
in return to define driver bridge that controls the physical
interface interconnecting host and target.

Drivers and other application–specific functions are
extern type and located in external file crafted for that
application and its hardware. Figure 8 shows how easily
LibSWD can be integrated into existing low–level access
applications.

Fig. 8. LibSWD integration with existing low–level access applications.

C. SWD Context

The most important data type in LibSWD is swd_ctx_t
structure, a context that represents logical entity of the swd
bus (transport layer between host and target) with all its
parameters, configuration and command queue. Context is
being created with swd_init() function that returns pointer
to allocated virgin structure, and it can be destroyed with
swd_deinit() function taking the pointer as argument.
Context can be set only for one interface–target pair, but
there might be many different contexts in use if necessary,
so amount of devices in use is not limited.

D. Functions organization

All functions in general operate on pointer type and return
number of processed elements on success or negative value
with swd_error_code_t on failure. Functions are grouped
by functionality that is denoted by function name prefix (ie.
swd_bin* are for binary operations, swd_cmdq* deals with
command queue, swd_cmd_enqueue* deals with creating
commands and attaching them to queue, swd_bus* performs
operation on the swd transport system, swd_drv* are the
interface drivers, etc).

Because programs using LibSWD for transport can queue
multiple operations and don’t handle errors of each transaction
appropriately, swd_drv_transmit() function verifies the
ACK and PARITY operation results directly after execution
(read from target) and return error code if necessary. When
error is detected and there were some pending operations
enqueued for execution, they are discarded and removed from
the queue (they would not be accepted by the target anyway),
the queue is then again ready to accept new transactions (i.e.
error handling operations).

Standard end–users are encouraged to only use high level
functions (swd_bus*, swd_dap*, swd_dp*) to perform
operations on the swd transport layer and the target’s DAP
(Debug Access Port) and its components such as DP (Debug
Port) and the AP (Access Port). More advanced users however
may use low level functions (swd_cmd*, swd_cmdq*) to
group them into new high–level functions in order to automate
some tasks (such as existing high–level functions does).

Functions of type extern are the ones to implement in
external file by developers that want to incorporate LibSWD
into their application. Context structure also has void pointer
in the swd_driver_t structure that can hold address of the
external driver structure to be passed into internal swd drivers
(extern swd_drv* functions) that wouldn’t be accessible
otherwise.

E. Commands

Bus operations are split into commands represented by
swd_cmd_t data type. They form a bidirectional command
queue that is part of swd_ctx_t structure. Command type,
and so its payload, can be one of: control (user defined 8–
bit payload), request (according to the standard), ack, data,
parity (data and parity are separate commands!), trn, bitbang
and idle (equals to control with zero data). Command type is

defined by swd_cmdtype_t and its code can be negative
(for MOSI operations) or positive (for MISO operations) –
this way bus direction can be easily calculated by multiplying
two operation codes (when the result is negative bus will have
to change direction), so the LibSWD „knows” when to put
additional TRN command of proper type between enqueued
commands.

Payload is stored within union type and its data can be
accessed according to payload name, or simply with data8
(char) and data32 (int) fields. Payload for write (MOSI)
operations is stored on command creation, but payload for read
(MISO) operations becomes available only after command is
executed by the interface driver. There are 3 methods of ac-
cessing read data – flushing the queue into driver then reading
queue directly, single stepping queue execution (flush one–by–
one) then reading context log of last executed command results
(there are separate fields of type swd_transaction_t in
swd_ctx_t’s log structure for read and write operations
that are updated by swd_drv_transmit() function be-
fore write and after read), or providing a double pointer on
command creation to have constant access to its data after
execution.

After all commands are enqueued with
swd_cmd_enqueue* function set, it is time to send
them into physical device with swd_cmdq_flush()
funtion. According to the swd_operation_t parameter
commands can be flushed one–by–one, all of them, only to
the selected command or only after selected command. For
low level functions all of these options are available, but
for high–level functions only two of them can be used –
SWD_OPERATION_ENQUEUE (but not send to the driver) and
SWD_OPERATION_EXECUTE (all unexecuted commands
on the queue are executed by the driver sequentially) – that
makes it possible to perform bus operations one after another
having their result just at function return, or compose more
advanced sequences leading to preferred result at execution
time. Because high–level functions provide simple and
elegant manner to get the operation result, it is advised to use
them instead dealing with low–level functions (implementing
memory management, data allocation and queue operation)
that exist only to make high-level functions possible.

F. Drivers

Calling the swd_cmdq_flush() function leads to
execution of not yet executed commands from the
queue (in a manner specified by the operation pa-
rameter) on the SWD bus by swd_drv_transmit()
function that use application specific extern func-
tions defined in external file (ie. libswd_urjtag.c or
swd_libswd_drv_openocd.c as examples) to operate
on a real hardware using drivers from existing applica-
tion. LibSWD use only swd_drv_{mosi,miso}_{8,32}
(separate for 8–bit char and 32–bit int data cast type) and
swd_drv_{mosi,miso}_trn functions to interact with
interface buffers, so it is possible to easily reuse low–level
and high–level devices for communications, as they have all

Algorithm 1 Simple LibSWD example to detect and read out
the target IDCODE identification register.

i n c l u d e < l i b s w d . h>
i n c l u d e < s t d i o . h>
i n t main () {

s w d _ c t x _ t ∗ swdctx ;
i n t r e s , ∗ i d c o d e ;
swdctx = s w d _ i n i t () ;
i f (swdctx ==NULL) re turn −1;
/ / d e f i n e d r i v e r swd_drv ∗ f u n c t i o n s
/ / use swdctx−>d r i v e r −>d e v i c e = . . .
r e s = s w d _ d a p _ d e t e c t (swdctx , \
SWD_OPERATION_EXECUTE, &i d c o d e) ;

i f (r e s <0){
p r i n t f ("ERROR: %s \ n " , \

s w d _ e r r o r _ s t r i n g (r e s)) ;
re turn r e s ;

} e l s e p r i n t f ("IDCODE : 0x%X (%s) \ n " , \
∗ i dcode , s w d _ b i n 3 2 _ s t r i n g (i d c o d e)) ;

s w d _ d e i n i t (swdctx) ;
re turn 0 ;

}

information necessary to perform exact actions – number of
bits, payload, command type, shift direction and bus direction.
It is even possible to send raw bytes on the bus (control
command) or bitbang the bus (bitbang command) if neces-
sary.

MOSI (Master Output Slave Input) and MISO (Master
Input Slave Output) nomenclature was used to clearly dis-
tinguish transfer direction (from master–interface to target–
slave), as opposed to ambiguous read/write statements, so after
swd_drv_mosi_trn() master should have its buffers set
to output and target inputs active.

Drivers, as most of the LibSWD functions, works on data
pointers instead data copy and returns number of elements
processed (bits in this case) or negative error code on failure.

It is also important to note that LibSWD can use different
debug levels to produce verbose messages usually helpful
in troubleshooting. LibSWD can even produce hardware bit-
stream debug information messages, so there is no need to
use external measurement units such as oscilloscope to exactly
reproduce and retrace all bus operations.

G. Summary

LibSWD project has its public website at http://libswd.sf.
net. It is developed in C programming language as static and
dynamic library with use of Autotools for platform indepen-
dent build. The source code is Free and Open, still under
development, and documented with Doxygen. The library
is meant to give SWD access to external applications with
minimal effort, reusing existing interface drivers, and almost
no source code modifications.

Fig. 9. LibSWD communicating with real hardware [2].

GIT repositories of LibSWD integrated into OpenOCD
and UrJTAG software utilities are publicly available for
testing. Project history and details are located at http://
stm32primer2swd.sf.net. Feel free to contact library author for
more information, suggestions and general feedback. Please
remember to support Open–Source and Free–Software as you
may need it one day – you will probably get as much as you
give to the community for their efforts.

ACKNOWLEDGMENT

This research was possible due to personal involvement
of Tomasz Bolesław CEDRO with unprecedented support
from Orange Labs as part of the bigger international project
conducted between Orange Labs Warsaw and Orange Labs
Paris, and the Warsaw University of Technology as part of the
Brain Computer Interface project conducted by Biocybernetic
Aparatus Research Group, the Cybernetic Research Student
Group and the Polish Interdisciplinary Neuroscience Group.
Thank you for supporting Free and Open world!

All logos, trademarks, figures, and other copyrighted mate-
rials are owned by their respective owners.

REFERENCES

[1] LibSWD – Serial Wire Debug Open Framework, http://libswd.sf.net.
[2] LibSWD technical details and project history, http://stm32primer2swd.

sf.net.
[3] 1149.1 – IEEE Standard Test Access Port and Boundary-Scan Architec-

ture, http://standards.ieee.org/findstds/standard/1149.1-1990.html.
[4] ARM Incorporated, http://www.arm.com.
[5] ARM Debug Interface v5 Architecture Specification, http://infocenter.

arm.com/help/topic/com.arm.doc.ihi0031a/index.html.
[6] ARM Information Center, http://infocenter.arm.com.
[7] ARM Cortex M3 Homepage, http://www.arm.com/products/processors/

cortex-m/cortex-m3.php.
[8] MIPS Architecture Technical Specification Documents, http://mips.com/

products/product-materials/processor/mips-architecture/.
[9] ST Mictoelectronics, http://www.st.com/.

[10] JTAG standard description on Wikipedia, http://en.wikipedia.org/wiki/
Jtag.

[11] Universtal JTAG software toolkit and library, http://urjtag.sf.net.
[12] Open On–Chip–Debugger software utility, http://openocd.sf.net.

