
WARSAW UNIVERSITY OF TECHNOLOGY
Electronics and Information Technologies Faculty

Research Group on Biocybernetic Aparatus
Institute of Electronic Systems

Tomasz Bolesªaw CEDRO
Index number: 188597

Master of Science Diploma Thesis

CeDeROM Brain Computer Interface

Thesis Supervisor:
prof. dr hab. Antoni GRZANKA

November 10, 2011
Warsaw, Poland

http://www.pw.edu.pl
http://www.elka.pw.edu.pl
http://www.ise.pw.edu.pl/index.php?id=169
http://www.ise.pw.edu.pl
http://www.tomek.cedro.info
http://www.ise.pw.edu.pl/~antekg

CeDeROM Brain Computer Interface
Abstract

Brain Computer Interface is a biomedical equipment used to perform user
interaction with computer equipment based on a brain activity mesure-
ment. Modular Research System presented in this document is a proto-
type aimed for supporting the research groups with versatile and �exible
hardware platform for BCI research, but also easy construct and veri�ca-
tion of commercial products that can �nd its use in solving various real
life problems.
Modular design consists of control boards based on STM32 ARM�Cortex
M3 for mobile applications and FPGA for real time DSP, safe power
supply with galvanic separation, general purpose hex 24�bit SigmaDelta
ADC, integrated biological signal acquisition frontend with 24�bit Sig-
maDelta ADC and SPI interface, standard EEG electrodes connector
board, user interaction with LED and push�buttons, and �nally the
demonstration expansion board with computer joystic interface to control
external hardware.
System is equipped with USB2.0 FullSpeed Device Unit (ARM) and
1GBit Ethernet Controller (FPGA). System was designed to be a
low�cost solution based on Free and/or Open�Source Software. Example
usecases are also presented in this document.

Keywords: CeDeROM BCI (Brain Computer Interface), Neural In-
terface, Biocybernetics, Biomedical, Neurofeedback, Biofeedback, ARM,
Cortex, FPGA, ADC, DSP, OpenEEG, Open�Source, FreeBSD, USB,
Matlab Driver, BCIOP, Atari, PONG.

Interfejs Mózg�Komputer �CeDeROM BCI�
Streszczenie

Interfejs Mózg�Komputer (Brain Computer Interface) jest urz¡dzeniem
biomedycznym nakierowanym na interakcj¦ u»ytkownika ze sprz¦tem
komputerowym za pomoc¡ pomiaru aktywno±ci elektrycznej mózgu.
Modularny System Badawczy zaprezentowany w niniejszym dokumencie
to prototyp, którego zadaniem jest wsparcie grup badawczych wszech-
stronn¡ i elastyczn¡ platform¡ sprz¦tow¡ do bada« nad BCI, ale równie»
ªatwe opracowanie i wery�kacja komercyjnych urz¡dze«, które mog¡ by¢
pomocne w rozwi¡zywaniu problemów z »ycia codziennego.
Na moduªow¡ konstrukcj¦ skªada si¦ jednostka steruj¡ca oparta o
mikrokontroler STM32 z rdzeniem ARM�Cortex M3 dla zastosowa«
mobilnych oraz ukªad Xilinx Spartan FPGA dla przetwarzania syg-
naªów w czasie rzeczywistym, bezpieczny moduª zasilania z sepa-
racj¡ galwaniczn¡, o±miokanaªowy przetwornik analogowo�cyfrowy 24�
bit SigmaDelta, zintegrowany ukªad pomiaru i akwizycji sygnaªów bi-
ologicznych z przetwarzaniem SigmaDelta 24�bit oraz interfejsem SPI,
standardowy moduª poª¡czeniowy dla elektrod EEG, ukªad interakcji
z u»ytkownikem w postaci zestawu przycisków i diod ±wiec¡cych, a
tak»e demonstracyjna pªytka z moduªem interfejsu joysticka steruj¡cego
zewn¦trznym sprz¦tem komputerowym.
System wyposa»ony jest w interfejsy komunikacyjne USB2.0 (moduª
ARM) oraz 1GBit kontroler Ethernet (moduª FPGA). System zostaª
zaprojektowany jako niedrogie rozwi¡zanie korzystaj¡ce z wolnego opro-
gramowania (Free�Software) o swobodnym dost¦pie do kodu ¹ródªowego
(Open�Source). Przykªadowe zastosowania przedstawiono w ko«cowej
cz¦±ci dokumentu.

Sªowa kluczowe: BCI, Interfejs Mózg Komputer, Interfejs Neuronalny,
Biocybernetyka, In»ynieria Biomedyczna, Neurofeedback, Biofeedback,
ARM, Cortex, FPGA, ADC, DSP, OpenEEG, Open�Source, FreeBSD,
USB, Ethernet, Matlb/Octave/SciLab, BCIOP, Atari, PONG.

To My Family, To My Friends
Thank You! I Love You! :-)

OM MANI PEME HUNG

Foreword

Human organism and its information processing abilities are limited. It is also still very
susceptible to cellular malfunction, organic diseases and mechanical injuries. There are
situations were even whole parts of the body become inactive when others are still func-
tional. In this case interconnecting biological organism with biomedical equipment is the
only way to maintain missing functionality or the human life itself.

What is the purpose of life with no communication ability, especially with other people,
family, friends, when we cannot share our knowledge, experiences and ideas. Sometimes
the information exchange is impossible because of some dysfunction, sometimes the human
body limitations itself are the boundaries of our cognition.

The science��ction unfortunately is still far from reality � today we cannot visit a harsh
environment within a cybernetic avatar, or become a spaceship probe controlled directly
with our perception from Earth. This however could be possible with advancement of
Brain Computer Interfacing technology serving as a gateway between world of biology
and technology.

There are two general types of modern BCI � invasive and noninvasive � depending on
the techniqie applied for signal acquisition from the tissue. Noninvasive devices acquire
biological signals from outside of the human body. This can be done with use of various
tomography methods (such as fMRI), or simply electrodes being sticked with conducting
paste on top of the skin reading electrical activity of the inside organ situated below � just
like ElectroCardioGraphy (ECG) reads heart's work cycle, or ElectroEncephaloGraphy
(EEG) reads electrical activity of a brain. Invasive methods requires electrodes (or more
general sensors) to be implanted directly into the organ/tissue, therefore it is impossible in
amateur applications, especially in an early stage of academic research. Both approaches
requires great amount of interdisciplinary knowledge, well coordinated team of highly
skilled enthusiasts, legal support, proper funding and laboratory equipment.

Because high�end equipment is not available for amateur/academic research due to
extremely high prices, while free and open solution does not provide minimal functional
level, this document presents results of a research aimed at creating inexpensive but versa-
tile modular hardware BCI platform. This work is a proof of concept that such system can
become a reality with use of commercial o� the shelf components and the Open�Source
software tools, some basic laboratory equipment, determination and knowledge.

Research results clearly show that there is still even more to accomplish than already
has been done. Some parts of this research are pioneering solutions that allow some other
solutions to exist in the �rst place, but has not yet been done before, especially in open
manner. Modular design allows easy system recon�guration for both scienti�c research
and the commercial implementation. Experience gained during all those experiments
allowed to identify and overcome some problems at this stage, but also forced me to
leave some tasks for closer inspection in near future. All small failures and successful
achievements �nds my acceptance and submission because they help me to better realize
facts, understand surrounding world, and hopefully produce better results.

CONTENTS CONTENTS

Contents

1 Know-How 11
1.1 Reasons, Problems, Solutions. 11
1.2 Biological Signal Ampli�ers . 12
1.3 System Con�guration and Methodology . 13
1.4 EEG 10�20 system . 15
1.5 OpenEEG and other BCI Platforms . 16
1.6 FreeBSD � Operating System of a choice 18
1.7 GNU ARM Toolchain . 19
1.8 Free Real Time Operating System . 20

1.8.1 Introduction . 20
1.8.2 API Fundamentals . 20

1.9 Universal Serial Bus . 22
1.9.1 Introduction . 22
1.9.2 Standards . 23
1.9.3 Physical Signalling . 24
1.9.4 Power Management . 24
1.9.5 USB Procotol . 25
1.9.6 USB Transfer Modes . 26
1.9.7 Bandwidth Mangement . 27
1.9.8 USB Descriptors . 27

1.10 Device Drivers in Matlab . 28
1.10.1 Introduction . 28
1.10.2 How Matlab handles execution . 28
1.10.3 Dynamic Libraries Matlab Intefrace 29
1.10.4 Using Dynamic Libraries . 29
1.10.5 Example . 30

1.11 Serial Wire Debug . 31
1.11.1 Serial Wire Debug Technical Reference 32
1.11.2 LibSWD � Serial Wire Debug Open Library 47
1.11.3 LibSWD in practice . 50
1.11.4 LibSWD integration with UrJTAG 50
1.11.5 LibSWD integration with OpenOCD 55

1.12 JTAG / IEEE1149.1 . 58

Page 6 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

CONTENTS CONTENTS

1.12.1 JTAG Technical Reference . 58
1.12.2 JTAG Data Register (DR) . 62

1.13 Brain Computer Interface Open Protocol 64
1.13.1 Introduction . 64
1.13.2 BCIOP Overwiew . 65
1.13.3 BCIOP Packet Details . 66

1.14 Xilinx Software and Hardware . 71
1.14.1 Introduction to FPGA programming 72
1.14.2 Known issues . 72
1.14.3 Installing Linux version of Xilinx ISE on FreeBSD OS 72
1.14.4 Programming the FPGA target device 75

1.15 Schematics and PCB design with Eagle CAD 77
1.15.1 Creating new components and libraries 78
1.15.2 Exporting design for manufacturing 79
1.15.3 Running Linux Eagle CAD on FreeBSD 79

1.16 PCB Crafting . 80
1.16.1 Photo�litography . 81
1.16.2 Copper Etching . 81
1.16.3 Drills Metalization . 83
1.16.4 BGA Soldering . 83

2 Solution Approach 86
2.1 Solution Approach . 86

2.1.1 Introduction . 86
2.1.2 Similar solutions . 87
2.1.3 Block Diagram . 88
2.1.4 Hardware Implementation . 89
2.1.5 Software Implementation . 89

2.2 Modules Description . 89
2.2.1 CPU_BRD: Xilinx Spartan�3A DSP FPGA 89
2.2.2 CPU_BRD: Stm32Primer2 (ARM Cortex�M3) 91
2.2.3 ADP_BRD: QSE to Goldpin Adapter 92
2.2.4 ADP_BRD: Stm32Primer2 . 92
2.2.5 PWR_BRD: Isolated 3.3V/5V . 97
2.2.6 ADC_BRD: ADS1298 . 97
2.2.7 EXP_BRD: ADS1298 Electrodes 103
2.2.8 ADC_BRD: ADS1278 . 106
2.2.9 EXP BRD: Atari Joystick . 109

2.3 Example Usecases . 112
2.3.1 Standalone FPGA Application . 112
2.3.2 Standalone BCI�PONG Videogame 112
2.3.3 Universal Joystick Controller . 113
2.3.4 Modern OpenEEG Replacement . 114

CeDeROM Brain Computer Interface Page 7 of 125

http://www.tomek.cedro.info

CONTENTS CONTENTS

2.3.5 Mobile Holter . 116
2.3.6 Integrated Solutions . 116

3 Summary and Conclusions 117

Page 8 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

LIST OF FIGURES LIST OF FIGURES

List of Figures

1.1 10�20 EEG Electrode Placement Diagram [85]. 15
1.2 Commercial low�cost BCI devices for home use. 16
1.3 OpenEEG Schematics. 17
1.4 Command Line Interface (CLI) implemented on LPC2148 ARM�based mi-

crocontroller with built�in USB Device Controller using OpenSource pro-
grams. 23

1.5 Host centric USB bus organisation . 25
1.6 USB Device Descriptors organisation diagram 27
1.7 Successful write operation [46]. 34
1.8 Successful read operation [46]. 36
1.9 WAIT response to Read or Write operation request [46]. 37
1.10 FAULT response to Read or Write operation request [46]. 38
1.11 Protocol error sequence [46]. 38
1.12 Protocol error sequence [46] when Sticky Overrun Detection is enabled. . . 39
1.13 ABORT register map [46]. 40
1.14 IDCODE register map [46]. 41
1.15 CTRL/STAT register map [46]. 42
1.16 SELECT register map [46]. 44
1.17 WCR register map [46]. 46
1.18 Tapping jtag/swd interface into physical signals. 51
1.19 LibSWD communicating with Stm32Primer2 using UrJTAG drivers. 52
1.20 Daisy�chaining JTAG multiple devices [22]. 60
1.21 JTAG State Machine [46]. 61
1.22 Xilinx ISE Design Suite installation spash screen. Linux binary working

on FreeBSD operating system. 74
1.23 Xilinx ISE Design Suite components readu for use on FreeBSD. 74
1.24 Creating new components for Eagle CAD with integrated components editor. 79
1.25 Generating Eagle CAD project documentation for manufacturing. 80
1.26 Home made photo�litography. 82
1.27 Home made mechanical metalization. 83
1.28 Soldering the BGA device. 84

2.1 CeDeROM BCI Block Diagram. 87
2.2 CeDeROM BCI Assembled Circuit Boards. 90

CeDeROM Brain Computer Interface Page 9 of 125

http://www.tomek.cedro.info

LIST OF FIGURES LIST OF FIGURES

2.3 Xilinx Spartan 3A�DSP Development Board. 91
2.4 Xilinx Spartan 3A�DSP Development Board QSE�to�Goldpin adapter schemat-

ics. 93
2.5 CeDeROM BCI Xilinx Spartan 3A�DSP Development Board QSE�to�

Goldpin adapter PCB design. 94
2.6 Assembled QSE�to�Goldpin CeDeROM BCI ADP_BRD for Xilinx Spar-

tan 3A�DSP Development Board. 94
2.7 CeDeROM BCI Stm32Primer2 Adapter Board. 95
2.8 CeDeROM BCI Stm32Primer2 Adapter Board PCB design. 96
2.9 CeDeROM BCI Stm32Primer2 Adapter Board, assembled. 96
2.10 CeDeROM BCI Power Board: 3.3V to isolated 3.3V and 5V Converter. . . 98
2.11 CeDeROM BCI Power Board PCB design. 99
2.12 CeDeROM BCI Power Board: 3.3V to isolated 3.3V and 5V Converter,

assembled. 99
2.13 CeDeROMBCI Analog�To�Digital Conversion Board: ADS1298-IPA (TQFP

footprint). 100
2.14 CeDeROMBCI Analog�To�Digital Conversion Board: ADS1298-IPA (BGA

footprint). 101
2.15 CeDeROMBCI Analog�To�Digital Conversion Board based on TQFP ADS1209�

IPA, PCB design. 102
2.16 CeDeROMBCI Analog�To�Digital Conversion Board based on BGA ADS1209�

ZXG, PCB design. 103
2.17 CeDeROMBCI Analog�To�Digital Conversion Board based on BGA ADS1209�

ZXG, PCB design. 104
2.18 CeDeROM BCI EEG Electrodes Board for ADS1298 Schematics. 105
2.19 CeDeROM BCI ADS1298 EEG Electrodes Board PCB design. 106
2.20 CeDeROM BCI ADS1298 EEG Electrodes Board, assembled. 106
2.21 CeDeROM BCI General Purpose Analog�To�Digital Conversion Board:

ADS1278-IPA (TQFP footprint). 107
2.22 CeDeROM BCI General Purpose Analog�To�Digital Conversion Board

based on TQFP ADS1278�IPA, PCB design. 108
2.23 CeDeROM BCI General Purpose Analog�To�Digital Conversion Board

based on TQFP ADS1278�IPA, assembled boards photos. 108
2.24 CeDeROM BCI Expansion Board: Atari Joystick Schematics. 110
2.25 CeDeROM BCI Expansion Board: Atari Joystick PCB design. 111
2.26 First steps of joystick interface design and testing on my precious Atari. . . 111
2.27 CeDeROM BCI Joystick Expansion Board, assembled. 111
2.28 CeDeROM BCI FPGA acting as standalone PONG videogame. 113
2.29 CeDeROM BCI FPGA acting as (Atari) videogame controller. 114
2.30 CeDeROM BCI ARM (left) replacement for OpenEEG (right). 115
2.31 Free applications to work with OpenEEG�like devices. 115
2.32 GSM/GPS module ready for use with CeDeROM BCI. 116

Page 10 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW

Chapter 1

Know-How

1.1 Reasons, Problems, Solutions.

Having planned tasks that will bring research, or any kind of computer�related project,
into an end with no obstacles has become a wishful thinking. Unfortunately there are
too much independent variables that makes planning a modern art of risk management
rather than precise work navigation along timeline. Especially when advanced solution
is created from scratch, there are even more complications and problems to solve, often
possible solutions bring even more problems.

This process is hard to understand by the �nal user, as he/she wants to simply have
cheap, working, stable and good looking, preferably one�click solution. Users nowadays
already lost insight into system internals, some of them even don't want to know how
things work as they tend to think that everything can be already bought (or ordered
online). It has become a reality that for most people science or engineering is not much
di�erent from black magic. Marketing tricks makes things even worse because they model
a happy unaware end�user that can posses years of work of thousands of intellectuals for
a dollar, so users start to think they posses all those skills and knowledge as they own its
results, never even wondering how it was possible to make it work. Therefore real value
and importance of this knowledge is far more valueable and fundamental.. and it has
never been only about new products.

The dilema of balancing between time and �nal cost is usually about what can be
bought and integrated into �nal solution to shorten time�to�market but increase �nal
price. This is also crucial factor for project planning, management and development.
There is no need to manufacture single transistors or integrated cirtuit at some point
when cheaper and faster application can be found with no signi�cant impact on the
income and result, but on the other hand there is no innovation in rebranding existing
products. Real innovation begins where challenge is set to do something that never been
done before in a way that was previously unknown or unsuccessful. Most manufacturers
however exploit unaware users to produce simple low�quality products, enslave them with
habits to manipulate future sale with fake innovation.

Independence is very important for me, even at cost of longer project timeline, not

CeDeROM Brain Computer Interface Page 11 of 125

http://www.tomek.cedro.info

1.2. BIOLOGICAL SIGNAL AMPLIFIERS KNOW-HOW

only because of limited resources as those are always too small, mainly because I am not
only a model consumer anymore, I want to consciously create my own solutions to share
or sale with bene�t. This chapter contains technical di�culties I have found during my
research and description of invented solutions. Most of them were caused because I have
decided to use only Commercial O� The Shelf (COTS) elements and Free Open Source
Software and avoid repacking existing expensive solutions stating they are mine results.

Sharing experience with other individuals, using pieces of their work for my results,
saving resources, gaining new skills, having independent solution with full insight unlim-
ited with restrictive licenses � these are only few reasons why I have chosen this implemen-
tation path. Know�How presented in this chapter will also allow estimate work amount
necessary to create such simple project from scratch. It may also help estimate real cost
of a solution and realize complexity standing behind the scenes.

1.2 Biological Signal Ampli�ers

According to [9] biological ampli�ers are described by following parameters:

• Ampli�er Gain is the output voltage level referenced to the voltage acquired by the
ampli�er circuit on its inputs. Usually the gain value is at least 1000 in linear scale,
it can be also measured in decibels (dB):

Gainlin =
Uout

Uin

GaindB = 20log10Gainlin

• Frequency Response is a characteristics in frequency domain describing useful band-
width together with other frequencies and their relation in acquired signal. Useful
bandwidth should contain all frequencies present in the electrophysiological signal
generated by a tissue or organ of interest, while other frequencies should be lim-
ited accordingly to disallow impact of low frequency (fl) drift and high frequency
(fh) interferences caused by surrounding technical environment on the target signal.
Both low and high frequency cuto� is set at 0.707 value of midfrequency plateau,
that is half of the useful signal power (because (0.707)2 = 0.5), this is why they are
also called −3dB points and the di�erence between fh and fl is the 3dB bandwidth.

−3dB = 20log100.707

• Common Mode Rejection is very important parameter in di�erential (Ud) signal
measurement where two electrodes are used for single source measurement to dis-
card common signals (Uc). This method is very useful in biological signals measure-
ment where magnitudes of useful signal are thousands times smaller than external
interferences caused by the power network or electronic equipment having similar
potential across the human body acting as antenna.

CMMRlin =
Uc

Ud

Page 12 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.3. SYSTEM CONFIGURATION AND METHODOLOGY

CMMRdB = 20log10CMMRlin

• Noise and Drift are the additional and unwanted signals in the measurement result
produced by the ampli�er circuit, electrode�skin contact, etc. Drift refers to signals
below 0.1Hz and it is a peak�to�peak variation of the baseline, while noise above
0.1Hz measured in microvolts peak�to�peak (µVp−p) or microvolts root mean square
(µVRMS).

• Recovery Time is the time necessary for ampli�er circuit return from saturation
to normal operation.Saturation can be caused by electrodes contact malfunction,
stimulation currents, de�brillation pulses, or any other stimuli that pushes ampli�er
output voltage to reach the maximum/minimum o�set voltage of constant value that
prevents device from proper measurement.

• Input Impedance of the ampli�er circuit should be high enough to prevent atten-
uation of useful signal produced by a tissue. Each electrode�tissue has its own
characteristic impedance related to many factors such as the electrode�skin contact
quality, electrolyte substrate and its temperature, are of the electrode, tissues be-
tween source tissue and the electrode, etc. The average impedance values are in
range of 200kΩ for 1Hz and 200Ω for 1MHz.

• Electrode Polarization is the half�cell polarization caused by ion�electron exchange
between metal electrode and electrolyte paste or simply skin perspiration that re-
sult in a DC component in a measured signal. Association for the Advancement
of Medical Instrumentation (AAMI) specify that ECG equipment should tolerate
±300mV DC component resulting from the electrode�skin contact.

There are many more di�erent con�gurations of biological signals ampli�ers designs
and theory with practical examples presented in [9] therefore it is highly advised to get
familiar with this great book, as there is no sense to rewrite its contents in this small
document.

1.3 System Con�guration and Methodology

Each area of life seems to have a trend that leads the (research) directions in a de�ned
period of time until something better is invented and become a new trend. This includes
electronic design that nowadays tend to shift from analog design into digital domain with
analog circuity reduced to absolute minimum. This allows better miniaturization, lower
system cost, higher availability with smaller POF (Point Of Failure), better scalability
and system recon�guration in future without total redesign now replaced with �rmware
upgrade. Personally I don't think such blind trends�follower attitude is glorifying, but in
this particular case it is very close to my intuition.

Biomedical equipment also use this �digitalization� trend to minimize analog compo-
nents amount in the design and use better digital components that provide equivalent

CeDeROM Brain Computer Interface Page 13 of 125

http://www.tomek.cedro.info

1.3. SYSTEM CONFIGURATION AND METHODOLOGY KNOW-HOW

or better capabilities when implemented as software algorithms in programmable logic.
BurrBrown company, now owned by Texas Instruments, leading world class manufacturer
of components for biomedical instrumentation has released a series of documents and de-
vices to pioneer these new �elds of biomedical technologies. Analog �ltering is replaced
by DSP (Digital Signal Processing), analog components are replaced by high�end digital
solutions, devices become more and more integrated.

I have joined this trend not only because I have better experience in digital electronics
design, but also in my opinion they are more agile and give better �exibility in commercial
application of di�erent services and solutions. It is always possible to hire someone highly�
skilled that will design the subsystem component, but the big�picture is more important
for me � to create working solution. I have presented below some documents found in the
knowledge base, they cover various aspects of modern design, they are available for free
download on the BurrBrown/Texas Intruments website and I will place their contents in
the Appendix. There are whole books being written on how to build analog ampli�ers.
I will use those information and results as modules for creating my solution instead.
Documents presented below are also very important and valuable source of information
for any designer of biocybernetic instrumentation:

• �Improving Common-Mode Rejection Using the Right-Leg Drive Amplifer� [10]

• �High Speed Data Conversion� [11]

• �Analog-to-Digital Converter Grounding Practices A�ect System Performance� [12]

• �Interleaving Analog-to-Digital Converters� [13]

• �Thermal Noise Analysis in ECG Applications� [14]

• �Principles of Data Acquisition and Conversion�, [15]

• �Analog Front-End Design for ECG Systems Using Delta-Sigma ADCs� [16]

• �A Glossary of Analog-to-Digital Speci�cations and Performance Characteristics�
[17]

• �What Designers Should Know About Data Converter Drift� [18]

• �Power Management for Precision Analog� [19]

My solution will be based on high�resolution analog�to�digital conversion with mini-
mal analog components amount. One usecase contain fully integrated device for biolog-
ical signals acquisition (ADS1298 chip), another usecase contain general purpose high�
resolution analog�to�digital converter that can be attached to any compatible analog
frontend. For more information please follow the �Solution Approach� (Chapter 2.1).

Page 14 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.4. EEG 10�20 SYSTEM

Figure 1.1: 10�20 EEG Electrode Placement Diagram [85].

1.4 EEG 10�20 system

The 10�20 system is a standard introduced to describe electrodes placement on top of
the scalp (head skin) during the EEG measurement. This is important to reproduce and
compare measurements over time on di�erent subjects, because selected test points mark
regions of underlying cerebral cortex that produces the internal signal received by the
electrodes. The name 10�20 actually comes from the distance parts in left�right (10%)
front�back (20%) length of the skull (Figure 1.1).

As described in [22] each site has a letter to identify the lobe and a number to identify
the hemisphere location. The letters F, T, C, P and O stand for Frontal, Temporal,
Central, Parietal, and Occipital, respectively. Note that there exists no central lobe, the
"C" letter is only used for identi�cation purposes only. A "z" (zero) refers to an electrode
placed on the midline. Even numbers (2,4,6,8) refer to electrode positions on the right
hemisphere, whereas odd numbers (1,3,5,7) refer to those on the left hemisphere. Two
anatomical landmarks are used for the essential positioning of the EEG electrodes: �rst,
the nasion which is the point between the forehead and the nose; second, the inion which

CeDeROM Brain Computer Interface Page 15 of 125

http://www.tomek.cedro.info

1.5. OPENEEG AND OTHER BCI PLATFORMS KNOW-HOW

(a) NeuroSky (b) Emotiv

Figure 1.2: Commercial low�cost BCI devices for home use.

is the lowest point of the skull from the back of the head and is normally indicated by
a prominent bump. When recording a more detailed EEG with more electrodes, extra
electrodes are added utilizing the spaces in-between the existing 10-20 system. This new
electrode-naming-system is more complicated giving rise to the Modi�ed Combinatorial
Nomenclature (MCN). This MCN system uses 1, 3, 5, 7, 9 for the left hemisphere which
represents 10%, 20%, 30%, 40%, 50% of the inion-to-nasion distance respectively. The
introduction of extra letters allows the naming of extra electrode sites. Note that these
new letters do not necessarily refer to an area on the underlying cerebral cortex.

1.5 OpenEEG and other BCI Platforms

OpenEEG [84] is the most popular low�cost platform for amateur BCI/Neurofeedback
research with fully open schematics (Figure 1.3) and internal support available to the
community that gathered around this project for the past 8 years. There are some dis-
advantages of the platform. Hardware design is already outdated as it use 8�bit micro-
controller with 8�bit ADC and RS232 for data transmission (modern computrs does not
have this port even available). Analog ampli�er is not equipped with 50/60Hz notch �lter
so the power interferences are sometimes blocking the measurement, or the device needs
voodoo style shielding. This is however the reference platform for many other designs,
including one presented in this doument.

Some alternative to the OpenEEG system may be provided by the commercial BCI
devices from NeuroSky [88] or Emotiv [89] companies. Because they are commercial
and closed source they seem to be poor research equpiment with their limited and non�
customizable design. Commercial high�end equipment is provided by gTec.at [90] for well
funded BCI research groups around the world to have standarized working environment.

There are several applications that can work with OpenEEG system, including Open-
ViBE [86] for BCI interaction in Virtual�Reality environment, BCI2000 [85] well known
BCI framework, BrainBay [87] and many more. One of the biggest disadvantages of these
programs however is the fact that they work only on Windows, some of them are not

Page 16 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.5. OPENEEG AND OTHER BCI PLATFORMS

(a) Analog Part Schematics

(b) Digital Part Schematics

Figure 1.3: OpenEEG Schematics.

CeDeROM Brain Computer Interface Page 17 of 125

http://www.tomek.cedro.info

1.6. FREEBSD � OPERATING SYSTEM OF A CHOICE KNOW-HOW

open�source so it is not possible to �x bugs in relatively old releases, some of them are
restricted by licensing constraints. These programs however are the best (often also the
only) choice home or academic user can get to experiment with BCI systems.

1.6 FreeBSD � Operating System of a choice

There are many computer operating systems on the market. Some of them free, some
commercial, all protected with some kind of licensing agreement. Each one of them have
some advantages and features making is usable more in some speci�c applications than
the others. The system of a choice for my research is a well known Berkeley Software
Distribution Unix Operating system named FreeBSD [34]. It is free, open source, com-
patible with most open source applications, and it has very simple license that allows
closing �nal application. The FreeBSD can be considered a distribution of BSD system,
just like OpenBSD, NetBSD and others. Commercial example of BSD application is very
popular Apple Mac OS X for desktop machines and iPhoneOS for mobile machines, also
lots of network and embedded equipment use this operating system for closed source
applications.

Unlike Linux, FreeBSD is better organized and more self�compatible with other in-
stallations (one command or con�guration �le will work among all FreeBSD installations,
what can't be said about Linux distributions, as each one of them is di�erent, even among
releases of one distribution, almost each new kernel release breaks existing drivers, etc).
This is very important to have stable and independent working environment, especially in
long term projects, where its con�guration and internals does not make your work obso-
lete after few weeks or constantly require additional fees. Maintenance is very important
part of the project life cycle. Microsoft exactly knows that and o�ers easy to con�gure
Windows platform with multiple development tools. All those tools allow rapid devel-
opment with no need to know details of implementation, but they are also commercial,
relatively expensive and low quality, they require constant upgrades to non�backward
compatible formats, so user ends up constantly spending money for something that is a
black�box and cannot be expanded or customized. Other operating systems are usually
dedicated for backend speci�c tasks, therefore require dedicated hardware platform what
makes them unavailable and often useless for average computer user.

FreeBSD is free and less resource hungry, so it can run even on simple embedded
systems, also does not double price of the �nal product. Its license does not put any
constrains on application and the source code distribution. Although well organized
structure and stable standard, the main disadvantage of the FreeBSD STABLE line is
the lag behind modern multimedia features available only to the commercial systems.
Also drivers for new gadgets and hardware are hard to �nd or simply waiting to be
written. On the other hand this non�bleeding�edge development line is what makes
it stable and straightforward solution. People that want to bring new features should
consider developing CURRENT branch, where like in Linux, things change day by day
and are not guaranteed to work or maintain backward compatibility. After new features
are well tested and comply internal standards, they are (then and only then) integrated

Page 18 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.7. GNU ARM TOOLCHAIN

into STABLE line.
FreeBSD has proven to be most innovative and well organized solution for many years

being ahead of competitors in some areas even driving development of new features for
many other operating systems including Linux and Windows. Its very logical organi-
zation, maybe even raw in its simplicity, makes this system good candidate for stable
working environment that can be controlled with a simple set of text con�guration �les
and standard Unix/POSIX environment and utilities. This system does not hide anything
from user in a form of invisible automation unless explictly asked to do so. It is also free
of external dependencies, even on Free Software, so neither deveopers nor users are forced
to buy upgrade or pay additional money for trivial additional features. There are also
nice features available uncommon to any other operating systems, for instance binary
emulation of other operating systems including BSD and Linux allowing for transparent
binary runtime execution. Therefore all futher chapters will assume FreeBSD operating
system was used unless stated otherwise.

1.7 GNU ARM Toolchain

GNU ARM Toolchain [25] is a free of charge and Open Source set of tools to develop
software that will run on ARM machine. The toolchain consists of the GNU binutils,
compiler set (GCC) and debugger. Newlib is used for the C library. The toolchain
includes the C and C++ compilers. It comes fully documented � with online books for
developers, and system man pages for each of the tools provided. Users familiar with
Unix or Unix-like operating systems will have no problem with GNU ARM tools, as they
are the same as the ones used to build programs on x86, x86_64, mips, and many other
platforms:

• arm-elf-gcc � is a GNU compiler of a C programming language. Object �les produced
by this program contains binary code executed by ARM microprocessor.

• arm-elf-as � is an GNU assemmbly language compiler. It uses AT&T UNIX syn-
tax (di�erent than Intel) to parse input and produces binary code of almost any
microprocessor architecture.

• arm-elf-ld � is a GNU Linker program that produces �nal executable or even whole
system image from a separate object �les. This program requires special con�gu-
ration �le (*.ld) with memory map (rom+�ash+ram) of a target ARM system to
produce *.hex or *.bin image matching con�guration of a speci�c silicon chip.

• arm-elf-gdb � is a GNU Debugger. This tool allows watching target program exe-
cution instruction�after�instruction and helps �nding bugs in code. This program
also allows remote debug of a physical target plaform connected via JTAG interface
to the host running debug daemon software (ie. OpenOCD). Remote debug can
be performed with use of TCP/IP network, so the user is not limited to the direct
neighbourhood of the device.

CeDeROM Brain Computer Interface Page 19 of 125

http://www.tomek.cedro.info

1.8. FREE REAL TIME OPERATING SYSTEM KNOW-HOW

• gnu make � this program is not a part of the GNU ARM Toolchain, but is common
GNU tool available on most Unix or Unix-like environments. This program controls
the generation of executables and other non-source �les of a program from the
program's source �les. It is indispensable program that automates build process of
a �nal executable code or system image. It reads instructions, on how to react on
command line parameters, from a special con�guration �le called Make�le.

There are also few others commercial Software Development Kits (SDK) for ARM
family, but I will not discuss them here, as they are expensive and windows platform
dependent in most cases. GNU SDK is a standard set of tools to develop software in
a free and platform independent way. Also system requirements for this software is far
beyond expectations of the modern commercial toolkits. Once the developer learn how
to work with GNU tools, it will be no di�erence whether he/she writes software for a
computer or embedded system, and what hardware platrofm is inside � it will be only a
matter of few con�guration �les and program switches. What is more, the whole develop-
ment process takes place in a shell (command line) environment, so it can be performed
remotely via simple terminal program, from any place linked to an internet. For those
who prefer graphical and windowed development environment, there is a special release
called YAGARTO [27] to work with Eclipse Integrated Desktop Environment (IDE) [26].

All this is for free, so the real price goes for knowledge and skills of a user. This
fact is really worth appreciation to the developers of the GNU Project [24] and The Free
Software Foundation [23].

1.8 Free Real Time Operating System

1.8.1 Introduction

FreeRTOS is a free real-time operating system ported to many di�erent hardware plat-
forms, targeted to use with embedded systems. FreeRTOS gives developer ability to
create multitasking environment with multiple tasks or co-routines that can be sorted by
priority, sharing resources by queues, synchronising by semaphore and mutex technique.
Within its small footprint (approximately 25kB) there are both aviable simple dynamic
memory allocation (malloc) and Interrupt Servicing Routine (ISR) mechanisms. Please
refer for project homepage http://www.freertos.org for detailed information.

1.8.2 API Fundamentals

The kernel is the core component within an operating system. Operating systems such as
Linux employ kernels that allow users access to the computer seemingly simultaneously.
Multiple users can execute multiple programs apparently concurrently. Each executing
program is a task under control of the operating system. If an operating system can exe-
cute multiple tasks in this manner it is said to be multitasking. The use of a multitasking
operating system can simplify the design of what would otherwise be a complex software
application:

Page 20 of 125 CeDeROM Brain Computer Interface

http://www.freertos.org
http://www.tomek.cedro.info

KNOW-HOW 1.8. FREE REAL TIME OPERATING SYSTEM

• The multitasking and inter-task communications features of the operating system
allow the complex application to be partitioned into a set of smaller and more
manageable tasks.

• The partitioning can result in easier software testing, work breakdown within teams,
and code reuse.

• Complex timing and sequencing details can be removed from the application code
and become the responsibility of the operating system.

1.8.2.1 Task

FreeRTOS versions prior to V4.0.0 allow a real time application to be structured as a set
of autonomous 'tasks' only. This is the traditional model used by an RTOS scheduler.

A real time application that uses an RTOS can be structured as a set of independent
tasks. Each task executes within its own context with no coincidental dependency on other
tasks within the system or the scheduler itself. Only one task within the application can
be executing at any point in time and the real time scheduler is responsible for deciding
which task this should be. The scheduler may therefore repeatedly start and stop each
task (swap each task in and out) as the application executes. As a task has no knowledge
of the scheduler activity it is the responsibility of the real time scheduler to ensure that the
processor context (register values, stack contents, etc) when a task is swapped in is exactly
that as when the same task was swapped out. To achieve this each task is provided with
its own stack. When the task is swapped out the execution context is saved to the stack
of that task so it can also be exactly restored when the same task is later swapped back in.

Task Summary:

• Simple.

• No restrictions on use.

• Supports full preemption.

• Fully prioritised.

• Each task maintains its own stack resulting in higher RAM usage.

• Re-entrancy must be carefully considered if using preemption.

1.8.2.2 Co-routine

FreeRTOS version V4.0.0 onwards allows a real time application to optionally include
co-routines as well as, or instead of, tasks. Co-routines are conceptually similar to tasks
but have the following fundamental di�erences (elaborated further on the co-routine doc-
umentation page): Stack usage. All the co-routines within an application share a single

CeDeROM Brain Computer Interface Page 21 of 125

http://www.tomek.cedro.info

1.9. UNIVERSAL SERIAL BUS KNOW-HOW

stack. This greatly reduces the amount of RAM required compared to a similar applica-
tion written using tasks. Co-routines use prioritised cooperative scheduling with respect
to other co-routines, but can be included in an application that uses preemptive tasks.
The co-routine implementation is provided through a set of macros. The reduction in
RAM usage comes at the cost of some stringent restrictions in how co-routines can be
structured.

Co-Routine Summary:

• Sharing a stack between co-routines results in much lower RAM usage.

• Cooperative operation makes re-entrancy less of an issue.

• Very portable across architectures.

• Fully prioritised relative to other co-routines, but can always be preempted by tasks
if the two are mixed.

• Lack of stack requires special consideration.

• Restrictions on where API calls can be made.

• Co-operative operation only amongst co-routines themselves.

1.8.2.3 API Selection

Only those API functions speci�cally designated for use from within an ISR (Interrupt
Service Routine) should be used from within an ISR, as ISR stands for Interrupt Ser-
vice Routine and is designed only to serve IRQ. Tasks and co-routines use di�erent API
functions to access queues. A queue cannot be used to communicate between a task and
a co-routine or visa versa. Intertask communication can be achieved using the full fea-
tured API functions, the alternative API functions, and the light weight API functions
(those with "FromISR" in their name). Use of the light weight functions outside of an
ISR requires special consideration, as described under the heading "Performance tips and
tricks - using the light weight API". For more detailed information please browse the
Documentation at http://www.freertos.org.

1.9 Universal Serial Bus

1.9.1 Introduction

USB stands for Universal Serial Bus, a serial interface to exchange data between computer
and peripherials. It uses Plug'n'Play Host-Device architecture, where Host is responsible
for all data manipulation on the bus, device identi�cation and driver load/unload, while
Device can receive or send data when asked by the Host. Device can be dynamicaly
connected and disconected without need to turn o� or restart computer. Devices are

Page 22 of 125 CeDeROM Brain Computer Interface

http://www.freertos.org
http://www.tomek.cedro.info

KNOW-HOW 1.9. UNIVERSAL SERIAL BUS

identi�ed by PID and VID number pair (Product and Vendor ID) along with Identi�er
String. There are many di�erent Transfer Modes to �t needs of a speci�c project. USB
Device can have more than only one interface using common physical connection.

Figure 1.4: Command Line Interface (CLI) implemented on LPC2148 ARM�based mi-
crocontroller with built�in USB Device Controller using OpenSource programs.

This chapter is just an overview of the USB Bus features, to get more detailed infor-
mation, but not yet reading full speci�cation that is really really big, I highly recommend
reading �USB in a NutShell� [33] freely available e�book.

1.9.2 Standards

Current version of USB standard is 3.0, but it is not yet widely deployed in computer
hardware, so we will still use version 2.0, the succesor of the USB 1.0 and 1.1 speci�cation
[32]. It uses EHCI (Encanced Host Controller Interface) speci�cation. There can be up
to 127 devices on the bus, connected one Port via HUB (star architecture). HUB can
perform current mesurement and dynamic load/unload devices that interrupts the BUS.
Devices connected this way shares bandwith of the Port. If more bandwith or devices are
to be connected, Host with more Ports should be used.

There are two types of connectors used in USB: A for upstream/Host, B for down-
stream/Device. Data Cable consists of four signals: 5V, D+, D-, GND. Data is trans-
ferred di�erentially on D+ and D- lines, using NRZI (Non Return to Zero Inverted) and
bit stu�ng. D+ and D- lines are also used as control lines (nondi�erential) at reset and
enumeration phase, just after connecting Device to the Host.

USB 2.0 Device can support one or two of three speed modes:

• Low Speed 1.5MBit/s, accuracy 1.5 % or 15000ppm

CeDeROM Brain Computer Interface Page 23 of 125

http://www.tomek.cedro.info

1.9. UNIVERSAL SERIAL BUS KNOW-HOW

• Full Speed 12MBit/s, accuracy 0.25 % or 2500ppm

• High Speed 480MBit/s, accuracy 500ppm

1.9.3 Physical Signalling

USB trasnmitter de�nes di�erential '1' by pulling D+ over 2.8V with 15k resistor tied to
ground, and pulling D- under 0.3V with 1.5k resistor tied to 3.6V. Logical '0' is inversion
of logical '1'. The receiver identi�es '1' when D+ is 200mV higher than D- line, and '0'
when D- line is 200mV above D+. The polarity of the signals might be inverted depending
on the current Speed Mode - so called 'J' state for Low Speed is represented by di�erential
'0', while it is di�erential '1' in High Speed mode.

It is important to select proper series resistors for impedance matching for D+ and
D- lines. Low and Full Speed Modes has characteristic impedance of 90ohms with 15%
accuracy. High Speed also uses 17.78mA constant current for signalling to reduce noise.

Device indicates its speed mode by pulling high (3.3V via 1.5k resistor) appropriate
data line: D+ to mark Full/High Speed or D- to mark Low Speed. High and Full Speed
modes are selected the same way electrically, but the reset and enumeration phase selects
proper protocol.

Device can support only Low and Full Speed modes and no High Speed mode, to make
product cheaper. When device supports High Speed then it also support Full Speed but
no Low Speed.

1.9.4 Power Management

USB Devices can be powered from within the Host requiring no externel power supply.
Device should know how much current it will consume and give this value to the Host
during Enumeration Phase in 2mA quants. USB also speci�es Unit Load as 100mA. This
divides Devices into three categories:

1. Low-Power: can draw only one unit load, and must work within 4.4V to 5.25V range
measured on upstream plug

2. High-Power: can draw maximum 5 unit load (500mA) after enumeration phase but
1 unit load before enumeration, and Vbus ranging from 4.75V to 5.25V.

3. Self-Powered: may draw 1 unit load from the bus to allow detection without external
power turned on; must have external power supply to operate.

No device can drive Vbus - after Host turns o� Vbus, Device must deactivate pullups
on the D+ and D- lines that are used for speed identi�cation.

Device must support Suspend Mode. Global Suspend will work for each Device on
the bus, while Selective Suspend can work only for selected ones. One unit load stands
for 500uA suspend current. Attention should be taken that pullup resistors sinks 200uA
all the time.

Page 24 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.9. UNIVERSAL SERIAL BUS

Device should put itself in Suspend Mode when there is no activity in the bus for 3
miliseconds and has 7 ms to acomplish this task. After 10ms of silence on the bus, the
Device should not sink more than designated Suspend Current, but the Host can send
special kepalive packets to the Device to avoid suspend on the bus with no data:

• High Speed: micro-frames sent every 125us +-62.5ns

• Full Speed: frames sent every 1ms +-500ns

• Low Speed: EOP (End of Packet) sent every 1ms in case of data absence on the bus

Device should resume operation after receiving any non idle signaling, and should
report to the Host if it has been resumed from any other reason.

1.9.5 USB Procotol

USB is more complicated than standard UART where pure bytes of data are being sent
and received transparently one after another. USB consists of advanced logical structure
that determines many di�erent functions that can be implemented in a single device.
That is why there must be an USB Stack implemented in a Software, supported by a
Hardware Block that performs low level transactions and timings conforming to the USB
Bus standard [32].

Figure 1.5: Host centric USB bus organisation

Transfer with a Device is always initiated by a Host and the �IN� transfer direction
is always directed towards Host. �OUT� transfer means �from the Host to the Device�,
while �IN� transfer means �from the Device to the Host�. Each transaction consists of
three parts of data:

• Token Packet � says what kind of transfer is being performed (IN, OUT, SETUP)

CeDeROM Brain Computer Interface Page 25 of 125

http://www.tomek.cedro.info

1.9. UNIVERSAL SERIAL BUS KNOW-HOW

• Data Packet � is optional packet containing the payload

• Status Packet � provides acknowgledge or error correction data (ACK, NAK, STALL)

There can be as many as 128 devices connected to a single bus in a slave manner � that
is Device cannot transmit anything itself. If a speci�c Function of the Device wants to
transmit or receive any data it must use �End Point� (EP) as a kind of transmit bu�er and
wait for the Stack/Hardware and Host to perform Bus Transaction. But to use and End
Point, the Device Stack has to be initialised and setup with proper parameters (Transfer
Mode, Interface number, bu�er length, etc) described by a set of an USB Descriptors.

1.9.6 USB Transfer Modes

1.9.6.1 Interrupt Transfer

Works similar to an interrupt on the computer � when the USB Device needs to report
some activity it waits until being polled by a Host, and then transfers some small amount
of data. It guarantees small latency, it is bidirectional (Stream Pipe) and supports error
detection and retransfer in next period. The maximum data payload is

• 8 bytes for Low Speed

• 64 bytes for Full Speed

• 1024 bytes for High Speed

1.9.6.2 Isochronous Transfer

This mode can be used to transfer data periodicaly or continously in time sensitive ap-
plications like audio or video streaming. No delivery or retry is guaranted, and error
correction is provided only by CRC, although USB bandwidth is guaranted with bounded
latency. This transfer mode is unidirectional using Stream Pipe. Maximum data packet
size is 1024 bytes for High Speed and 1023 for Full Speed mode. Low Speed mode does
not support this transfer mode. Also there is no handshake (no Handshake Packet), so
errors and STALL/HALT cannot be reported.

1.9.6.3 Bulk Transfer

This mode can be used to transfer bursts of data that do not need low latency. Because
bulk transfer mode uses unallocated bandwidth of the USB Bus, it should not be used in
time sensitive applications, as it will have to wait for others isonchronous and interrupt
transfers with preallocated bandwidth. This mode is Unidirectional using Stream Pipes,
and supports error detection based on CRC and retransmission if necessary.

Page 26 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.9. UNIVERSAL SERIAL BUS

1.9.7 Bandwidth Mangement

It is possible to allocate bandwith for an USB Device at enumeration stage of the Isonchronous
and Interrupt Endpoints. Host is then responsible for managing the requested bandwidth.
Maximum 90% for Full Speed Bus and 80% for High Speed Bus can be selected. The rest
is reserved for Control and Bulk Transfers.

1.9.8 USB Descriptors

Descriptors are de�ned by the software as a part of the logical structure of the USB
Device. Besides dedicated silicon hardware that performs bit�level communication with
the Host, Device Descriptors are the most important part of the Device itself, because they
de�ne all of its internal organisation � name, identi�cation and manufacturer, bus version
support, available con�gurations, internal interfaces, transfer modes, bu�er lengths, and
many more.

Figure 1.6: USB Device Descriptors organisation diagram

Descriptors perform following functions:

• Device Descriptor � it contains information such as USB Bus compliance, Product
and Vendor ID (PID/VID pair to recognise device and load apropriate drivers), and
number of possible con�gurations.

• Con�guration Descriptor � tells how much power does the current con�guration
requires and how many interfaces it has. One device can have many di�erent con-
�gurations. At the enumeration stage host can iterate all of these possible con�gu-
rations (maximum amount is de�ned by the Device Descriptor) to choose one that
is possible to achieve or selected by the end user. Only one con�guration can be
choosen at a time.

CeDeROM Brain Computer Interface Page 27 of 125

http://www.tomek.cedro.info

1.10. DEVICE DRIVERS IN MATLAB KNOW-HOW

• Interface Descriptor � groups endpoints (EP) based on a speci�c function of the
USB Device. Interface can be described as one of many logical devices inside a one
hardware, because one USB Device can perform many di�erent functions at the
same time.

• EndPoint Descriptor � speci�es type of transfer, direction, packet size, polling in-
terval. EndPoint is a source or sink of data. Endpoint number zero is a control
endpoint and has no descriptor.

• String Descriptor � is optional and contains human readable information encoded
in Unicode format. Strings can contain multilanguage contents.

1.10 Device Drivers in Matlab

1.10.1 Introduction

Designing advanced data acquisition systems requires whole set of methods to verify a
prototype and the data that it produces. This can be achieved by use of Matlab [29] , or
free Matlab-like software (ie. Octave [30], SciLab [31], or similar). With its wide spread
of signal spectrum analysis, �lter design and data modelling techniques, this is perfect
environment for research related activities. Data can be transferred from device hardware
into matlab environment by use of commercial Data Acquisition Toolbox and standard
data bus, or design speci�c dedicated data bus and self written device driver. This section
describes how to create a dedicated device driver in Matlab, from sctratch.

1.10.2 How Matlab handles execution

Matlab can generate binary executables basing on its standard m-�les (Compiler Toolbox),
but can also use external binaries or dynamic libraries to perform required operations. We
can use these features to write our own driver. Please read matlab manual page named
�External Interfaces� for detailed information. Input-Output routines and cooperation
with external applications are available thanks to:

• dynamic libraries (so/dll) support

• external C of Fortran procedure calls within MEX �le

• creating MEX �les in C or Fortran language

• result data import/export with MAT �les

• including Matlab code fragments in C or Java applications

Device Driver is usualy a set of functions performing device con�guration and data
transfer. In Matlab environment this can be implemented as set of MEX �les or standard
dynamic library. MEX �les are Matlab speci�c, can be written in C or Fortran language,

Page 28 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.10. DEVICE DRIVERS IN MATLAB

and they are easier in later use. Dynamic libraries can be written in any programming
language, used by any other application, and they are just a bit harder in later use with
Matlab. Dynamic libraries are pre�ered method in this document. Please take a look at
�MATLAB Interface to Generic DLLs� Matlab Manual section for detailed information.

1.10.3 Dynamic Libraries Matlab Intefrace

Dynamic library is a kind of container that holds many functions in a prede�ned manner.
There are few speci�c initialisation functions and the others can operate on data passed
in as pointers. Because all library contents can be dynamicaly loaded at runtime, there
can be many functions with the same name grouped in a di�erent libraries performing
di�erent functions. This is how the plugins work - required content is loaded into runtime
memory only when its needed.

Functions included in a dynamic library can be loaded into Matlab runtime memory
and become accesible directly from the interpreter commadline. In most cases data cast
is automatic and Matlab types are pre�ered. Dynamic Libraries can also be written in
languages other than C, but the library interface must conform to the C dynamic library
standard.

1.10.4 Using Dynamic Libraries

1.10.4.1 Opening the library

To acces functions included in a dynamic library, use loadlibrary routine:

loadlibrary('library_name', 'header_filename')

where:

• library_name � is a dynamic library �lename (*.so or *.dll)

• header_filename � is a header �lename (*.h) with all of the function names and
data types used by the dynamic library

1.10.4.2 Closing the library

To close a dynamic library that is already open, use unloadlibrary routine:

unloadlibrary library_name

1.10.4.3 Browsing the library

To display a dynamic library contents, use libfunctions or libfunctionsview routines:

libfunctions('library_name')

libfunctionsview('library_name')

CeDeROM Brain Computer Interface Page 29 of 125

http://www.tomek.cedro.info

1.10. DEVICE DRIVERS IN MATLAB KNOW-HOW

where:

• libfunctions � returns string array with function names from selected library

• libfunctionsview � function names from selected library are displayed as table in
a separate window

Both functions can use -full switch to display additional functions information (ie. pa-
rameter list, data types, etc.)

1.10.4.4 Calling the library functions

To call a function that is included in a opened dynamic library, use callib routine:

calllib('library_name', 'function_name', arg1, ..., argN)

where:

• library_name � is an opened dynamic library

• function_name � is a function that we want to call

• arg1,..,argN � is a function argument list

1.10.5 Example

As an example we want to use three functions included in one dynamic library. Two of
them will return string (character array) and the last one return sum of passed arguments.

The header �le test.h:

1 char* test();

2 char* test2();

3 int test_add(int a, int b);

The source �le test.c:

1 #include "test.h"

2 char* test(){

3 return "test function 1 result\n";

4 }

5 char* test2(){

6 return "test function 2 result\n";

7 }

8 int test_add(int a, int b){

9 return a+b;

10 }

Building the library with GNU C Compiler:

1 gcc -shared -o test.so test.c

Now the Matlab part:

Page 30 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

1 >> cd path_to_our_library

2 >> loadlibrary test.so test.h

3 >> calllib('test', 'test')

4 ans =

5 test function 1 result

6 >> calllib('test', 'test2')

7 ans =

8 test function 2 result

9 >> calllib('test', 'test_add')

10 ??? Error using ==> calllib

11 No method with matching signature.

12 >> calllib('test', 'test_add', 1, 2)

13 ans =

14 3

15 >> unloadlibrary test

1.11 Serial Wire Debug

Serial Wire Debug [43] is a new low�level embedded system access introduced by ARM
Corporation [42] in their new CPU design ARMv7 named Cortex. It is compliant to
ARM Debug Interface version 5 [44] that speci�es all requirements and capabilities of
this transport. We will call it transport, because its purpose is to transport commands
between debug software on the host computer and debug port on the target system, just
as JTAG does, but in a di�erent fashion. JTAG use state machine design, while SWD
use packed�based half duplex serial link with lower pin count than JTAG.

ARM is a company that designs CPU and license that design as IP (Intellectual Prop-
erty) to a silicon manufacturer company that puts some additional peripherials around
and sell this as a physical chip for a device of some kind. ARM Cortex devices appeared on
the market around year 2008 bringing new quality to mobile world, somehow synchronized
with Google Android OS entrance to the market. In year 2011 we have Cortex-A8 fam-
ily dominating the market with commercially available product and this year Cortex-A9
comes to light with multicore CPU support. There are plans for Cortex-A15 in 2012
having even more computational power, more cores, multimedia peripherials, etc. Cortex
family is on its way to the top, being manufactured by silicon gigants such as Samsung
[49], Qualcomm [50], Texas Instruments [51], ST Microelectonics [52] and others. It will
soon �ll the growing market of tablet, laptop, set�top�box and other embedded devices.

Having already insight and tools to work with this new Serial Wire Debug transport
gives an apportunity to work with upcoming devices in near future and gain skills on
already existing ones. Creating development tools before developers can have it is also
great bene�t. The LibSWD I have created is the �rst in the world open implemen-
tation of the Serial Wire Debug Open Framework already integrated with UrJTAG [37]
and OpenOCD [36] low�level embedded systems access software utilities.

There are still a lot of things to do in order to access other, deeper, parts of the CPU
and trace/debug facilities, but the �rst step has been done � recognising the transport
mechanism logical and physical construction of Serial Wire Debug, creating LibSWD [38]
and integrating it with existing software utilities, attracting the community around the
subject for further development stimulation.

CeDeROM Brain Computer Interface Page 31 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

1.11.1 Serial Wire Debug Technical Reference

1.11.1.1 Introduction

This section contains essential information to understand how SWD transport works, how
it is organized, what bus commands are available, what is the Debug Access Port (DAP),
Debug Port (DP), Access Port (AP), and how all this works. Information contained in this
section are based on copyrighted by ARM Corporation [42] Arm Debug Interface version 5
manual [44] and more speci�c to our example device ARM Cortex-M1 Reference Manual
[45]. For detailed information refer to the ARM Info Center [46].

1.11.1.2 Signalling

SW-DP (Serial Wire Debug Port) operates with a synchronous serial interface. This uses a
single bidirectional data signal SWDIOTMS and a clock signal SWCLK (and the GROUND signal
ofcourse). Each sequence of operations on the wire consists of two or three phases:

• Packet request � The external host debugger issues a request to the debug port.
The debug port is the target of the request.

• Acknowledge response � The target sends an acknowledge response to the host.

• Data transfer phase � This phase is only present when either:

� Data Read or Data Write request is followed by a valid (OK) � acknowledge
response.

� ORUNDETECT �ag is set to 1 in the CTRL/STAT Register (if CTRL/STAT=1
then data transfer is required on all responses).

The data transfer is one of:

• target to host, following a read request (RDATA)

• host to target, following a write request (WDATA).

The SW-DP uses a serial wire for both host and target sourced signals. The host
emulator drives the protocol timing. Only the host emulator generates packet headers.
Both the target and host are capable of driving the bus HIGH and LOW, or tristating it.
Time required to switch from transmission into receiving mode is called Turnaround time.

The SW-DP clock, SWCLKTCK, can be asynchronous to the device/system CLK. SWCLKTCK
can be stopped when the debug port is idle, but host must continue to clock the interface
for a number of cycles after the data phase of any data transfer � this ensures that the
transfer can be clocked through the SW-DP. 100k high�pullup resistor is recommended at
target on SWTMSIO line, therefore this line should be driven high before entering low power
mode.

Page 32 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

1.11.1.3 Interface Reset and Synchronization

Interface reset or resynchronization occurs at 50 clocks with data line set high and then
IDCODE read ended with OK response. Device will signal request for reset by not driving
the data line at response stage, after two bad data sequences in a row target locks out and
requests reset sequence described before. Additionally host should give target some time
for command processing to return a payload, host can request IDCODE read and when it
fails it should reset Target.

Note: After reset and jtag�to�swd sequence SWDIOTMS line must be driven low with
at least one clock pulse on SWCLK line, otherwise target will not respond to any request!
JTAG�TO�SWD sequence presented by ARM is incomplete and will not work without IDLE
cycle. It is good to implement IDLE command that consists of SWDIOTMS line set low with
8 clock pulses on SWCLK line (kind of request with 0x00 payload) that will allow SW-DP

to successfully complete commands execution when appended at the end of long queue or
reset sequences.

1.11.1.4 SWD Packet Construction

• Start � single start bit, with value 1.

• APnDP � single bit, indicating whether the DP or the AP Access Register is to be
accessed. This bit is 0 for a DPACC access, or 1 for an APACC access.

• RnW � single bit, indicating whether the access is a read or a write. This bit is 0 for
an write access, or 1 for a read access.

• A[2:3] � two bits, giving the A[3:2] address �eld for the DP or AP Register Address
(shifted out LSB �rst):

� APACC access, the register being addressed depends on the A[3:2] value and
the value held in the SELECT register.

� DPACC access, the A[3:2] value determines the address of the register in the
SW-DP register map.

• Parity � single parity bit for the preceding packet.

• Stop � single stop bit. In the synchronous SWD protocol this is always 0.

• Park � single bit. The host must drive the line high before tristating the line. The
target reads this bit as 1.

• TRN (Turnaround) � this is a period when the line is not driven and the state
of the line is Unde�ned. The length of the turnaround period is controlled by
the TURNROUND �eld in the Wire Control Register. The default setting is a
turnaround period of one clock cycle. By default turnaround time is one cycle.

• ACK � 3-bit target-to-host response. Transmitted LSB �rst on the wire.

CeDeROM Brain Computer Interface Page 33 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

• WDATA[0:31] � 32 bits of write data, from host to target.

• RDATA[0:31] - 32 bits of read data, from target to host.

In the SWD protocol, a simple parity check is applied to all packet request and
data transfer phases. Parity bit appears on the wire immediately after the A[2:3] bits
(ACK[0:2] bits are never included in the parity calculation). Even parity is used:

• Packet requests � parity check is made over the APnDP, RnW and A[2:3] bits (when
the number of bits set to 1 is odd then the parity bit is set to 1, when the number
of bits set to 1 is even then the parity bit is set to 0).

• Data transfers (WDATA and RDATA) - parity check is made over the 32 data bits,
WDATA[0:31] or RDATA[0:31]. If, of these 32 bits (if the number of bits set to 1 is
odd then the parity bit is set to 1, if the number of bits set to 1 is even then the
parity bit is set to 0).

1.11.1.5 Successful Write Operation

Figure 1.7: Successful write operation [46].

A successful write operation consists of three phases:

• 8-bit write packet request, from the host to the target

• 3-bit OK acknowledge response, from the target to the host

• 33-bit data write phase, from the host to the target

By default, there are single�cycle turnaround periods between each of these phases.
The OK response only indicates that the debug port is ready to accept the write data.
The debug port writes this data after the write phase has completed. The response to the
debug port write itself is given on the next operation. There is no turnaround phase after
the data phase. The host is driving the line and can start the next operation immediately.
SW-DP can bu�er writes to the APBUS.

The SW-DP implements a write bu�er that enables it to accept write operations even
when other transactions are still outstanding. The debug port issues an OK response to
a write request if it can accept the write into its write bu�er. This means that an OK
response to a write request, other than a write to the DP ABORT Register, indicates only

Page 34 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

that the write has been accepted by the debug port. It does not indicate that all previous
transactions have completed.

If a write is accepted into the write bu�er but later abandoned, the WDATAERR �ag is
set in the CTRL/STAT Register, see Control/Status Register (CTRL/STAT). A bu�ered write
is abandoned if:

• A sticky �ag is set by a previous transaction.

• A debug port read of the IDCODE or CTRL/STAT Register is made. Because the
debug port is not permitted to stall reads of these registers, it must:

� perform the IDCODE or CTRL/STAT Register access immediately

� discard any bu�ered writes, because otherwise they would be performed out-
of-order.

• A debug port write of the ABORT Register is made. This is because the debug port
cannot stall an ABORT Register access.

This means that if you make a series of access port write transactions, it might not
be possible to determine which transaction failed from examining the ACK responses.
However, it might be possible to use other enquiries to �nd which write failed. For
example, if you are using the auto-address increment (AddrInc) feature of a Memory
Access Port (AHB-AP), then you can read the Transfer Address Register to �nd which was
the �nal successful write transaction. See AHB-AP Transfer Address Register, TAR, 0x04
and AHB-AP register summary for more information.

The write bu�er must be emptied before the following operations can be performed:

• any access port read operation

• any debug port operation other than a read of the IDCODE or CTRL/STAT Reg-
ister, or a write of the ABORT Register.

Attempting these operations causes WAIT responses from the debug port until the
write bu�er is empty. If you have to perform a SW-DP read of the IDCODE or CTRL/STAT
Register, or a SW-DP write to the ABORT Register immediately after a sequence of access
port writes, you must �rst perform an access that the SW-DP is able to stall. In this way
you can check that the write bu�er is cleared before performing the SW-DP register access.
If this is not done, WDATAERR might be set and the bu�ered writes lost.

1.11.1.6 Successful Read Operation

A successful read operation consists of three phases:

• 8-bit read packet request, from the host to the target

• 3-bit OK acknowledge response, from the target to the host

CeDeROM Brain Computer Interface Page 35 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

Figure 1.8: Successful read operation [46].

• 33-bit data read phase, where data is transferred from the target to the host.

By default, there are single�cycle turnaround periods between the �rst and second of
these phases and after the third phase. However, there is no turnaround period between
the second and third phases.

The SW-DP CTRL/STAT register includes a READOK �ag, bit [6]. This register is de-
scribed in Control/Status Register, CTRL/STAT. The READOK �ag is updated on every
access port read access and on every RDBUFF read request. When the SW-DP initiates the
access port access it clears the READOK �ag to 0 and, when the SW-DP target gives an OK

response to the read request, it sets the READOK �ag to 1. This means that if a host receives
a corrupted ACK response to an access port or RDBUFF read request it can check whether
the read actually completed correctly. The host can read the DP CTRL/STAT Register to
�nd the value of the READOK �ag:

• If the �ag is set to 1 then the read was performed correctly. The host can use
a RESEND request to obtain the read result, see Read Resend Register, RESEND
(SW-DP only).

• If the �ag is set to 0 then the read was not successful. The host must retry the
original access port or RDBUFF read request.

Read accesses to the access port are posted. This means that the result of the access
is returned on the next transfer. If the next access you have to make is not another access
port read then you must insert a read of the DP RDBUFF Register to obtain the posted
result. When you must make a series of access port reads, you only have to insert one
read of the RDBUFF Register:

• On the �rst access port read access, the read data returned is Unde�ned. You must
discard this result.

• If you immediately make another access port read access this returns the result of
the previous access port read.

• You can repeat this for any number of access port reads.

• Issuing the last access port read packet request returns the last-but-one access port
read result.

• You must then read the DP RDBUFF Register to obtain the last access port read
result.

Page 36 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

1.11.1.7 WAIT response to Read or Write operation request

Figure 1.9: WAIT response to Read or Write operation request [46].

A WAIT response to a read or write packet request consists of two phases:

• 8-bit read or write packet request, from the host to the target

• 3-bit WAIT acknowledge response, from the target to the host.

By default, there are single�cycle turnaround periods between these two phases and
after the second phase. If Overrun Detection is enabled then a data phase is required on
a WAIT response. Writing to the ABORT register after receiving a WAIT response enables
the debugger to access other parts of the debug system.

A WAIT response is issued by the SW-DP if it is not able to immediately process the
request from the debugger. However, a WAIT response must not be issued to the following
requests. SW-DPmust always be able to process these three requests immediately: IDCODE,
CTRL/STAT, ABORT. With any request other than those listed, the SW-DP issues a WAIT

response, with no data phase, if it cannot process the request. This happens if a previous
access port or debug port access is outstanding, or if the new request is an access port
read request and the result of the previous AP read is not yet available.

Normally, when a debugger receives a WAIT response it retries the same operation.
This enables it to process data as quickly as possible. However, if several retries have
been attempted, and time permitted for a slow interconnection and memory system to
respond, if appropriate, the debugger might write to the ABORT register. This signals to the
active access port that it must terminate the transfer that it is currently attempting. An
access port implementation might be unable to terminate a transfer on its ASIC interface.
However, on receiving an ABORT request the access port must free up the SWD interface.

1.11.1.8 FAULT response to Read or Write operation request

A FAULT response to a read or write packet request consists of two phases:

• 8�bit read or write packet request, from the host to the target.

• 3�bit FAULT acknowledge response, from the target to the host.

By default, there are single�cycle turnaround periods between these two phases and
after the second phase. If Overrun Detection is enabled then a data phase is required on
a FAULT response.

CeDeROM Brain Computer Interface Page 37 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

Figure 1.10: FAULT response to Read or Write operation request [46].

SW-DP does not issue a FAULT response to an access to the IDCODE, CTRL/STAT or
ABORT registers. For any other access, the SW-DP issues a FAULT response if any sticky
�ag is set in the CTRL/STAT Register. Use of the FAULT response enables the protocol
to remain synchronized. A debugger might stream a block of data and then check the
CTRL/STAT register at the end of the block. The sticky error �ags are cleared by writing
bits in the ABORT register.

1.11.1.9 Protocol Error Sequence

Figure 1.11: Protocol error sequence [46].

A protocol error occurs when a host issues a packet request but the target fails to return
any acknowledge response. If the SW-DP detects a parity error in the packet request it
does not reply to the request.

When the host receives no reply to its request, it must back o�, in case the SW-DP has
lost frame synchronization for some reason. After this, it can issue a new transfer request.
In this situation it must read the IDCODE register � this is mandated by this speci�cation
because a successful read of the IDCODE register con�rms that the target is operational. If
there is no response at the second attempt, the debugger must force a line reset to ensure
frame synchronization and valid operation. This is necessary because the SW-DP is in a
state where it only responds to a line reset. After the line reset the debugger must read
the IDCODE register before it attempts any other operations.

If the transfer that resulted in the original protocol error response was a write, you
can assume that no write occurred. If the original transfer was a read, it is possible that
the read was issued to an access port. Although this is unlikely, you must consider this
possibility because reads are pipelined and the debug port might implement a write bu�er.

Page 38 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

Figure 1.12: Protocol error sequence [46] when Sticky Overrun Detection is enabled.

1.11.1.10 SW-DP Registers

SW-DP registers:

• address b00:

� R, APnDP=b0: Identi�cation Code Register, IDCODE

� W, APnDP=b0: Abort Register, ABORT

• address b01:

� CTRLSEL=b0: R/W: Control/Status Register, CTRL/STAT

� CTRLSEL=b1: R/W: Wire Control Register, WCR (SW-DP only)

• address b10:

� R: Read Resend Register, RESEND (SW-DP only)

� W: AP Select Register, SELECT

• address b11:

� R: Read Bu�er, RDBUFF

Note: There is a bug in ARM documentation stating that IDCODE and ABORT register
should be accessed with APnDP=1, but this points to the Access Port (AP) registers, not
Debug Port (DP) registers, while these registers clearly belongs to the DP.

CeDeROM Brain Computer Interface Page 39 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

Figure 1.13: ABORT register map [46].

1.11.1.11 ABORT Register

The Abort Register is always present on all debug port implementations. Its main purpose
is to force a DAP abort. On a SW-DP, it is also used to clear error and sticky �ag conditions.
A write�only register. Always accessible and returns an OK response if a valid transaction
is received. Abort Register accesses always complete on the �rst attempt.

Bit description:

• [31:5] � Reserved, SBZ.

• [4] ORUNERRCLR � Write b1 to this bit to clear the STICKYORUN overrun error �agb
(SW-DP only).

• [3] WDERRCLR � Write b1 to this bit to clear the WDATAERR write data error �agb
(SW-DP only).

• [2] STKERRCLR � Write b1 to this bit to clear the STICKYERR sticky error �agb
(SW-DP only).

• [1] STKCMPCLR � Write b1 to this bit to clear the STICKYCMP sticky compare �agb
(SW-DP only).

• [0] DAPABORT � Write b1 to this bit to generate a DAP abort. This aborts the
current access port transaction. This must only be done if the debugger has received
WAIT responses over an extended period.

DP Aborts � Writing b1 to bit [0] of the Abort Register generates a debug port
abort, causing the current AP transaction to abort. This also terminates the Transaction
Counter, if it was active. From a software perspective, this is a fatal operation. It discards
any outstanding and pending transactions and leaves the access port in an unknown state.
However, on a SW-DP, the sticky error bits are not cleared. You use this function only
in extreme cases, where debug host software has observed stalled target hardware for an
extended period. Stalled target hardware is indicated by WAIT responses.

After a debug port abort is requested, new transactions can be accepted by the debug
port. However, an access port access to the access port that was aborted can result in

Page 40 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

more WAIT responses. Other access ports can be accessed, however, the state of the system
might make it impossible to continue with debug.

Clearing error and sticky compare �ags � When a debugger, connected to a SW-DP,
checks the Control/Status Register and �nds that an error �ag is set, or that the
sticky compare �ag is set, it must write to the Abort Register to clear the error or sticky
compare �ag. You can use a single write of the Abort Register to clear multiple �ags, if
this is necessary. After clearing the �ag, you might have to access the debug port and
access port registers to �nd what caused the �ag to be set. Typically:

• For the STICKYCMP or STICKYERR �ag, you must �nd which location was accessed
to cause the �ag to be set.

• For the WDATAERR �ag, after clearing the �ag you must resend the data that was
corrupted.

• For the STICKYORUN �ag, you must �nd which debug port or access port transaction
caused the over�ow. You then have to repeat your transactions from that point.

1.11.1.12 IDCODE, Identi�cation Code Register

Figure 1.14: IDCODE register map [46].

The Identi�cation Code Register is always present on all debug port implementations.
It provides identi�cation information about the ARM Debug Interface. It is at address
0b00 on read operations when the APnDP bit=1. It is a read-only register and always
accessible.

Bits description:

• [31:28] Version code: JTAG-DP=0x3, SW-DP=0x2

• [27:12] PARTNO � Part Number for the debug port. Current ARM-designed debug
ports have the following PARTNO values: JTAG-DP=0xBA00, SW-DP=0xBA10

• [11:1] MANUFACTURER � JEDEC Manufacturer ID, an 11-bit JEDEC code that
identi�es the manufacturer of the device. The ARM default value for this �eld is
0x23B.

• [0] � Always 0b1.

CeDeROM Brain Computer Interface Page 41 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

JEDEC Manufacturer ID codes are assigned by the JEDEC Solid State Technology
Association, see JEP106M, Standard Manufacture's Identi�cation Code. This code is also
described as the JEP-106 manufacturer identi�cation code and can be subdivided into
two �elds:

• Continuation code, 4 bits, [11:8]: b0100, 0x4

• Identity code, 7 bits, [7:1]: b0111011, 0x3B

1.11.1.13 CTRL/STAT, Control/Status Register

Figure 1.15: CTRL/STAT register map [46].

The Control/Status Register is always present on all debug port implementations.
It provides control of the debug port and status information about the debug port. It
is located at address 0b01 on read and write operations when the APnDP=b1 and the
CTRLSEL=b0 in the Select Register. It is a read�write register, in which some bits have
di�erent access rights. It is implementation�de�ned whether some �elds in the register
are supported � below is an obligatory bit list and description.

Bits description:

• [31], RO: CSYSPWRUPACK � System power�up acknowledge.

• [30], R/W: CSYSPWRUPREQ � System power�up request. After a reset this bit is LOW
(0).

• [29], RO: CDBGPWRUPACK � Debug power�up acknowledge.

• [28], R/W: CDBGPWRUPREQ � Debug power�up request. After a reset this bit is LOW
(0).

• [27], RO: CDBGRSTACK � Debug reset acknowledge.

• [26], R/W: CDBGRSTREQ � Debug reset request. After a reset this bit is LOW (0).

Page 42 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

• [25:24] � Reserved, RAZ/SBZP.

• [21:12], R/W: TRNCNT � Transaction counter. After a reset the value of this �eld
is Unpredictable.

• [11:8], R/W: MASKLANE � Indicates the bytes to be masked in pushed compare
and pushed verify operations. After a reset the value of this �eld is Unpredictable.
The MASKLANE �eld, bits [11:8] of the CTRL/STAT Register, is only relevant if the
Transfer Mode is set to pushed verify or pushed compare operation. In the
pushed operations, the word supplied in an access port write transaction is compared
with the current value of the target access port address. The MASKLANE �eld lets you
specify that the comparison is made using only certain bytes of the values. Each bit
of the MASKLANE �eld corresponds to one byte of the access port values. Therefore,
each bit is said to control one byte lane of the compare operation:

� b1XXX: Include byte lane 3 in comparisons (0xFF���)

� bX1XX: Include byte lane 2 in comparisons (0x�FF��)

� bXX1X: Include byte lane 1 in comparisons (0x��FF�)

� bXXX1: Include byte lane 0 in comparisons (0x���FF)

• [7], RO[1]: WDATAERR[1] � This bit is set to 1 if a Write Data Error occurs. This
bit can only be cleared by writing b1 to the WDERRCLR �eld of the Abort Register.
After a power�on reset this bit is LOW (0). It is set if:

� there is a parity or framing error on the data phase of a write

� a write that has been accepted by the debug port is then discarded without
being submitted to the access port.

• [6], RO[1]: READOK[1] � This bit is set to 1 if the response to a previous access
port or RDBUFF was OK. It is cleared to 0 if the response was not OK. This �ag always
indicates the response to the last access port read access. After a power�on reset
this bit is LOW (0).

• [5], RO[2]: STICKYERR � This bit is set to 1 when the processor receives a bus error
on the system AHB-Lite bus. When STICKYERR is set, no transaction is passed from
the JTAG or SW interfaces to the debug AHB system bus. Any read that is performed
when STICKYERR is set results in data that is Unpredictable. To clear this bit write
b1 to the STKERRCLR �eld of the Abort Register. After a power�on reset this bit
is LOW (0).

• [4], RO[2]: STICKYCMP - This bit is set to 1 when a match occurs on a pushed
compare or a pushed verify operation. To clear this bit write b1 to the STKCM-
PCLR �eld of the Abort Register, see Abort Register, ABORT. After a power-on
reset this bit is LOW (0).

CeDeROM Brain Computer Interface Page 43 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

3:2 , R/W: TRNMODE - This �eld sets the transfer mode for access port operations.
After a power-on reset the value of this �eld is Unpredictable. In normal operation,
access port transactions are passed to the access port for processing. In pushed
verify and pushed compare operations, the debug port compares the value supplied
in the access port transaction with the value held in the target access port address.
Below is a list of the permitted values of this �eld and their meaning:

� b00: Normal operation

� b01: Pushed verify operation

� b10: Pushed compare operation

� b11: Reserved

• [1], RO[2]: STICKYORUN � If overrun detection is enabled (see bit [0] of this
register), this bit is set to 1 when an overrun occurs. To clear this bit write b1 to
the ORUNERRCLR �eld of the Abort Register, ABORT. After a power�on reset this bit
is LOW (0).

• [0], R/W: ORUNDETECT � This bit is set to b1 to enable overrun detection. After a
reset this bit is Low (0).

1.11.1.14 SELECT, AP Select Register

Figure 1.16: SELECT register map [46].

The AP Select Register is always present on all debug port implementations. Its
main purpose is to select the current Access Port (AP) and the active four�word register
window in that access port. On a SW-DP, it also selects the Debug Port address bank. It
is at address 0b10 on write operations when the APnDP=b1 and is a write�only register.
Access to the AP Select Register is not a�ected by the value of the CTRLSEL bit.

Bits description:

• [31:24], APSEL: Selects current access port. Note: Because the processor has only
one access port, APSEL must be 8'b00000000. The reset value of this �eld is Un-
predictable.

• [23:8], � Reserved. SBZ/RAZ[1].

Page 44 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

• [7:4], APBANKSEL � Selects the active 4-word register window on the current access
port. The reset value of this �eld is Unpredictable.

• [3:1], � Reserved. SBZ/RAZ[1].

• [0], CTRLSEL: SW-DP Debug Port address bank select, SW-DP only. After a reset this
�eld is b0. However the register is WO so you cannot read this value. The CTRLSEL
�eld, bit [0], controls which debug port register is selected at address b01 on a
SW-DP. Meaning of the di�erent values of CTRLSEL is as follows:

� 0: CTRL/STAT, see Control/Status Register

� 1: WCR, see Wire Control Register (SW-DP only)

1.11.1.15 RDBUFF, Read Bu�er

The 32�bit Read Buffer is always present on all debug port implementations. However,
there are signi�cant di�erences in its implementation on JTAG and SW Debug Ports. On
SW-DP it is at address 0xC on read operations when the APnDP=b1 and is a read�only
register. Access to the Read Bu�er is not a�ected by the value of the CTRLSEL bit in the
SELECT Register.

On a SW-DP, performing a read of the Read Bu�er captures data from the access
port, presented as the result of a previous read, without initiating a new access port
transaction. This means that reading the Read Bu�er returns the result of the last access
port read access, without generating a new AP access. After you have read the Read
Bu�er, its contents are no longer valid. The result of a second read of the Read Bu�er is
Unpredictable.

If you require the value from an access port register read, that read must be followed
by one of:

• A second access port register read. You can read the Control/Status Register (CSW)
if you want to ensure that this second read has no side e�ects.

• A read of the DP Read Bu�er. This access, to the access port or the debug port
depending on which option you used, stalls until the result of the original access
port read is available.

1.11.1.16 WCR, Wire Control Register

The Wire Control Register is always present on any SW-DP implementation. Its purpose
is to select the operating mode of the physical serial port connection to the SW-DP. It is a
read/write register at address 0b01 on read and write operations when the CTRLSEL=b1 in
the Select Register. For information about the CTRLSEL bit see AP Select Register SELECT.
Note: When the CTRLSEL=b1, to enable access to the WCR, the DP Control/Status Register
is not accessible. Many features of the Wire Control Register are implementation�de�ned!

Bits description:

CeDeROM Brain Computer Interface Page 45 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

Figure 1.17: WCR register map [46].

• [31:10] � Reserved. SBZ/RAZ.

• [9:8], TURNROUND: Turnaround tristate period. After a reset this �eld is b00. This
�eld de�nes the turnaround tristate period. This turnaround period allows for pad
delays when using a high sample clock frequency. The possible values of this �eld
and their meanings is presented below:

� b00: 1 sample period

� b01: 2 sample periods

� b10: 3 sample periods

� b11: 4 sample periods

• [7:6], WIREMODE: Identi�es the operating mode for the wire connection to the debug
port. After a reset this �eld is b01. This �eld identi�es SW-DP as operating in
Synchronous mode only. This �eld is required. The possible values of the �eld and
their meanings is presented below:

� b00: Reserved

� b01: Synchronous (no oversampling)

� b1X: Reserved

• [5:3] � Reserved. SBZ/RAZ.

• [2:0], PRESCALER: Reserved. SBZ/RAZ.

1.11.1.17 RESEND, Read Resend Register

The Read Resend Register is always present on any SW-DP implementation. Its purpose
is to enable the read data to be recovered from a corrupted debugger transfer, without
repeating the original AP transfer. It is a 32-bit read-only register at address 0b10 on
read operations. Access to the Read Resend Register is not a�ected by the value of the
CTRLSEL bit in the SELECT Register.

Performing a read to the RESEND register does not capture new data from the access
port. It returns the value that was returned by the last AP read or DP RDBUFF read.

Page 46 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

Reading the RESEND register enables the read data to be recovered from a corrupted
transfer without having to re�issue the original read request or generate a new DAP or
system level access. The RESEND register can be accessed multiple times. It always returns
the same value until a new access is made to the DP RDBUFF register or to an access port
register.

1.11.2 LibSWD � Serial Wire Debug Open Library

1.11.2.1 Introduction

To be able to work with SWD transport on my target ARM�Cortex device I had to
create a library that would allow to operate on SWD bus and integrate easily into existing
applications that did not mention SWD at design time. LibSWD [38] was designed to
be a standalone transport framework with both high�level and low�level API to work
with SWD devices and allow extending its capabilities in future. Library was written by
Tomasz CEDRO from Orange Labs Warsaw (Poland) under 3�clause BSD license [35].

LibSWD is integrated with external software using �driver bridge� � a simple set of
functions that drive physical signall of the physical interface, where interface itself can
be driven with existing drivers of that applications, making LibSWD very robust and
universal.

Basic integration with UrJTAG [37] and OpenOCD [36] was done � a free and Open�
Source utilities previously used only for JTAG operations, just waiting to extend its ex-
isting potential and usability with new features, such as SWD transport. This however
was very time consuming and di�cult task because it required redesign of existing soft-
ware architecture without destroying existing design to maintain backward�compatibility.
Open�Source gives this opportunity. On the other hand applications created by dozens
of developers without clear lidership not always represent the perfect coding style and
project organization. There are still lots of things to be done in those software utilities,
but the bene�ts and its potential are now clearly visible and proven.

1.11.2.2 LibSWD Reference

LibSWD has its own website at http://www.libswd.sf.net with remote code repository
and download section. LibSWD is documented with Doxygen, an inline source code
documentation system, providing always up�to�date documentation of the source code,
even between releases.

LibSWD is an Open-Source framework to deal with with Serial Wire Debug Port in
accordance to ADI (Arm Debug Interface, version 5.0 at the moment) speci�cation. It is
released under 3-clause BSD license.

1.11.2.3 SWD basics

Serial Wire Debug is an alternative to JTAG (IEEE1149.1) transport layer for accessing
the Debug Access Port in ARM-Cortex based devices. LibSWD provides methods for

CeDeROM Brain Computer Interface Page 47 of 125

http://www.libswd.sf.net
http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

bitstream generation on the wire using simple but �exible API that can reuse capabilities
of existing applications for easier integration. Every bus operation such as control, request,
turnaround, acknowledge, data and parity packet is named a "command" represented by
a swd_cmd_t data type that builds up the queue that later can be �ushed into real
hardware using standard set of (application�speci�c) driver functions. This way LibSWD
is almost standalone and can be easily integrated into existing utilities for low�level access
and only requires in return to de�ne driver bridge that controls the physical interface
interconnecting host and target. Drivers and other application�speci�c functions are
extern and located in external �le crafted for that application and its hardware. LibSWD
is therefore best way to make your application SWD aware.

1.11.2.4 Context

The most important data type in LibSWD is swd_ctx_t structure type, a context that
represents logical entity of the swd bus (transport layer between host and target) with
all its parameters, con�guration and command queue. Context is being created with
swd_init() function that returns pointer to allocated virgin structure, and it can be
destroyed with swd_deinit() function taking the pointer as argument. Context can be
set only for one interface�target pair, but there might be many di�erent contexts in use
if necessary, so amount of devices in use is not limited.

1.11.2.5 Function Organization

All functions in general operates on pointer type and returns number of processed el-
ements on success or negative value with swd_error_code_t on failure. Functions are
grouped by functionality that is denoted by function name pre�x (ie. swd_bin* are for
binary operations, swd_cmdq* deals with command queue, swd_cmd_enqueue* deals with
creating commands and attaching them to queue, swd_bus* performs operation on the
swd transport system, swd_drv* are the interface drivers, etc).

Standard end�users are encouraged to only use high level functions (swd_bus*, swd_dap*,

swd_dp*) to perform operations on the swd transport layer and the target's DAP (Debug
Access Port) and its components such as DP (Debug Port) and the AP (Access Port).
More advanced users however may use low level functions (swd_cmd*, swd_cmdq*) to
group them into new high�level functions that automates some tasks (such as high�level
functions does).

Functions of type extern are the ones to implement in external �le by developers
that want to incorporate LibSWD into their application. Context structure also has void
pointer in the swd_driver_t structure that can hold address of the external driver struc-
ture to be passed into internal swd drivers (extern swd_drv* functions) that wouldn't
be accessible otherwise.

Page 48 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

1.11.2.6 Commands

Bus operations are split into commands represented by swd_cmd_t data type. They form
a bidirectional command queue that is part of swd_ctx_t structure. Command type, and
so its payload, can be one of: control (user de�ned 8�bit payload), request (according to
the standard), ack, data, parity (data and parity are separate commands!), trn, bitbang
and idle (equals to control with zero data). Command type is de�ned by swd_cmdtype_t

and its code can be negative (for MOSI operations) or positive (for MISO operations) � this
way bus direction can be easily calculated by multiplying two operation codes (when the
result is negative bus will have to change direction), so the libswd "knows" when to put
additional TRN command of proper type between enqueued commands.

Payload is stored within union type and its data can be accessed according to payload
name, or simply with data8 (char) and data32 (int) �elds. Payload for write (MOSI)
operations is stored on command creation, but payload for read (MISO) operations becomes
available only after command is executed by the interface driver.

There are 3 methods of accessing read data � �ushing the queue into driver then reading
queue directly, single stepping queue execution (�ush one�by�one) then reading context
log of last executed command results (there are separate �elds of type swd_transaction_t
in swd_ctx_t's log structure for read and write operations), or providing a double pointer
on command creation to have constant access to its data after execution.

After all commands are enqueued with swd_cmd_enqueue* function set, it is time
to send them into physical device with swd_cmdq_flush() funtion. According to the
swd_operation_t parameter commands can be �ushed one�by�one, all of them, only
to the selected command or only after selected command. For low level functions all of
these options are available, but for high�level functions only two of them can be used �
SWD_OPERATION_ENQUEUE (but not send to the driver) and SWD_OPERATION_EXECUTE (all
unexecuted commands on the queue are executed by the driver sequentially) � that makes
it possible to perform bus operations one after another having their result just at function
return, or compose more advanced sequences leading to preferred result at execution time.

Because high�level functions provide simple and elegant manner to get the operation
result, it is advised to use them instead dealing with low�level functions (implementing
memory management, data allocation and queue operation) that exist only to make high�
level functions possible.

1.11.2.7 Drivers

Calling the swd_cmdq_flush() function leads to execution of not yet executed com-
mands from the queue (in a manner speci�ed by the operation parameter) on the SWD
bus (transport layer between interface and target, not the bus of the target itself) by
swd_drv_transmit() function that use application speci�c extern functions de�ned in
external �le (ie. libswd_drv_urjtag.c) to operate on a real hardware using drivers from
existing application.

LibSWD use only swd_drv_{mosi,miso}_8,32 (separate for 8�bit char and 32�bit int
data cast type) and swd_drv_{mosi,miso}_trn functions to interact with drivers, so it is

CeDeROM Brain Computer Interface Page 49 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

possible to easily reuse low�level and high�level devices for communications, as they have
all information necessary to perform exact actions � number of bits, payload, command
type, shift direction and bus direction. It is even possible to send raw bytes on the bus
(control command) or bitbang the bus (bitbang command) if necessary.

MOSI (Master Output Slave Input) and MISO (Master Input Slave Output) was used to
clearly distinguish transfer direction (from master�interface to target�slave), as opposed
to ambiguous read/write statements, so after swd_drv_mosi_trn()master should have its
bu�ers set to output and target inputs active. Drivers, as most of the LibSWD functions,
works on data pointers instead data copy and returns number of elements processed (bits
in this case) or negative error code on failure.

1.11.2.8 Example program

Below is the simplest possible example program source code to show how to initialize
libswd, read the IDCODE register out of the target device, then deinitialize and quit:

1 #include <libswd.h>

2 int main(){

3 swd_ctx_t *swdctx;

4 int res, *idcode;

5 swdctx=swd_init();

6 if (swdctx==NULL) return -1;

7 //we might need to pass external driver structure to swd_drv* functions

8 //swdctx->driver->device=...

9 res=swd_dap_detect(swdctx, SWD_OPERATION_EXECUTE, &idcode);

10 if (res<0){

11 printf("ERROR: %s\n", swd_error_string(res));

12 return res;

13 } else printf("IDCODE: 0x%X (%s)\n", *idcode, swd_bin32_string(idcode));

14 swd_deinit(swdctx);

15 return 0;

16 }

1.11.3 LibSWD in practice

This section documents practical steps already done with LibSWD, real�life hardware
and software. LibSWD is still under heavy development, but soon it will become most
popular utility in the embedded development world of ARM Cortex devices.

All work regarding SWD implementation is described in details at http://stm32primer2swd.
sf.net. This is �rst in the world universal and open SWD implementation!

1.11.4 LibSWD integration with UrJTAG

This section documents integration of LibSWD with UrJTAG application [37] for low
level accessing digital systems equipped with IEEE1149.1 JTAG interface. At the time
when project was started SWD was not supported by UrJTAG and there was no library
nor idea on how to support that bus, so it had to be invented from scratch, just as libswd
itself.

UrJTAG was the �rst Open�Source program for accessing JTAG system and bound-
ary scan. It had also simple driver for �ash access and SVF �le format player (it allows

Page 50 of 125 CeDeROM Brain Computer Interface

http://stm32primer2swd.sf.net
http://stm32primer2swd.sf.net
http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

Figure 1.18: Tapping jtag/swd interface into physical signals.

replaying JTAG bus operations from �le), that made is perfect tool for board testing, up-
loading/downloading �rmware and acting as bridge between target microelectronic device
and the computer software working on its registers. UrJTAG however does not have any
built�in logic for debugging, �ash memory support on many di�erent targets, etc. It was
simply meant to work on target JTAG registers. This is both weakness of the application
because itself it cannot do anything useful, and the strong part as it has no prede�ned
target device, any device can be virtually created and supported based on BSDL �le
(describes internal register map of a target device) provided by manufacturer.

The �rst question asked here should be �why to make JTAG application talk SWD�
anyway? The answer is simple � because it has already developed into mature, well
tested application supporting multiple features and interfaces, so we don't need to create
everything from scratch. Extending functionality of Open�Source application is also faster
and cheaper. Interfaces are di�erent for JTAG and SWD, but the driver infrastructure
could be reused and the code organization turned out to be good enough to make it
happen, everything else had to be invented and implemented with code. It was also fun
to try.

Note that all code change did not destroy or impact existing program behavior in any
negative way. Everything is perfectly backward�compatible with new features available.
This is very important and big achievement with such great functionality change. To
make it happen additional abstraction layer has been created named transport, being
something between cable and the target (usually it was JTAG).

CeDeROM Brain Computer Interface Page 51 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

Figure 1.19: LibSWD communicating with Stm32Primer2 using UrJTAG drivers.

1.11.4.1 Creating KT-LINK driver

KT�LINK was the �rst cheap interface on the market, supporting both JTAG and SWD,
designed in polish company Kristech [47] based on new FT2232H (H su�x stands for
480MBit USB Hi�Speed) chip from FTDI Chip Ltd. [53]. Its total cost of 50EUR and
well known/supported chip made it perfect candidate for prototyping of SWD interface.
It was also the only interface at time to work with, but it was so new that it had no
driver, so we had to write it!

Luckily the UrJTAG application had the backend framework to work with the bit-
stream on the interface, so the driver implementation was in fact limited to hardware
initialization and setup/cleanup routines. It was much harder with OpenOCD applica-
tion where there was no generic functionality to work with the interface hardware except
JTAG, also the level of internals complexity and bad code practices made this task harder
than planned � it took few months to create from scratch generic bistream/bitbang frame-
work and integrate it with existing solutions, also to make new transport work it was
necessary to create transport framework...

1.11.4.2 Functionality veri�cation

The successful integration ended with reading the IDCODE register out of the target CPU
using SWD bus. Still there is a need to create user friendly commandline interface to
work on bus by hand. Note that logging level change and proper error handling is also
implemented. Please see the examples below as shown on using the UrJTAG application
(the OpenOCD driver is now functional as well):

Page 52 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

• Default JTAG driver invocation:

1 UrJTAG 0.10 #1864

2 Copyright (C) 2002, 2003 ETC s.r.o.

3 Copyright (C) 2007, 2008, 2009 Kolja Waschk and the respective authors

4 UrJTAG is free software, covered by the GNU General Public License, and you are

5 welcome to change it and/or distribute copies of it under certain conditions.

6 There is absolutely no warranty for UrJTAG.

7 jtag.c:518 main() Warning: UrJTAG may damage your hardware!

8 Type "quit" to exit, "help" for help.

9 jtag> cable kt-link

10 Transport not selected or unsupported. Default transport is: JTAG

11 Connected to libftdi driver.

12 nSRST pin state is high...

13 KT-LINK JTAG Mode Initialization OK!

14 jtag> pod reset=0

15 jtag> frequency 10000

16 Setting TCK frequency to 10000 Hz

17 jtag> detect

18 IR length: 9

19 Chain length: 2

20 Device Id: 00111011101000000000010001110111 (0x3BA00477)

21 Unknown manufacturer! (01000111011) (/mnt/stuff/tmp/swd/target/share/urjtag/MANUFACTURERS)

22 Device Id: 00000110010000010100000001000001 (0x06414041)

23 Unknown manufacturer! (00000100000) (/mnt/stuff/tmp/swd/target/share/urjtag/MANUFACTURERS)

• Transport selection is what tells the program whether JTAG or SWD will be used
for the session. The old driver selection was made by calling cable and the inter-
face/driver name. Interface selection is the �rst command executed after program
starts. Additional parameter to cable is the transport that can be one of jtag or
swd (default is jtag to maintain backward compatibility when the parameter was
not required).

1 jtag> cable kt-link help

2 Usage: cable KT-LINK [vid=VID] [pid=PID] [desc=DESC] [TRANSPORT]

3 VID USB Device Vendor ID (hex, e.g. 0abc)

4 PID USB Device Product ID (hex, e.g. 0abc)

5 DESC Some string to match in description or serial no.

6 TRANSPORT Setup cable transport mode (jtag, swd, ...).

7 Default: vid=403 pid=bbe2 driver=ftdi-mpsse

8 jtag> cable kt-link swd

9 Connected to libftdi driver.

10 nSRST pin state is high...

11 KT-LINK SWD Mode Initialization OK!

12 jtag> cable kt-link jtag

13 Connected to libftdi driver.

14 nSRST pin state is high...

15 KT-LINK JTAG Mode Initialization OK!

16 jtag> cable kt-link

17 Transport not selected or unsupported. Default transport is: JTAG

18 Connected to libftdi driver.

19 nSRST pin state is high...

20 KT-LINK JTAG Mode Initialization OK!

• Detecting target device with detect command is the second call just after cable
selection. On success we should have the IDCODE printed in hex and binary:

1 jtag> cable kt-link swd

2 Connected to libftdi driver.

3 nSRST pin state is high...

4 KT-LINK SWD Mode Initialization OK!

CeDeROM Brain Computer Interface Page 53 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

5 jtag> detect

6 IDCODE=0x0EE2805D8 (11101110001010000000010111011000)

• It is possible that detect will fail, so we should get the error message. As we can
see the error reporting is very informative and helpful in �nding problem location:

1 jtag> detect

2 Error: detect.c:566 urj_tap_detect_swd() Cable<->DAP transport error: swd_dap_detect() failed ([SWD_ERROR_ACK] acknowledge error).

• In case of application troubles we can see the function call order by increasing the
verbosity level to detail:

1 jtag> debug detail

2 jtag> detect

3 Detecting SWD devices...

4 SWD_I: Executing swd_dap_activate(0x2833ccc0, SWD_OPERATION_EXECUTE)

5 SWD_I: Executing swd_dap_reset(0x2833ccc0, SWD_OPERATION_EXECUTE)

6 SWD_I: Executing swd_dp_read_idcode(0x2833ccc0, SWD_OPERATION_EXECUTE)

7 SWD_I: swd_dp_read_idcode() succeeds, IDCODE=EE2805D8 (11101110001010000000010111011000)

8 IDCODE=0x0EE2805D8 (11101110001010000000010111011000)

• It is even possible to track the bitstream on the bus having additional insight into
function call, data locations for debugging and to reduce additional equipment nec-
essary such as digital oscilloscope with memory:

1 jtag> debug debug

2 swd_log_level_inherit(): SWD Context not (yet) initialized...

3 Return in urj_parse_line r=0

4 jtag> detect

5 Detecting SWD devices...

6 swd_init() OK

7 SWD_I: Executing swd_dap_activate(0x2833cb40, SWD_OPERATION_EXECUTE)

8 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832b920) bits=0 cmdtype=UNDEFINED returns=0 payload=0x00000000 (00000000)

9 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832b960) bits=1 cmdtype=MOSI_TRN returns=1 payload=0x00000000 (00000000)

10 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bc00) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

11 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bc20) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

12 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bc40) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

13 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bc60) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

14 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bc80) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

15 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bca0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

16 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bcc0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

17 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bce0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

18 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bd00) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0x00000079 (01111001)

19 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bd20) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffe7 (11100111)

20 SWD_I: Executing swd_dap_reset(0x2833cb40, SWD_OPERATION_EXECUTE)

21 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bd40) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

22 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bd60) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

23 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bd80) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

24 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bda0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

25 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bdc0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

26 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bde0) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

27 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832be00) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

28 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832be20) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0xffffffff (11111111)

29 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832be40) bits=8 cmdtype=MOSI_CONTROL returns=8 payload=0x00000000 (00000000)

30 SWD_I: Executing swd_dp_read_idcode(0x2833cb40, SWD_OPERATION_EXECUTE)

31 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832be60) bits=8 cmdtype=MOSI_REQUEST returns=8 payload=0xffffffa5 (10100101)

32 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832be80) bits=1 cmdtype=MISO_TRN returns=1 payload=0x00000001 (00000001)

33 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bea0) bits=3 cmdtype=MISO_ACK returns=3 payload=0x00000004 (00000100)

34 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bec0) bits=32 cmdtype=MISO_DATA returns=32 payload=0xee2805d8 (11101110001010000000010111011000)

35 SWD_D: swd_drv_transmit(0x2833cb40, 0x2832bee0) bits=1 cmdtype=MISO_PARITY returns=1 payload=0x00000000 (00000000)

36 SWD_I: swd_dp_read_idcode() succeeds, IDCODE=EE2805D8 (11101110001010000000010111011000)

37 swd_dap_detect() OK

Page 54 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

38 IDCODE=0x0EE2805D8 (11101110001010000000010111011000)

39 Return in urj_parse_line r=0

1.11.5 LibSWD integration with OpenOCD

1.11.5.1 Transport Infrastructure

In order to allow access to non-JTAG devices, transport layer has been created by David
Brownell to abstract operations on the bus interconnecting interface and target system.
Implementation for SWD transport in OpenOCD based on LibSWD was created by
Tomasz Cedro. A new interface ft2232_swd has been created reusing existing code for
FT2232 devices. The code was developed and tested on KT�LINK interface, a �rst on the
market inexpensive FT2232H�based design by Krzysztof Kajstura supporting both JTAG
and SWD. Everything created around SWD is backward compatible and make (re)use of
existing code and design, so it should be fairly easy to add new inetrfaces and transports
now. Accomplishing this goal was quite a challenge, but it turned out to be possible.

1.11.5.2 Interface Signal and Bitbang Infrastructure

OpenOCD had only jtag�speci�c flush_queue() function to transfer logical data into
interface hardware that was not usable for transfering bitstream for other transports.
In order to implement transports other than jtag at interface level it was necessary to
create bit�bang functionality allowing free control over read/write access to the inter-
face electrical signals. Because OpenOCD has integrated TCL interpreter I have created
interface_signal and bitbang frontend for mentioned underlying interface signal op-
erations. Example bitbanging is presented below, it can be also used for full interface
con�guration at script/con�guration level, so there is no need to hard�code complex rou-
tines anymore for new interfaces or transports:

1 %telnet localhost 4444

2 Trying 127.0.0.1...

3 Connected to localhost.

4 Escape character is '^]'.

5 Open On-Chip Debugger

6 > interface_signal list

7 Interface Signal Name | Mask | Value

8 --

9 RnW | 0x00001000 | 0x00001000

10 LED | 0x00008000 | 0x00008000

11 srst | 0x00000A00 | 0x00000A00

12 > bitbang led=hi

13 LED=0x00008000

14 > bitbang led=lo

15 LED=0x00000000

16 > bitbang led=hi

17 LED=0x00008000

18 > interface_signal list

19 Interface Signal Name | Mask | Value

20 --

21 RnW | 0x00001000 | 0x00001000

22 LED | 0x00008000 | 0x00008000

23 srst | 0x00000A00 | 0x00000A00

24 > bitbang led=lo

CeDeROM Brain Computer Interface Page 55 of 125

http://www.tomek.cedro.info

1.11. SERIAL WIRE DEBUG KNOW-HOW

25 LED=0x00000000

26 > interface_signal list

27 Interface Signal Name | Mask | Value

28 --

29 RnW | 0x00001000 | 0x00001000

30 LED | 0x00008000 | 0x00000000

31 srst | 0x00000A00 | 0x00000A00

32 > interface_signal

33 Bad syntax!

34 interface_signal (add|del|list) signal_name [mask]

35 in procedure 'interface_signal'

36 >

No need to mention that such commands can be grouped in functions and then called
for some target-speci�c operations (i.e. SPI memory access). This wont be as fast as
built-in transport but de�nitely will come handy for testing.

1.11.5.3 Interface con�guration �le and device speci�c scripting

interface_signal and bitbang brings new possibilities to interface scripting. Signals can
be added dynamically at runtime with no need to hardcode them or recompile program.
Signals can be driven read or write with selected values and masks allowing unlimited
control over interface pinout. It is now possible to easily write external scripts for addi-
tional interface hardware, such as ADC or DAC, that was not possible before. Below is
an example con�guration �le for KT�LINK interface (...and its example usage presented
above):

1 interface ft2232_swd

2 ft2232_device_desc "KT-LINK"

3 ft2232_layout ktlink_swd

4 ft2232_vid_pid 0x0403 0xBBE2

5 interface_signal add RnW 0x1000

6 interface_signal add LED 0x8000

7 interface_signal add SRST 0x0a00

Later on I have also added some additional signals that comes handy in SWD transport
and general driver/target testing:

1 interface_signal add SRSTin 0x0040

2 interface_signal add CLK 0x01

3 interface_signal add MOSI 0x02

4 interface_signal add MISO 0x04

5 interface_signal add nSWDsel 0x20

1.11.5.4 Transport initialization and IDCODE read

This is the program invocation and debug messages output:

1 %./openocd -c noinit

2 Open On-Chip Debugger 0.5.0-dev-g7ad8d2e-dirty (2011-07-25-15:13)

3 Licensed under GNU GPL v2

4 For bug reports, read

5 http://openocd.berlios.de/doc/doxygen/bugs.html

6 Info : accepting 'telnet' connection from 4444

7 Info : only one transport option; autoselect 'swd'

Page 56 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.11. SERIAL WIRE DEBUG

8 Info : New SWD context initialized at 0x2843B280

9 10 kHz

10 Info : KT-LINK SWD-Mode initialization complete...

11 Info : max TCK change to: 30000 kHz

12 Info : clock speed 10 kHz

13 SWD_I: Executing swd_dap_activate(0x2843b280, SWD_OPERATION_EXECUTE)

14 SWD_I: Executing swd_dap_reset(0x2843b280, SWD_OPERATION_EXECUTE)

15 SWD_I: Executing swd_dp_read_idcode(0x2843b280, SWD_OPERATION_EXECUTE)

16 SWD_I: swd_dp_read_idcode() succeeds, IDCODE=EE2805D8 (11101110001010000000010111011000)

17 Info : SWD transport initialization complete. Found IDCODE=0xEE2805D8.

18 Warn : gdb services need one or more targets defined

19 User : 42 75811 command.c:557 command_print(): debug_level: 3

20 Debug: 43 78630 command.c:151 script_debug(): command - ocd_command ocd_command type ocd_transport init

21 Debug: 44 78630 command.c:151 script_debug(): command - ocd_transport ocd_transport init

22 Debug: 46 78630 transport.c:263 handle_transport_init(): handle_transport_init

23 Debug: 47 78630 swd.c:129 oocd_swd_transport_init(): entering function...

24 SWD_I: Executing swd_dap_activate(0x2843b280, SWD_OPERATION_EXECUTE)

25 Debug: 48 78630 swd_libswd_drv_openocd.c:174 swd_drv_mosi_trn(): OpenOCD's swd_drv_mosi_trn(swdctx=@0x2843B280, bits=1)

26 Debug: 49 78630 interface.c:41 oocd_interface_signal_find(): Searching for signal "RnW"

27 Debug: 50 78630 interface.c:62 oocd_interface_signal_find(): Signal RnW already exists.

28 Debug: 53 78631 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432CA0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

29 Debug: 70 78646 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432CC0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

30 Debug: 87 78662 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432CE0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

31 Debug: 104 78778 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432D00, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

32 Debug: 121 78792 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432D20, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

33 Debug: 138 78808 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432D40, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

34 Debug: 155 78824 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432D60, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

35 Debug: 172 78840 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432D80, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

36 Debug: 189 78856 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432DA0, data=0x00000079, bits=8, nLSBfirst=0x01)

37 Debug: 206 78872 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432DC0, data=0xFFFFFFE7, bits=8, nLSBfirst=0x01)

38 SWD_I: Executing swd_dap_reset(0x2843b280, SWD_OPERATION_EXECUTE)

39 Debug: 223 78888 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432DE0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

40 Debug: 240 78904 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432E00, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

41 Debug: 257 78920 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432E20, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

42 Debug: 274 78936 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432E40, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

43 Debug: 291 78952 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432E60, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

44 Debug: 308 78968 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432E80, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

45 Debug: 325 78984 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432EA0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

46 Debug: 342 79000 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432EC0, data=0xFFFFFFFF, bits=8, nLSBfirst=0x01)

47 Debug: 359 79016 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432EE0, data=0x00000000, bits=8, nLSBfirst=0x01)

48 SWD_I: Executing swd_dp_read_idcode(0x2843b280, SWD_OPERATION_EXECUTE)

49 Debug: 376 79032 swd_libswd_drv_openocd.c:61 swd_drv_mosi_8(): OpenOCD's swd_drv_mosi_8(swdctx=@0x2843B280, cmd=@0x28432F00, data=0xFFFFFFA5, bits=8, nLSBfirst=0x01)

50 Debug: 393 79048 swd_libswd_drv_openocd.c:201 swd_drv_miso_trn(): OpenOCD's swd_drv_miso_trn(swdctx=@0x2843B280, bits=1)

51 Debug: 404 79060 swd_libswd_drv_openocd.c:131 swd_drv_miso_8(): OpenOCD's swd_drv_miso_8(swdctx=@0x2843B280, cmd=@0x28432F40, data=@0x28432F40, bits=3, nLSBfirst=0x00) reads: 0x00000004

52 Debug: 469 79124 swd_libswd_drv_openocd.c:159 swd_drv_miso_32(): OpenOCD's swd_drv_miso_32(swdctx=@0x2843B280, cmd=@0x28432F60, data=@0x0828432F60, bits=32, nLSBfirst=0x00) reads: 0xEE2805D8

53 Debug: 470 79124 swd_libswd_drv_openocd.c:160 swd_drv_miso_32(): OpenOCD's swd_drv_miso_32() reads: 0xEE2805D8

54 Debug: 473 79126 swd_libswd_drv_openocd.c:131 swd_drv_miso_8(): OpenOCD's swd_drv_miso_8(swdctx=@0x2843B280, cmd=@0x28432F80, data=@0x28432F80, bits=1, nLSBfirst=0x00) reads: 0x00000000

55 SWD_I: swd_dp_read_idcode() succeeds, IDCODE=EE2805D8 (11101110001010000000010111011000)

56 Info : 474 79126 swd.c:147 oocd_swd_transport_init(): SWD transport initialization complete. Found IDCODE=0xEE2805D8.

This is the user action that makes the above output � for demonstration purpose this
is done by hand with OpenOCD's remote TCL interpreter using Telnet client program:

1 %telnet localhost 4444

2 Trying 127.0.0.1...

3 Connected to localhost.

4 Escape character is '^]'.

5 Open On-Chip Debugger

6 > source [find interface/kt-link-swd.cfg]

7 only one transport option; autoselect 'swd'

8 New SWD context initialized at 0x2843B280

9 > adapter_khz 10

10 10 kHz

11 > init

CeDeROM Brain Computer Interface Page 57 of 125

http://www.tomek.cedro.info

1.12. JTAG / IEEE1149.1 KNOW-HOW

12 KT-LINK SWD-Mode initialization complete...

13 max TCK change to: 30000 kHz

14 clock speed 10 kHz

15 SWD transport initialization complete. Found IDCODE=0xEE2805D8.

16 gdb services need one or more targets defined

17 > transport init

18 SWD transport initialization complete. Found IDCODE=0xEE2805D8.

1.12 JTAG / IEEE1149.1

JTAG stands for Joint Test Action Group and is a common name for IEEE1149.1 pro-
tocol used for various testing mechanisms in silicon manufacturing, printed circuit board
(PCB) connection veri�cation, early stage embedded system development, and many
more. JTAG requires target system to have special connector with standard�de�ned
signals (TDI, TDO, TCK, TMS, TRST) and special silicon block residing on integrated
circuit that allows JTAG operations. Connection is possible using dedicated interface that
interconnects target system with a personal computer running software that can interact
with the silicon block using JTAG as command transport system. Internal register access
can be used to verify proper functionality (i.e. after fresh silicon fabrication), connec-
tions on the board and communication with other devices such as �ash memory, driving
the input�output pins, or even debugging program execution when dedicated In�Circuit�
Emulation is embedded into CPU...

JTAG was adopted as IEEE [8] standard in 1990, also that was the year when 80486
CPU was released by Intel Corporation [48] becoming �rst JTAG�aware device ever. Since
then the number of devices supporting this standard was constantly growing. Nowadays
almost all CPU are equipped with JTAG port, however not all of them are freely accessi-
ble as JTAG is only a transport interconnecting user software with complex subsystems
hidden in silicon and protected by NDA (Non Disclosure Agreement) by their manufac-
turers. Also number of tools is limited by their accessibility, very high price and narrow
target device family orientation.

JTAG is the last resort of rescue in case of logical device damage as it may allow to
restore broken �rmware to a bricked device, companies use it for early stage development
or servicing purposes, it is also very dangerous backdoor into device security as it allows
access to information at lowest possible level � hardware registers and operating system
internals.

1.12.1 JTAG Technical Reference

1.12.1.1 Introduction

This section shows the internal organization of JTAG subsystem, how it is organized
at physical and logical level, and how it can be used to access internal target or CPU
registers in order to perform actions such as input�output or memory access. JTAG is
general transport mechanism, therefore we will not cover accessing the registers that are
out of scope of this standard, as they are usually device speci�c and di�ers among di�erent

Page 58 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.12. JTAG / IEEE1149.1

targets. Also the implementation of the JTAG Port itself may vary across di�erent devices,
as not features are supported or necessary in each case.

JTAG can be accessed usually at dedicated physical connector that gives access to the
Test Access Port (TAP) or more general Debug Access Port (DAP), depending on device
family and architecture. This standard is not limited to some speci�c manufacturer or its
device. Successful connection to TAP/DAP gives access to TAP/DAP internal registers.
There are only two kind of registers: Data and Instruction. Manipulating values of that
registers can trigger actions on internal functional block registers responsible for speci�c
functionality such as I/O, memory, or debug actions. Those functional blocks are usually
vendor speci�c and each of them require separate implementation as a tool that can
make use of its features. This is why having JTAG access not always result in successful
operation on device internals � because they are device speci�c, often kept in secret by the
manufacturer. We will base on publicly available description of the ARM JTAG Debug
Port being part of the ARM Debug Interface [44] standard.

1.12.1.2 Signalling

The JTAG connection requires at least �ve standard signals:

• TDI (Test Data Input) � bitstream input to the target system

• TDO (Test Data Output) � bitstream output from the target system

• TCK (Test ClocK) � clock signal for synchronous state machine

• TMS (Test Mode Select) � control signal selecting mode of operation

• TRST (Test ReSeT) � additional debug logic reset (not system reset)

Additionaly there are two power signals necessary (Vcc, GND) and sometimes SRST
(System ReSeT) is also available for easier system reset during development. Because
JTAG is a synchronous state machine it requires clocking signal, but its frequency range
may vary depending on the target system state (i.e. in power down the acceptable clock
may be far slower than usual), so the Adaptive Clocking teqnique was introduced using
additional RTCK (Return CLK) signal returning clock pulse after each bit has been
shifted. This was it is possible to maintain optimal connection speed. Sometimes it is
also possible to emulate TRST pin behavior with special sequence of TMS and TCK
signals, but some chips will not respond at all on the JTAG port when TRST is not
connected (i.e. HTC Nexus One).

The power supply is often necessary to be connected to the interface logic to provide
reference voltage for input�output bu�ers that are placed between interface CPU and
target CPU/TAP. Target can use di�erent power supply voltage (i.e. 1,8V) than interface
(i.e. 3,3V) or the user computer system (i.e. 5V). Bu�ers are then used as voltage�shifters
or negotiators preventing pernament damage to the systems that are interconnected at
di�erent voltage levels. Note that di�erent interfaces can have di�erent capabilities of

CeDeROM Brain Computer Interface Page 59 of 125

http://www.tomek.cedro.info

1.12. JTAG / IEEE1149.1 KNOW-HOW

Figure 1.20: Daisy�chaining JTAG multiple devices [22].

such voltage translation, some of them does not have this feature at all, so make sure
what logic is used before connecting to the target system.

Therefore physical JTAG connection requires at least 6 wires to work (TDI, TDO,
TCK, TMS, VCC, GND), sometimes 7 (when TRST is obligatory) and sometimes even
8 (when RTCK is available).

1.12.1.3 Daisy Chaining

Because JTAG operation is a bistream shift through internal device registers, it is possible
to connect output of one device into another device input (and so on) to create a serial
daisy�chain connection with multiple devices available to work. Such devices must be
equipped with JTAG compliant connector and internal logic. Speed of such connection is
then decreased and only one device can be active with other switched into BYPASS mode
simply passing input to output (with one bit delay).

1.12.1.4 JTAG Debug Port

JTAG�DP contains a debug port state machine (JTAG) that controls the JTAG-DP oper-
ation, including controlling the scan chain interface that provides the external physical
interface to the JTAG-DP. It is based closely on the JTAG TAP State Machine, see IEEE
Std 1149.1 (2001).

nTRST signal (n stands for �negative�, that is �active low� Target ReSeT signal activated
with 0) asynchronously takes the JTAG state machine logic to the Debug�Logic�Reset
state. Debug�Logic�Reset state can also always be entered synchronously from any state
by a sequence of �ve TCK cycles with TMS high, however depending on the initial state of
the JTAG this might take the state machine through one of the Update states, with the
resulting side e�ects.

When the JTAG goes through the Capture�IR state, a value is transferred onto the
Instruction Register (IR) scan chain. The IR scan chain is connected between TDI and
TDO. While the JTAG is in the Shift�IR state, and for the transition from Capture�IR to
Shift�IR, the IR scan chain advances one bit for each tick of TCK. This means that on the
�rst tick, the LSB of the IR is output on TDO, bit [1] of the IR is transferred to bit [0],

Page 60 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.12. JTAG / IEEE1149.1

Figure 1.21: JTAG State Machine [46].

bit [2] is transferred to bit [1], for example. The MSB of the IR is replaced with the
value on TDI.

When the JTAG goes through the Update�IR state, the value scanned into the scan
chain is transferred into the Instruction Register. When the JTAG goes through the
Capture�DR state, a value is transferred from one of a number of Data Registers (DR)
onto one of a number of Data Register scan chains, connected between TDI and TDO. This
data is then shifted while the JTAG is in the Shift�DR state, in the same manner as the
IR shift in the Shift�IR state. When the JTAG goes through the Update�DR state, the
value scanned into the scan chain is transferred into the Data Register. When the JTAG
is in the Run�Test/Idle state, no special actions occur. Debuggers can use this as a true
resting state.

1.12.1.5 JTAG Debug Port Registers

The JTAG�DP registers are only accessed when the Instruction Register (IR) for the DAP
access contains the IDCODE, DPACC, or ABORT instruction. The JTAG�DP register accessed
depends on both Instruction Register (IR) value for the DAP access and the address �eld

CeDeROM Brain Computer Interface Page 61 of 125

http://www.tomek.cedro.info

1.12. JTAG / IEEE1149.1 KNOW-HOW

of the DAP access. Each CPU or other device can use di�erent set of registers with
di�erent functionality! JTAG is onaly a transport mechanism to access those registers
and use them according to the device speci�cation. Registers presented below are speci�c
to ARM ADIv5 architecture.

1.12.1.6 JTAG Instruction Register (IR)

JTAG IR is a 4�bit register that holds the current DAP (Debug Access Port) Controller
instruction. On debug logic reset, IDCODE becomes the current instruction. If the IR

register is set to IR instruction value out of scope (that is not implemented, or reserved),
then the Bypass Register is selected.

• ABORT (b1000, DR: 1bit) � Access the DP Abort Register, to force a DAP abort.

• DPACC (b1010, DR: 35bits) � JTAG DP Access Registers � Initiate a Debug Port
(DP) or Access Port (AP) access, to access a debug port or access port register. The
DPACC and APACC are used for read and write accesses to registers � DPACC to access
the CTRL/STAT, SELECT and RDBUFF registers, while APACC is used to access all of
the access port registers.

• APACC (b1011, DR: 35bits) � JTAG AP Access Registers � The DPACC and APACC

scan chains have the same format. See DPACC (above).

• IDCODE (b1110, DR: 32bits) � JTAG Device ID Code Register � Device identi�-
cation. The Device ID Code value enables a debugger to identify the debug port
to which it is connected. Di�erent debug ports have di�erent Device ID Codes, so
that a debugger can make this distinction.

• BYPASS (b1111, DR: 1bit) � JTAG Bypass Register � Bypasses the device, by
providing a direct path between TDI and TDO.

1.12.2 JTAG Data Register (DR)

There are �ve physical DR registers: BYPASS, IDCODE, DPACC, APACC, ABORT. There is
a scan chain associated with each of these registers � the IR register determines which of
these scan chains is connected to the TDI and TDO signals.

• ABORT (IR: b1111, DR: 1bit) � Access the DP Abort Register, to force a DAP
abort. The debugger must scan the value 0x0000008 into this scan chain. This
value writes the RnW bit as 0, A[3:2] �eld as b00, 1 into bit 0, the DAPABORT bit, of
the Abort Register.

• � IDCODE (IR:b1110, DR: 32bit) � For the STM32 ARM�Cortex family these �elds
are as shown below. Please note that this string should be di�erent for every device
family (even hardware revision). Version, bit [31:28], is set to 3. Part number, bit
[27:12], is set to 0xBA00. Manufacturer ID, bit [11:1], is set to 0x23B. Reserved,
bit [0], is set to 1.

Page 62 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.12. JTAG / IEEE1149.1

• DPACC/APACC (DPAC_IR:b1010, APAC_IR:b1011, DR: 35bit) � Initiate a de-
bug port or access port access, to access a debug port or access port register. In
the Capture�DR state, the result of the previous transaction, if any, is returned,
together with a 3�bit ACK response. Only two ACK responses are implemented (all
others reserved):

� b010 OK/FAULT response to a DPACC or APACC access: If the response indi-
cated by ACK[2:0] is OK/FAULT, the previous transaction has completed. The
response code does not show whether the transaction completed successfully
or was faulted. You must read the CTRL/STAT register to �nd whether the
transaction was successful:

∗ If the previous transaction was a read that completed successfully, then the
captured ReadResult[31:0] is the requested register value. This result is
shifted out as Data[34:3].

∗ If the previous transaction was a write, or a read that did not com-
plete successfully, the captured ReadResult[31:0] is Unpredictable. If
Data[34:3] is shifted out it must be discarded.

� b001 WAIT response to a DPACC or APACC access: A WAIT response indicates that
the previous transaction has not completed. The host should retry the DPACC
or APACC access. Normally, if software detects a WAIT response, it retries the
same transfer. This enables the protocol to process data as quickly as possible.
However, if the software has retried a transfer a number of times, permitting
enough time for a slow interconnect and memory system to respond, it might
write to the ABORT register, to cancel the operation. This signals to the active
access port that it can terminate the transfer it is currently attempting and
permits access to other parts of the debug system. An access port might not
be able to terminate a transfer on its ASIC interface. However, on receiving
an ABORT, the access port must free its JTAG interface.

Operation in the Update�DR depends on whether the ACK[2:0] response was OK/FAULT
or WAIT. The two cases are described in:

• Update�DR operation following an OK/FAULT response.

• Update�DR operation following a WAIT response: No request is generated at the
Update�DR state and the shifted�in data is discarded. The captured value of
ReadResult[31:0] is Unpredictable. You can detect a WAIT response without shift-
ing through the entire DP or AP Access Register.

If IR=DPACC then read/write to DP, IR=APACC then read/write to AP register. RnW=0

write into DATAIN[31:0], RnW=1 read from addressed register in next read cycle: DPACC
selects A[3:2], APACC selected by A[3:2] and the SELECT DP register. Register accesses
can be pipelined, because a single DPACC or APACC scan can return the result of the previous
read operation at the same time as requesting another register access. At the end of a

CeDeROM Brain Computer Interface Page 63 of 125

http://www.tomek.cedro.info

1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL KNOW-HOW

sequence of pipelined register reads, you can read the DP RDBUFF Register to return the
result of the �nal register read.

If the current IR instruction is APACC, causing an APACC access:

• If any sticky �ag is set in the DP CTRL/STAT Register, the transaction is discarded.
The next scan returns an OK/FAULT response immediately.

• If pushed compare or pushed verify operations are enabled then the scanned-in
value of RnW must be 0, otherwise behavior is Unpredictable. On Update�DR, a
read request is issued and the returned value compared against DATAIN[31:0]. The
STICKYCMP �ag in the DP CTRL/STAT register is updated based on this comparison.

• The AP access does not complete until the access port signals it as completed.

Sticky overrun behavior on DPACC and APACC accesses: At the Capture�DR state, if the
previous transaction has not completed a WAIT response is generated. When this happens,
if the Overrun Detect �ag is set, the Sticky Overrun �ag, STICKYORUN, is set. While
the previous transaction remains not completed, subsequent scans also receive a WAIT

response. When the previous transaction has completed, any more APACC transactions are
abandoned and scans respond immediately with an OK/FAULT response. However, debug
port registers can be accessed. In particular the CTRL/STAT register can be accessed,
to con�rm that the Sticky Overrun �ag is set and to clear the �ag after gathering any
required information about the overrun condition.

Most common situations handling:

• Read Operation returns OK/FAULT � Capture read data.

• Write Operation returns OK/FAULT � No more action required.

• Read or Write Operation returns WAIT � Repeat the same access until either an
OK/FAULT ACK is received or the wait timeout is reached. If necessary, use the DAP
ABORT register to enable access to the AP.

• Read or Write Operation returns Invalid ACK � Assume a target or line error has
occurred and treat as a fatal error.

1.13 Brain Computer Interface Open Protocol

1.13.1 Introduction

This section describes �rst approach to create free, open�source and compact protocol for
data exchnage with Brain Computer Interface class devices. Because there are already
few places on Earth where BCI are being develpoed, but none of them conforms to well
known standard, I have decided to start new project called Brain Computer Interface
Open Protocol, so many di�erent designs could exchange information in a well known and

Page 64 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL

documented manner. This is fresh project and a lot of work has to be put to make it
what it is supposed to be, but the �rst step is being made right now.

Because a C programing language based program can work on almost any hardware
this computer language is used to create sources of the BCIOP, that can be later included
into a bigger project source tree, exported as a static library or connected to an external
application as dynamic library. Currently it is a part of the protytype source code.

1.13.2 BCIOP Overwiew

To minimise data overhead TLV was used to transfer data in binary manner, that is Tag�
Length�Value builds one data packet. Tag determines function, Length determines data
lenght with octet (octet = 8bits) as base unit. Value is the payload.

BCIOP does not care about packet routing or addressing � this should be done by
lower layers protocols. BCIOP is intended for experiments and prototyping, but also
production. Each TLV packet by default is forwarded by 10101010b (0xAA) octet to
allow sychronization and debugging. This can be turned o� to maximize thruput. Also
data format can be set or changed in a runtime. Simple error correction packet can be
appended to ensure valid transmission (o� by default). If device detects some data on
the bus, but cannot recognise them, it should send bursts of SYNC packets to help host
detect transmission speed and perform auto�baudrate procedure.

To initiate connection, host sends INIT packet with REQUEST payload to the device,
and receives INIT packet with RESPONSE payload as response with the protocol number
used for communication. Then data format and time format has to be determined with
DATA FORMAT and both TIMESTAMP FORMAT and TIMESTAMP QUANT requests containing
appropriate payload. Depending on the hardware used data can be signed or unsigned,
8-bit (1 octet), 16-bit (2 octets), 24-bit (3 octets), NKB, U2, Gray, etc. If device supports
this feature, timestamping can be used for futher synchronisation. To make it easier for
programmers to perform data casting in their software, device suggests target data type
(signed, unsigned, char, integer, long, etc).

Commands are divided into categories � setup (Tag MSB set to zero) and transfer
(Tag MSB set to one). When host sends transfer packet to the device with length byte
set to zero, this is a request for speci�c transfer � for example data burst with timestamp,
or simple timestamp to verify synchronisation.

Device or host can send ERROR packet in case of failure condition � that is when
no initialisation was performed, no data format was selected, bu�er over�ow, or similar.
When the condition is not critical, ERROR packets serves only as additional information and
can be supressed to avoid interference with data. This can be useful in case of minimalistic
hardware with unidirectional interface, when only partial functionality is implemented -
host should receive and interpret data properly, as long as TLV tags are properly used
and protocol speci�cation is maintained. Delivery acknowlegement can be turned on in
response to a data packet, but any packet with erratic length or value �eld (ie. out of
boundaries) must be discarded without concern or error message � this will allow detect
errors by timeout and avoid packet �ood.

CeDeROM Brain Computer Interface Page 65 of 125

http://www.tomek.cedro.info

1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL KNOW-HOW

1.13.3 BCIOP Packet Details

BCIOP PACKET
TAG (T) LENGTH (L) VALUE (V)

1 octet length 1 octet length L octets length

1.13.3.1 TAG 0x01: ERROR

LENGTH {0,1}:
L=0: Last error code request, L=1: Value octet holds error information

VALUE:

• V[1]: Error information

� Fatal errors (MSB set to one):

∗ 0x80: UNKNOWN, internal error

∗ 0x90: ADC, no communication

∗ 0x91: ADC, internal error

∗ 0xA0: DAC, co communication

∗ 0xA1: DAC, internal error

� Non-Fatal errors (MSB cleared to zero):

∗ 0x00: No INIT performed

∗ 0x01: No DATA FORMAT request was performed

∗ 0x02: No TIMESTAMP FORMAT request was perormed

∗ 0x03: No TIMESTAMP QUANT set was perormed

∗ 0x04: No SAMPLING FREQIENCY request was performed

∗ 0x05: Feature not supported

∗ 0x10: Internal Bu�er empty, wait for data

∗ 0x11: Internal Bu�er full, read more data

1.13.3.2 TAG 0x01: INIT

LENGTH {0,1}:
L=0: Initialisation request, L=1: Initialisation response

VALUE:

• V[1]: Current protocol version as BCD pair number (ie. 0x10 for 1.0 release)

Page 66 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL

1.13.3.3 TAG 0x02: IDENT

LENGTH{0,N}:
L=0: Identi�cation request, L=N: N value octets hold identi�cation response

VALUE:

• V[n]: N bytes ASCII of identi�cation string

1.13.3.4 TAG 0x03: DATA FORMAT

LENGTH {0,2}:
L=0: Data format request, L=2: 2 value octets hold data format information

VALUE:

• V[1]: Number of octets per Data Sample: 1,2,3,..,8

• V[2]: (1000 0000 AND DataSign) OR (0111 0000 AND DataCode) OR (0000 1111
AND DataCast)

� DataSign: 0x80: Signed, 0x00: Unsigned

� DataCode: 0x01: Binary (NKB), 0x02: Gray, 0x03: Two-complement (U2)

� DataType: 0x01: char (1 octet), 0x02: short integer (2 octet), 0x03: integer
(4 octet), 0x04: long (8 octets)

1.13.3.5 TAG 0x04: TIMESTAMP FORMAT

LENGTH {0,1}:
L=0: Timestamp format request, L=1: Value octet holds timestamp format information
response

VALUE:

• V[1]: Number of Octets per Data: 1,2,3,4 (max. 4). Unsigned.

• V[2]: Data Format: (1000 0000 AND TimestampSign) OR (0111 111 AND Times-
tampCast)

� TimestampSign:

∗ 0xFF: Signed

∗ 0x00: Unsigned

� TimestampCast:

∗ 1: char (1 octet)

CeDeROM Brain Computer Interface Page 67 of 125

http://www.tomek.cedro.info

1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL KNOW-HOW

∗ 2: short integer (2 octet)

∗ 3: integer (4 octet)

∗ 4: long (8 octets)

1.13.3.6 TAG 0x05: TIMESTAMP QUANT

LENGTH {0,1,4}:
L=0: Timestamp quant request, L=1 or L=4 Value octets hold timestamp quant value

VALUE:

• if L=1 then V[1]: Time quant (unsigned) is set to multiply of 10 microseconds:

10µs ∗ {1..255}

.

• if L=4 then V[1..4]: Time quant (unsigned) is set to multiply of 1 nanosecond:

1ns ∗ {1..232}

.

1.13.3.7 TAG 0x06: TIMESTAMP

LENGTH {0,N}:
L=0: Timestamp value request, L=N: N value octets hold current timestamp information
response

VALUE:

• V[n]: N octets of current device timestamp value conforming to TIMESTAMP FOR-
MAT

1.13.3.8 TAG 0x07: SAMPLING FREQUENCY

LENGTH {0,1}: L=0: Sampling frequency request, L=1: Value octet holds sampling
frequency information response/request

VALUE:

• V[1]=n: Sample every n-th timequant.

Page 68 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL

1.13.3.9 TAG 0x10: ACQUISITION STATUS

LENGTH {0,1}
L=0: Acquisition status request, L=1: Acquisition status response/command

VALUE:

• V[1]: Acquisition Status

� 0x00: Not running

� 0x01: Single shot mode

� 0x02: Free-runing mode

� 0xFF: Error

Note: Single Shot mode is activated after device receives Acquisition Status packet
with L=1 and V=0x01. Free-runing mode starts working after device receives Acquisition
Status packet with L=1 and V=0x02.

1.13.3.10 TAG 0x80: CHANNEL

LENGTH {0,1}:
L=0: Current channel number request, L=1: Value octet holds channel number informa-
tion response/requests

VALUE:

• V[1]: Current channel number. Unsigned.

1.13.3.11 TAG 0x81: DATA

LENGTH {0,N}:
L=0: Data request, L=N: N value octets hold data response

VALUE:

• V[n]: N octets of data conforming to DATA FORMAT

1.13.3.12 TAG 0x82: DATA BURST

LENGTH {0,N}:
L=0: Data burst request, L=N: N-1 Value octets hold burst of data reply

VALUE:

• V[1]: 1 octet with unsigned number of data samples

CeDeROM Brain Computer Interface Page 69 of 125

http://www.tomek.cedro.info

1.13. BRAIN COMPUTER INTERFACE OPEN PROTOCOL KNOW-HOW

• V[2..N]: (N-1) octets of data conforming to DATA FORMAT

Note: Number of samples depends on data format and cannot exceed 254 (in case of
1 octet data)

1.13.3.13 TAG 0x83 DATA+TIMESTAMP

LENGTH {0,N}:
L=0: Data+Timestamp request, L=N: N value octets hold data+timestamp response

VALUE:

• V[X]: X octets of timestamp value conforming to current TIMESTAMP FORMAT

• V[N-X]: (N-X) octets of data conforming to DATA FORMAT

Note: This command cannot be send or received before timestamp and data format is
set - this is should produce failure condition.

1.13.3.14 TAG 0x84: (DATA+TIMESTAMP) BURST

LENGTH {0,N}:
L=0: Data burst request, L=N: N value octets hold data+timestamp burst

VALUE:

• V[1]: 1 octet with unsigned number of data+timestamp pairs

• V[N-1]: burst of (N-1) octets of timestamp conforming to TIMESTAMP FORMAT
+ Y octets of data conforming to DATA FORMAT

Note: Number of samples depends on data and timestamp format and cannot exceed
127 (in case of 1 octet data and 1 octet timestamp)

1.13.3.15 TAG 0x85: DATA+TIMESTAMP+CHANNEL

LENGTH {0,N}:
L=0: Data+Timestamp+Channel request, L=N Data+Timestamp+Channel response

VALUE:

• V[1]: 1 octet of channel value (unsigned)

• V[2..5]: 4 octets of timestamp value (unsigned)

• V[6..N]: (N-5) octets of data conforming to DATA FORMAT

Page 70 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.14. XILINX SOFTWARE AND HARDWARE

1.13.3.16 TAG 0x86: (DATA+TIMESTAMP+CHANNEL) BURST

LENGTH {0,N}
L=0: Data + timestamp + channel packs burst request

VALUE:

• V[1]: 1 octet with unsigned number of data+timestamp+channel packs

• V[1..N]: burst of (N-1) octets of: timestamp conforming to TIMESTAMP FORMAT
+ 1 octet of channel number + Y octets of data conforming to DATA FORMAT

Note: Number of samples depends on data and timestamp format and cannot exceed
85 (in case of 1 octet data 1 octet channel and 1 octet timestamp)

1.13.3.17 TAG 0x87: TIMESTAMP+(DATA+CHANNEL) BURST

LENGTH {0,N}:
L=0: One timestamp + data and channel packs burst request, L=N: N value octets hold-
ing response

VALUE:

• V[1]: 1 octet with unsigned number of data+channel packs

• V[2..M]: (M-2) octets with timestamp conforming to TIMESTAMP FORMAT

• V[M+1..N]: burst of 1 octet of channel number + Y octets of data conforming to
DATA FORMAT.

Notes: This packet is intended to transfer only one measurement of multichannel sam-
pling device acquired simlutaneously (with no use of multiplexer). Device logic should
remember timestamp for each sample. When timestamp of one sample is di�erent than
the others, error packet should be send to the host, becuase phase errors will occur. If
device uses multiplexer and do not perform simultaneous multichannel sampling, (DATA
+ TIMESTAMP + CHANNEL) BURST should be used. Number of samples depends on
data and timestamp format and cannot exceed 126 (in case of 1 octet data 1 octet channel
and 1 octet timestamp) CODE NAME LENGTH VALUE

1.14 Xilinx Software and Hardware

This section presents basic knowledge required to setup a working environment to program
FPGA devices.

CeDeROM Brain Computer Interface Page 71 of 125

http://www.tomek.cedro.info

1.14. XILINX SOFTWARE AND HARDWARE KNOW-HOW

1.14.1 Introduction to FPGA programming

In order to use Xilinx (or other) FPGA devices a bit�le must be created to tell the
internal organization of the device logic cells. Bit�le is a kind of �rmware program that
must be preprogrammed into internal or external nonvolatile ROM/Flash memory and
then uploaded into internal FPGA's gate array at powerup to designate its functions.
Memory type depends on target device but in general it can use serial interface (for smaller
footprint and pin consumption) or parallel interface (for faster access) with command set
and internal organization supported both by software tools and the target itself.

Bit�le can be created with dedicated software development toolkit, in our case Xilinx
ISE [57], that is available for free after registration with its basic functionalities which can
be further extended with additional commercial software components. I will use free of
charge Xilinx ISE Web Pack for all further actions concering project componenets based
on FPGA technology. All techiques mentioned above are presented in more detail in
following sections.

1.14.2 Known issues

Bit�le can be uploaded into nonvolatile Flash memory or directly into FPGA con�guration
memory using JTAG interface. When using �ash memory it may use non�linear address
space so �rst it needs to be converted into PROM File which is a bit�le but remapped to
match physical memory organization. Only few memory types are supported by Xilinx
ISE, also o�cial Xilin Developmen Board that I have used (Spartan 3A�DSP) had a
memory installed that was not supported by Xilinx ISE [61] so I had to purchase di�erent
chip and replace it manually otherwise pretty expensive board would have no use.

Another problem a developer will encounter is the JTAG programming done by Xilinx
USB Platform Cable which is pretty expensive and works practically only under Windows
in default setup. It is possible to overcome driver limitations using Open�Source softare,
but the environment will di�er a bit from the one available for Windows platform, but
it should work on all other systems instead. It is possible to use di�erent, cheap and
popular, JTAG interfaces for FPGA programming � the solution is presented later in this
section. Although I will work on FreeBSD platform using Linux binaries, I recommend
to download bundled Xilinx ISE package with Linux and Windows installer as it may
come useful for advanced testing or Open�Source solutions veri�cation and sometimes,
unfortunately, the solution for Windows is still the only one available.

1.14.3 Installing Linux version of Xilinx ISE on FreeBSD OS

Xilinx ISE is available only for Windows and Linux operating systems. Because I use
FreeBSD [34] that can emulate Linux binaries, this section describes procedure for in-
stallation and con�guration of software on alternative operating system with some trob-
uleshooting guide related to system environment diferrenes and some issues with ISE
binaries. This is very interesting and innovative possibility to natively run binaries from

Page 72 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.14. XILINX SOFTWARE AND HARDWARE

other operating system. My solution is also presented publicly on FreeBSD Forums [59]
and linked on Xilinx Forums [58] related threads.

At the time of writing this document current version of ISE is 13.1 available to down-
load as Xilinx_ISE_DS_13.1_O.40d.1.1.tar �le. We need to obtain the package, extract
�les, setup Linux dynamic libraries on FreeBSD platform and start the installation:

• Obtain and extract the installer.

1 %tar xvf Xilinx_ISE_DS_13.1_O.40d.1.1.tar

2 x Xilinx_ISE_DS_13.1_O.40d.1.1/

3 x Xilinx_ISE_DS_13.1_O.40d.1.1/Microsoft.VC90.CRT/

4 x Xilinx_ISE_DS_13.1_O.40d.1.1/Microsoft.VC90.CRT/Microsoft.VC90.CRT.manifest

5 x Xilinx_ISE_DS_13.1_O.40d.1.1/Microsoft.VC90.CRT/msvcm90.dll

6 ...

• Check for Linux dependencies and their availability on FreeBSD platform, install if
necessary. Do not use wrapper scripts (such as top level xinfo or xsetup).

1 % cd Xilinx_ISE_DS_13.1_O.40d.1.1/

2 % ./bin/lin/xsetup

3 /mnt/stuff1200/usr/local/Xilinx_ISE_DS_13.1_O.40d.1.1/bin/lin/_xsetup:

4 error while loading shared libraries: /usr/X11R6/lib/libgthread-2.0.so.0: ELF file OS ABI invalid

The problem is with libraries (i.e. libgthread-2.0.so.0) not being found in
/usr/X11R6/lib (this Linux location in fact is /usr/compat/linux/usr/X11R6/lib
in our FreeBSD host system) as the path is unfortunately hardcoded into Xilinx
binaries (normally the loader program search for dynamic libraries in a system de-
pendent fashion as speci�ed by ld and ldconfig so it should �nd dynamic libraries
when they are on search path and this is why I don't like Linux anymore because
it keep no standard at all). If the libraries are not on your system get them au-
tomatically using port subsystem (man ports). The libraries will be installed in
/usr/lib instead /usr/X11R6/lib (from Linux perspective), so they need to be
relinked. Because in FreeBSD /usr/compat/linux/usr/X11R6/lib contains no li-
braries it is simpler to relink directory with necessary libraries in place of empty
one, then again link some libraries that are placed in other places. This can be
done using the following script (as root) from the Xinix ISE installer path (it will
also copy and add bundled libraries to the emulation layer, but again unfortunately
Xilinx does not provide all dependencies anymore with the installation package).

1 #!/bin/sh

2 #(C) 2011 Tomasz Boleslaw CEDRO (http://www.tomek.cedro.info)

3 mkdir /usr/compat/linux/usr/lib/xilinx

4 cp lib/lin/* /usr/compat/linux/usr/lib/xilinx/

5 echo "/usr/compat/linux/usr/lib/xilinx" >> /usr/compat/linux/etc/ld.so.conf.d/xilinx.conf

6 mv /usr/compat/linux/usr/X11R6/lib /usr/compat/linux/usr/X11R6/lib_orig

7 echo "/usr/compat/linux/usr/X11R6/lib_orig" >> /usr/compat/linux/etc/ld.so.conf.d/x11r6_orig.conf

8 ln -s /usr/compat/linux/usr/lib /usr/compat/linux/usr/X11R6/lib

9 ln -s /usr/compat/linux/lib/libgthread-2.0.so.0 /usr/compat/linux/usr/X11R6/lib/libgthread-2.0.so.0

10 ln -s /usr/compat/linux/lib/libglib-2.0.so.0 /usr/compat/linux/usr/X11R6/lib/libglib-2.0.so.0

11 ln -s /usr/compat/linux/lib/libuuid.so.1 /usr/compat/linux/usr/X11R6/lib/libuuid.so.1

12 /usr/compat/linux/sbin/ldconfig -r /usr/compat/linux -i

CeDeROM Brain Computer Interface Page 73 of 125

http://www.tomek.cedro.info

1.14. XILINX SOFTWARE AND HARDWARE KNOW-HOW

(a) Installation start. (b) Installation complete.

Figure 1.22: Xilinx ISE Design Suite installation spash screen. Linux binary working on
FreeBSD operating system.

(a) ISE project manager and editor. (b) iMpact FPGA programming tool.

Figure 1.23: Xilinx ISE Design Suite components readu for use on FreeBSD.

• Start the installation with sudo ./bin/lin/xsetup in the installation top directory.
You need to use sudo (install with pkg_add -r sudo if not present then man sudo

and edit the con�guration to allow selected users running binaries ar root) because
installer needs the windows from the Xorg server and this cannot be use by root

when you are logged in as an ordinary user.

• During the installation it is possible to select license that enable some commercial
modules. The basic ISE Web Pack o�ers compiles, simlator and programming util-
ities for free. It is also possible to have 30�dat free trial of additional commercial
components (after online registration).

• When the installation is complete ISE (project manager and editor, command ise)
and iMPACT (programming tool, command impact) tools are ready to use from
ISE_DS/ISE/bin/lin/ subdirectory of a selected install location.

Page 74 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.14. XILINX SOFTWARE AND HARDWARE

• Unfortunately drivers for JTAG interfaces are the worst part of the Xilinx software
and in fact there is no support for JTAG Xilinx USB Platform Cable at this moment
in default Xilinx ISE con�guration on FreeBSD/Linux as this requires compilation
of deidcated Linux Kernel Driver that does not build even on Linux itself. There are
however some tricks to overcome this limitation, as presented later in this section,
based on Open�Source fxload application to upgrade cable �rmware and xcs3prog

utility to program Xilinx FPGA devices using some selected interfaces, both avail-
able in the FreeBSD port tree. If you need to have full functionalities of iMPACT
you need to use Windows version of software, there is also separate option in the
setup program to install only programming utilities.

1.14.4 Programming the FPGA target device

Xilinx ISE is delivered with iMPACT utility for programming the target devices, �ash
memories, JTAG chains, etc. Because Xilinx USB based JTAG interface drivers use
windrv there are problems using them on platforms other than Windows. This is why
other mechanisms have to be used in order to upload bit�le into target device or its
memory.

1.14.4.1 Recording actions to SVF �le

First and most universal way to upload bit�le into target device when no USB support in
iMPACT is available relies on using virtual cable which redirects JTAG actions generated
by iMPACT into SVF (Serial Vector Format [67]). SVF �le can be then �replayed� in
any program that supports this format, for instance Open�Source UrJTAG [37], with any
JTAG interface supported by that program (i.e. not necessairly Xilinx USB Platform
Cable).

This soltion can be used when some speci�c feature/action of iMPACT must take
place. Free SVF players however seems to be buggy and not always work as expected.
This is also the only choice when no other solution is available.

1.14.4.2 Using user�space driver

iMPACT since release 9 supports userland drivers for JTAG interface. There is an Open�
Source project lead by Michael Gernoth [68] that use multiplatform libusb for commu-
nicaton with JTAG device instead proprietary kernel driver (that does not build), but
this seems to be still unreliable solution for many platforms including FreeBSD therefore
I will not discuss it here. It is mainly concentrated on making Xilinx cable usable (which
should be the Xilinx's task) on platforms other than Windows, but there is experimental
support for popular and cheap FT2232�based interfaces.

1.14.4.3 Bit�le programming with XC3SPROG

The best way as it turned out in practice was to use standalone Open�Source application
xc3sprog [60] that completely removes requirement for using iMPACT, because it can

CeDeROM Brain Computer Interface Page 75 of 125

http://www.tomek.cedro.info

1.14. XILINX SOFTWARE AND HARDWARE KNOW-HOW

directly program Xilinx FPGA device with pure bit�le, programming externel SPI Flash
memory is also supported. There is no need to use iMPACT at all! Application not
only supports all Xilinx JTAG cables but also cheap and popular FT2232�based devices.
Because Xilinx ISE environment work with no problem on all platforms (as it does not
use any hardware), even using emulation or virtualization, it is possible to create project
and export its bit�le that can be later uploaded into target FPGA using xc3sprog that
works on all platforms.

In order to use Xilinx JTAG interface to work with xc3sprog, a fxload utility is re-
quired �rst to upload apropriate �rmware into interface. Both utilities are available in
FreeBSD's port tree, interface �rmware �les are distributed with Xilinx ISE (in common/bin/lin
directory). I have created simple helper script to �nd which �rmware �le is suitable for
cable that we own. User should supply �rmware �lename as parameter, after successful
�ashing a red (target o�) or green (target on) LED should light.

1 #!/bin/sh

2 # Xilinx USB Platform Cable firmware flashing helper script.

3 # (C) Tomasz Boleslaw CEDRO (http://www.tomek.cedro.info)

4 #

5 # This script helps finding proper firmware for your device.

6 # You need to have FXLOAD utility installed to use this script.

7 # It may be necessary to change vid/pid parameter and -t to match your device.

8 #

9 # After successful flasihng your cable should have LED turned on (green when

10 # cable is connected to a powered on target, otherwise red).

11

12 if [! $1]; then echo "Usage: ./script <firmware>"; exit 0; fi

13

14 fxload -v -D vid=0x03fd,pid=0x0007 -t fx2 -s xusbdfwu.hex -I $1

Because interface �rmware is uploaded into volatile memory, it needs to be uploaded
into interface each time it is reconnected. Flashing interface also changes its USB descrip-
tors, so the same device can be seen with two di�erent VID/PID pairs after and before
�ashing. This is why I have created another helper script flashit.sh that �rst uploads
�rmware into blank JTAG interface or re�ashes already programmed interface, then up-
loads bit�le given as �rst script parameter directly into volatile FPGA Core Memory for
faster testing. If script is given third parameter spi the bit�le is programmed into the
SPI Flash memory so the bit�le remains after power�down, but this operation requires
placing bscan_spi.bit bit�le that it dedicated to a speci�c FPGA device and act as a
bridge between JTAG scan chain and the SPI Flash memory. Script automates most of
the tasks and checks for required �les to make developer work faster, some variables needs
to be adjusted �rst to match the hardware being used.

1 #!/bin/sh

2 # Xilinx FPGA bitfile upload automation script using fxload and xc3sprog.

3 # (C) 20110827 Tomasz Boleslaw CEDRO (http://www.tomek.cedro.info)

4

5 CABLEFW=xusb_xup.hex

6 VID=0x03fd

7 PID=0x0007

8 ALTVID=0x03fd

9 ALTPID=0x0008

10 DELAY=10

Page 76 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.15. SCHEMATICS AND PCB DESIGN WITH EAGLE CAD

11 FXLOAD=`whereis -bq fxload`

12 XC3SPROG=`whereis -bq xc3sprog`

13

14 if [! $FXLOAD]; then echo "You need to install 'fxload' port first..."; exit 1; fi

15 if [! $XC3SPROG]; then echo "You need to install 'xc3sprog' port first..."; exit 1; fi

16 if [! $1]; then echo "Usage: script <bitfile> [spi]"; exit 1; fi

17 if ["$2" = "spi"]; then

18 if [! -f bscan_spi.bit]; then

19 echo "You need to provide bscan_spi.bit that will match your FPGA device!"

20 echo "The bscan_spi.bit acts as bridge between JTAG chain and SPI.."

21 echo "Visit xc3sprog website for more information: http://xc3sprog.sf.net"

22 exit 1

23 fi

24 fi

25

26 echo "Flashing Xilinx Cable Firmware (you may need to set it up first)..."

27 # First try the cable VID/PID with no firmware.

28 echo "Flashing blank cable..."

29 fxload -D vid=$VID,pid=$PID -t fx2 -s xusbdfwu.hex -I $CABLEFW

30 # Then if necessary try reprogramming existing xilinx cable firmware.

31 if [$? -ne 0]; then

32 echo "Trying to reflash existing xilinx cable firmware..."

33 fxload -D vid=$ALTVID,pid=$ALTPID -t fx2 -s xusbdfwu.hex -I $CABLEFW

34 fi

35

36 if [$? -eq 0]; then

37 echo "Waiting for jtag interface firmware to settle..."

38 sleep $DELAY

39 if ["$2" = "spi"]; then

40 echo "Uploading bitfile into SPI Flash (using provided bscan_spi.bit)..."

41 xc3sprog -v -c xpc bscan_spi.bit

42 xc3sprog -v -c xpc -I $1

43 else

44 xc3sprog -c xpc $1

45 fi

46 else

47 echo "Flashing Xilinx JTAG Cable failed, exiting..."

48 exit 0

49 fi

The example working session is following:

1 %./flashit.sh ../pong_top.bit

2 Flashing Xilinx Cable Firmware (you may need to set it up first)...

3 Flashing blank cable...

4 no device foundNo such file or directory : vid=0x03fd,pid=0x0007

5 Trying to reflash existing xilinx cable firmware...

6 Waiting for jtag interface firmware to settle...

7 XC3SPROG (c) 2004-2010 xc3sprog project $Rev: 449 $ OS: FreeBSD

8 Free software: If you contribute nothing, expect nothing!

9 Feedback on success/failure/enhancement requests:

10 http://sourceforge.net/mail/?group_id=170565

11 Check Sourceforge for updates:

12 http://sourceforge.net/projects/xc3sprog/develop

13

14 firmware version = 0x0406 (1030)

15 CPLD version = 0x0012 (18)

16 DNA is 0xd14100d525220801

1.15 Schematics and PCB design with Eagle CAD

Eagle CAD [62] is an inexpensive (free for basic non commercial use [63]) and multiplat-
form commercial solution for electronic circuit design with great support from community

CeDeROM Brain Computer Interface Page 77 of 125

http://www.tomek.cedro.info

1.15. SCHEMATICS AND PCB DESIGN WITH EAGLE CAD KNOW-HOW

and the software vendor. Working on Windows, Linux (also FreeBSD) and Mac, having
lots of components libraries and footprints, scriptable, being able to export to common
indurstry standard formats, Eagle is �exible, versatile and easy to use solution for all
electronics engineers that need to create schematics of their circuit and design a printed
circuit board for manufacturing.

Both schematics and board layout editors are fully integrated, so implementing change
in schematics also implements change in board layout. There is no need to produce, export
and import component netlists anymore (that is list of components and their connections
to other components). It is also impossible to implement a change that would break
a design (i.e. deleting component in board layout without deleting it on schematics).
Creating a design is therefore as simple as placing proper components on the schematics,
creating their electrical relation to other components (using wires or bus/network names),
then creating their physical image layout of the PCB.

Eagle helps in design with many features that help and speed�up the process (i.e.
displaying unconnected nodes and signals), also prevents from making errors and at the
end perform project veri�cation, that is layout against schematics, mechanical constrains
assumed by DRC (Design Rules Check) and electrical constrains assumed by ERC (Elec-
trical Rules Check).

Although Eagle is relatively mature product, it is still under constant development,
new features are being introduced with new releases. I have even proposed some new
features that could improve the design process (i.e. selecting only speci�c type layout
objects, changing parameters of design already converted to production matrix, etc).
Additional features can be obtained with scripting functionalities. Eagle technical support
is really fast, accurate and responsive (below 24h). This is why I consider this software
and organization as professional � because it works well and e�cient at low cost � which
seems to be rare nowadays.

1.15.1 Creating new components and libraries

Eagle CAD use components libraries to draw elements on schematics (so called symbols)
and printed circuit board (so called footprints). With vast basic library of components,
and even larger user supplied free�of�charge components and scripts repository [64], it is
possible to design every circuit.

Sometimes however it is necessary to create new components that are not yet present in
the libraries (I have created lots of them and shared with other Eagle users throug public
repository [64]). Eagle includes integrated component and library editor for this purpose.
Components can be groupped in libraries (i.e. of one manufacturer or function type).
Each component is represented by Device � a logical entity that has its own Symbol as
visible on schematics and various footprints as visible on the PCB Layout (one integrated
circuit can have multiple package variants). It is possible to copy existing elements from
other libraries not to duplicate out work (i.e. for a common IC package). Device is ready
after connecting Symbol pins with Footprint pads, so the relation is ful�lled between
logical symbol and physical device.

Page 78 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.15. SCHEMATICS AND PCB DESIGN WITH EAGLE CAD

Figure 1.24: Creating new components for Eagle CAD with integrated components editor.

1.15.2 Exporting design for manufacturing

The most common starndard for PCB manufacturing is the Excellon format for drilling
and Gerber for shapes de�nition (i.e. copper, stop/soldermask and legend/silkscreen layer
images). Both of these formats are supported by Eagle and available for use in Control

Panel / CAM Jobs as script excellon.cam and gerb274x.cam.

Generating project documnetation for manufacture process is very simple and fully
automated with presented scripts � user just needs to run the script that will show nice
graphical window full of tweaks and features to select, load the design to export, select
output folder and start the process. Files are usually ready for use with default settings,
no mirroring, etc. It is important to remeber to select output directory for all layers
otherwise results will be stored together with the selected project (which is �ne in most
cases).

Each project also has its own CAM Processor utility to work on speci�c area of design
(i.e. printed circuit board) and export this design into vast number of formats (i.e. EPS)
which is very useful feature for general documentation, not necessairly manufacturing.

1.15.3 Running Linux Eagle CAD on FreeBSD

As mentioned before Eagle CAD is available for many di�erent platforms including Linux.
Because my system of a choice is FreeBSD which can run Linux binaries natively it was
no problem to run Linux Eagle on my FreeBSD machine with Linuxlator kernel module
enabled and standard Linux dynamic libraries installed. It is very interesing and unique
functionality to run natively binaries from other operating systems, where FreeBSD again
seems to be a pioneer. Eagle is properly compiled and �nd all necessary dynamic libraties
on their default location (some Linux applications like Xilinx ISE has library location
hardcoded that provokes some additional operations on user before application can run).

CeDeROM Brain Computer Interface Page 79 of 125

http://www.tomek.cedro.info

1.16. PCB CRAFTING KNOW-HOW

(a) Excellon generation (b) Gerber generation.

Figure 1.25: Generating Eagle CAD project documentation for manufacturing.

1 % ldd eagle

2 eagle:

3 libXrender.so.1 => /usr/lib/libXrender.so.1 (0x28e8e000)

4 libXrandr.so.2 => /usr/lib/libXrandr.so.2 (0x28e97000)

5 libXcursor.so.1 => /usr/lib/libXcursor.so.1 (0x28e9e000)

6 libfreetype.so.6 => /usr/lib/libfreetype.so.6 (0x28ea8000)

7 libfontconfig.so.1 => /usr/lib/libfontconfig.so.1 (0x28f3b000)

8 libXext.so.6 => /usr/lib/libXext.so.6 (0x28f6a000)

9 libX11.so.6 => /usr/lib/libX11.so.6 (0x28f7b000)

10 libdl.so.2 => /lib/libdl.so.2 (0x2907c000)

11 libXi.so.6 => /usr/lib/libXi.so.6 (0x29081000)

12 libpng12.so.0 => /usr/lib/libpng12.so.0 (0x2908a000)

13 libpthread.so.0 => /lib/libpthread.so.0 (0x290b1000)

14 librt.so.1 => /lib/librt.so.1 (0x290cb000)

15 libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x290d6000)

16 libstdc++.so.6 => /usr/lib/xilinx/libstdc++.so.6 (0x290f9000)

17 libm.so.6 => /lib/libm.so.6 (0x291d9000)

18 libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x29202000)

19 libc.so.6 => /lib/libc.so.6 (0x29210000)

20 libz.so.1 => /lib/libz.so.1 (0x29388000)

21 libXfixes.so.3 => /usr/lib/libXfixes.so.3 (0x2939d000)

22 libexpat.so.1 => /lib/libexpat.so.1 (0x293a2000)

23 libXau.so.6 => /usr/lib/libXau.so.6 (0x293c9000)

24 libxcb-xlib.so.0 => /usr/lib/libxcb-xlib.so.0 (0x293cc000)

25 libxcb.so.1 => /usr/lib/libxcb.so.1 (0x293ce000)

26 /lib/ld-linux.so.2 (0x28e66000)

27 libXdmcp.so.6 => /usr/lib/libXdmcp.so.6 (0x293eb000)

1.16 PCB Crafting

The Printed Circuit Board is the mechanical backbone of an electronic device covered
with thin layer of metal (copper) to �ow current between components. The topology of
a PCB is designed nowadays in computer programs (such as Eagle CAD, Protel DXP,
Pads, etc) and then transfered into physical board using chain of technological processes.
This section describes methods that give best possible precision of PCB crafting at home

Page 80 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.16. PCB CRAFTING

for single or small series of prototyping.

1.16.1 Photo�litography

Photoligography is a process which can be used to transfer PCB layout image onto the
blank circuit board to create a matrix for etching the copper. Photoresist protects the
copper against etching and it can be removed with UV light exposition to create necessary
board layout image.

The image must be �rst printed on a thin translucent photocopy foil or tracing paper
with high resolution printer such as laser printer. Color laser printer gives better black
levels than black�while printers because black color in that case is made with three colour
layers not one. The best printout however is obtained with DTP digital print that is
not very expensive and o�ers unique printout quality both in contrast, black levels and
resolution (even 3200dpi). For standard home made matrix DTP with true 1200dpi
printout is su�cient even for precise BGA designs (that I have veri�ed in practice).

When the printout is ready we need to have blank PCB covered with photoresist that
protects the copper layer. Prefabricated PCB of this kind can be bought in electronics
store, but also it can be created with standard blank PCB and Photopositiv 20 spray
emulsion available from Kontakt Chemie [93] and some practice/patience necessary to
create thin layer of constant width and then make it solid by drying in max. 80 celcius
degrees temperature for about 20 minutes.

When both PCB with photoresist and the matrix printout is ready, we need the UV
light source strong enough to radiate the photoresist and change its chemical properties. I
have veri�ed some of the UV �uorescent light sources to be good enough for this process,
but the Philips Halogen Dental UV lamp model 412447 75W/12V turned out to be the
best solution.

Photoresist changes its chemical properties when exposed to UV light. Normally it
acts as shield for copper during the etching process, but when exposed to the UV radiation
it melts within NaOH just like the photography. Creating the layout image on the PCB
is as simple as covering the PCB behind the image and exposing it to the UV light source
so the martix is transferred onto the photoresist layer. After NaOH induction PCB is
ready for etching.

1.16.2 Copper Etching

Etching process is necessary to remove copper from blank PCB in order to create isolation
areas between tracks connecting together di�erent components and pins of the components
that transfer voltages/signals. Tracks are created by covering some parts of copper with
some substance resistant for etching so the copper remains intact.

The most common method of etching is with Ferric Chloride. Although this is very
hazard substance both for environment, human body and human clothes (it leaves stains
that cannot be removed) it seems to have best lifetime measured in etching cycles and the
precision of etching itself, because it can be �weaker� to etch slower but does not remove
layers that should stay intact.

CeDeROM Brain Computer Interface Page 81 of 125

http://www.tomek.cedro.info

1.16. PCB CRAFTING KNOW-HOW

(a) UV Lamp DIY. (b) Photoresist in spray.

(c) Matrix transfer. (d) Mechanical adjustment.

(e) UV radiation. (f) Developed board.

Figure 1.26: Home made photo�litography.

Page 82 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.16. PCB CRAFTING

(a) Rivets on place. (b) After riveting.

Figure 1.27: Home made mechanical metalization.

Another etching substance often used is the B327 (Na2S2O8) and it perform its task
faster, but sometimes it can over�etch the protected layers and it has far shorter lifetime
than ferric chloride and can be used only to etch few PCB...

After etching the PCB should be cleaned out with Acetone from photo matrix, it can
be also protected with resin mixed with alcohol that will prevent copper oxidation and
helps soldering. Such resin resembles professional soldermask on a factory boards, but
I don't know a method yet on how to perform this operation at home (this would help
soldering the BGA devices).

1.16.3 Drills Metalization

Printed circuit boards can be one, two, and multilayer, that means there are multiple
layers of copper that can be etched to create a track matrix. Popular home made boards
are only one and two layer because multilayer boards require specialized and expensive
machinery and processing. Often one signal use two layers to route a track between
components. In this case a drill must be made and both layers needs to be connected
with metal. This can be done with a thin wire, but when the drill is used by a component
pin that covers one of the pads it is impossible to solder both of the tracks.

The metalization at home seems to be impossible because normally it requires compli-
cated electrochemical processing. I have found a nice solution for mechanical metalization
from LPKF GmbH [94] that use riveting with small copper parts. This is not the cheapest
method but is allows metalization at home that allows later component placement in a
through hole fashion.

1.16.4 BGA Soldering

Standard through�hole or surface�mount components can be soldered with an ordinary
soldering station and tin wire (for SMD I recommend tin of φ0.25mm), but BGA (Ball
Grid Array) devices must be soldered with special hot air soldering station that forces

CeDeROM Brain Computer Interface Page 83 of 125

http://www.tomek.cedro.info

1.16. PCB CRAFTING KNOW-HOW

(a) Soldermask helps soldering. (b) Tin balls are on the IC!

(c) Balls melted IC and cooper. (d) Side view photo.

Figure 1.28: Soldering the BGA device.

Page 84 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

KNOW-HOW 1.16. PCB CRAFTING

hot air (around 400 celcius degrees) �ow around the chip and the board making the tin
balls to melt and connect copper wires with contact points below the Integrated Circuit
casing.

CeDeROM Brain Computer Interface Page 85 of 125

http://www.tomek.cedro.info

SOLUTION APPROACH

Chapter 2

Solution Approach

2.1 Solution Approach

2.1.1 Introduction

There are few inexpensive commercial BCI solutions that showed up on the market re-
cently, or their predecessors for Neurofeedback/Biofeedback being present for many years
already. Free and Open�Source low cost projects also have some share in the �eld but in
most cases they are incredibly outdated. Professional research project with billion dollar
funding can be only seen in serious scienti�c publications or popular science TV programs.
The truth about progress in the �eld of Neural Interfacing is not that impressive and we
still cannot achieve its complexity and functionality as expected from the sci�� novells [83]
because we don't understand how brain works and we cannot reproduce its complexity
with current technology, so it seems impossible that we successfully talk in this complex
language of nature, yet.

On the other hand it is not really necessary to simulate whole brain functionality to
perform simple operations such as cursor movement or activity detection in some outer
parts of the brain. The technology for reading biological signals of brain activity in non�
invasive manner is already available. Computational capabilities of modern computer
systems are good enough to perform simple signal processing and classi�cation that can
be used for decission making to drive actions �by thoughts�. It is probably the good
algotirhm that will eventually solve the problem, or method of reading and stimulating
brain activity in a closed loop feedback used for external object control. The algorithm
however cannot exist without a hardware platform that makes it possible to operate and
interact with real world data. Because commercial solutions are too expensive and free
also cost some money but does not provide enough e�ciency, I have decided to create
such solution myself from scratch, both in software and hardware domain. This solution is
relatively inexpensive, use commercial o��the�shelf components (COTS) and free/open�
source software for licensing freedom, cost reduction and better insight into the black
boxes being used.

The main goal of solution presented in this document is to provide hardware platform

Page 86 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.1. SOLUTION APPROACH

Figure 2.1: CeDeROM BCI Block Diagram.

for BCI research, that will be inexpensive but provide superior possibilities as compared to
existing solutions � it must be better than gadget�like and open�source solutions, but also
allow to perform tasks available only to expensive and closed�source solutions, even if this
means creating solutions from scratch. Modular design is a very important factor because
single component or whole con�guration will be available for veri�cation in short period
of time with no need to redesign whole system which also means low research expenses.
The software part is aimed to reuse existing open�source applications that are well known
to the community, so the hardware will be just as easily applicable as all existing solutions
before. Open�Source allows modi�cation freedom, better testing and worldwide feddback
from the community, no licensing restricions, better insight into details and many more
advantages at cost of time necessary to create such solutions (often from scratch).

2.1.2 Similar solutions

The reference point for my research is a well known OpenEEG / Modular EEG Project
[84] with open documentation and total cost of hardware less than $500. There are
some modern commercial devices available for this price as well (i.e. Emotiv EPOC [89]
or [88]) but these are restricted with licenses and does not provide detailed technical
documentation of its comopnents. Commercial and professional research equipment's
prices start at $10000 (i.e. from gTec [90]).

CeDeROM Brain Computer Interface Page 87 of 125

http://www.tomek.cedro.info

2.1. SOLUTION APPROACH SOLUTION APPROACH

2.1.3 Block Diagram

Figure 2.1 presents block diagram of the CeDeROM Brain Computer Interface platform.
It consists of many modules that can be connected together to perform as selected con�gu-
ration. Modular design allows easy recon�guration and practical veri�cation of theoretical
ideas or di�erent system components. The system is divided into following functional ar-
eas:

• Processing and Control (CPU_BRD) that allows signal processing, decission making,
results presentation and analysis, etc. At the moment those functionalities are pro-
vided by Personal Computer, Mobile Device, and Programmable Logic (FPGA).
Each of the provided hardware platform has its advantages that o�er unique possi-
bilities of �nal solution application. Personal Computer is a very popular platform
for design, development and simple experimentation. Mobile experiments with con-
stant monitoring is important in holter�like applications, it can be also equipped
with GSM/GPS module to allow realtime interaction no matter the location. FPGA
solution is best for real�time high computational complexity applications that can-
not be implemented on a PC, also the �nal veri�cation of the integrated circuit can
be performed here before manufacturing process, or any other standalone applica-
tion that would have required a computer otherwise.

• Analog�To�Digital Conversion (ADC_BRD) provides bistream out of the analog sig-
nalls provided to the system. Di�erent types and con�gurations of converters can
be applied, tested and parametrized this way. High�resolution and multi�channel
conversion requires powerfull enough control modules.

• Analog Ampli�cation (AMP_BRD) provides analog front�end for the analog�to�digital
modules. It is possible to verify di�erent operational ampli�ers, their parameters and
con�gurations during the research of a new design, but also commercial ampli�ers
can be connected and used for comparison or reference.

• Power Supply (PWR_BRD) provides supply for both analog and digital circuits. In
most cases also the galvanic separation can be implemented in this module, because
of biomedical equipment safety requirements. It is important to remember that data
lines also need the galvanic bareer when separation is applied on the power supply
unit.

• Adapters (ADP_BRD) provide mechanical and electrical connection between modules
and the control systems, so the modules can be connected to di�erent hardware
platforms.

• Expansion Boards (EXP_BRD) provide various expansions for the platform that can
be used for user interaction (i.e. audio�visual signallization, push buttons), signal
acquisitioni (i.e. electrodes), information exchange and interconnect with other
systems(i.e. joystick).

Page 88 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

2.1.4 Hardware Implementation

Figure 2.2 presents photos of assembled modules boards stacked on top of each other and
then connected to control unit. Top board contains push�buttons, LED and electrode
connectors. Electrodes lead signal to the analog board below or the analog�to�digital
conversion unit with analog frontend provided internally. Below the ADC unit there is a
power supply mounted directly on the adapter board. Bottom board is the control unit
(FPGA or ARM based) that provides both power supply and input/output lines but these
are not isolated as isolation must be applied on the target board level (i.e. power supply
or the ADC board).

In the con�guration presented on the images there is a joystick board (also isolated
from target with optocouplers) stacked below the isolated power unit. This con�guration
should provide safe operations in biomedical sector, but also allow testing interoperation
of di�erent components. It is also possible however to connect ADC board directly to
the CPU board and ommit the galvanic separation if necessary. All modules have jumper
con�guration to select between isolated and non�isolated supply.

2.1.5 Software Implementation

Open�Source was used for solution design, development, implementation and application,
unless absolutely necessary and noted accordingly (i.e. inexpensive Eagle CAD, or free
version of Xilinx ISE). Programs available for other free and open BCI solutions should
work with design provided in this document with no additional con�guration or environ-
ment change. I belive that this approach, although more time consuming, brings more
bene�t not only to this project itself but also for many other designers that can reuse
tools created in this project and give additional features in return.

2.2 Modules Description

2.2.1 CPU_BRD: Xilinx Spartan�3A DSP FPGA

FPGA technology gives ability to create dedicated digital solutions that can contain whole
computer system and real�time digital processing systems in one integrated circuit with
rapid implementation and recon�guration time. It is possible therefore to create and
verify in practice new architectures that are not yer available in commercially available
integrated circuits at cost reduced only to the FPGA device and the necessary extrnal
components. Project synthesis for large scale production can be veri�ed at functional level
with FPGA and then processed to the topology veri�cation and manufacturing. Small
scale production designs, especially targeted at research, needs the FPGA to exist because
they cannot be realised using other methods or it would take too much time to redesign
physical device, while recon�guration of FPGA takes only seconds. It is also possible to
use free and open�source software components do tesing and compile design, just like in
this project, so the cost is limited to minimum (only hardware), there are no constrains on

CeDeROM Brain Computer Interface Page 89 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

Figure 2.2: CeDeROM BCI Assembled Circuit Boards.

Page 90 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.3: Xilinx Spartan 3A�DSP Development Board.

licensing, components can be freely customized, at the additional cost of time necessary
to perform these tasks. FPGA is therefore the best platform for advanced research where
big part of the solution logic can be recon�gured in seconds with no additional cost.

Figure 2.3 presents picture of the Xilinx Spartan 3A�DSP Development Board. This
is the high�capacity device for DSP (Digital Signal Processing) applications that can
contain both digital components such as CPU (i.e. ARM, AVR, PowerPC, etc) with
operating system (i.e. FreeRTOS, FreeBSD, Linux, etc) and various signal processing
circuits using dedicated adder/multiplier logical blocks present in this chip. Development
Board is equipped with 10/100/1000Gbit Ethernet controller, JTAG Port, RS�232 Serial
Port, low cost VGA output, 128MB DDR2 RAM, 16Mx8 BPI Flash, 64MBit SPI Flash,
built�in voltage regulators, and many bipolar/unipolar input/output lines to general use.
This equipment makes it perfect candidate for research and prototyping of various BCI
applications that require realtime and/or computational power exceeding capabilities of
an ordinary microprocessor devices but easily applicable in programable logical devices.

2.2.2 CPU_BRD: Stm32Primer2 (ARM Cortex�M3)

Stm32Primer2 [39] is a Development Kit based on ARM Cortex�M3 CPU with built�in
400mAh accumulator, color graphical LCD display with backlight, push buttons, micro
SD card slot, USB 2.0 Device connector, RLink JTAG/SWD Debug Interface, audio
codec with speaker and microphone. All those features make it perfec candidate for
mobile applications, also the integration level of STM32 microcontroller allows external
components count minimalization and therefore target application and device minimal
dimensions. Figure 2.9 presents Stm32Primer2 device with adapter board installed for

CeDeROM Brain Computer Interface Page 91 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

use with CeDeROM BCI modules.

I have also chosen Stm32Primer2 because of its good support by the community gath-
ered around its creator, Raisonance company [40], with dozens of example applications
with source code and schematics available. The software components should be easy to
integrate and combine, just as the hardware modules I have designed, resulting in rapid
solution development.

Because RIDE development environment is commercial and closed source application
with some licensing restrictions, there are ongoing e�orts to bring SWD support for open�
source applications such as UrJTAG [37] and OpenOCD [36] for target ARM�Cortex CPU
programming and debugging. For this purpose I have created LibSWD [38], a �rst in the
world Serial Wire Debug Open Framework, and introduced transport other than JTAG for
these low�level embedded access applications. The work should be �nished soon opening
a door for new devices into open�source development world.

2.2.3 ADP_BRD: QSE to Goldpin Adapter

Xilinx Spartan 3A�DSP FPGA Development Kit use specialized QSE-060 connectors from
Samtec Inc. [54] that are relatively expensive (over 20 times more than average Goldpin
connector) and hard to �nd on out local market, so I have decided to design adapter
board that would reroute signals from QSE connectors into popular and cheap Goldpin
sockets. This will also allow to stack more boards on top of each other and make modular
design easier to implement. Similar adapter can be designed for other kind of hardware
to allow use of existing CeDeROM BCI system modules.

Figure 2.4 presents schematics of the adapter, Figure 2.5 PCB layouts with component
placement, Figure 2.6 presents photo of assembled board mounted on the target device.
I have also created from scratch a library with Samtec connector for Eagle CAD [62] and
shared it with user community using central components public repository [64] so it is
possible to draw a schematic and design a PCB with this device that was not possible
before.

There are two Goldpin connectors for each QSE connector and there are two QSE con-
nectors on the FPGA Development Board, therefore it is possible to use two CeDeROM
BCI base modules at time. Board was designed this way that one of the Goldpin connec-
tors groups bipolar (di�erential) IO pins and clock sources, while second Goldpin groups
unipolar IO pins and clock sources.

2.2.4 ADP_BRD: Stm32Primer2

This module is a straightforward adapter to mach mechanical dimensions and electrical
signalling of CeDeROM BCI into Stm32Primer2 development kit equipped with ARM
Cortex�M3 CPU (as described in section 2.2.2). At this point it provides only support
for hardware SPI interface, some control and joystick signalls.

Because Stm32Primer2 is equipped with USB Device Controller it is possible to use
it as a bridge between computer and external modules (such as creating USB HID device

Page 92 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.4: Xilinx Spartan 3A�DSP Development Board QSE�to�Goldpin adapter
schematics.

CeDeROM Brain Computer Interface Page 93 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) Top Layer (b) Bottom Layer (mirror)

(c) Top Components (d) Bottom Components (mirror)

Figure 2.5: CeDeROMBCI Xilinx Spartan 3A�DSP Development Board QSE�to�Goldpin
adapter PCB design.

Figure 2.6: Assembled QSE�to�Goldpin CeDeROM BCI ADP_BRD for Xilinx Spartan
3A�DSP Development Board.

Page 94 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.7: CeDeROM BCI Stm32Primer2 Adapter Board.

CeDeROM Brain Computer Interface Page 95 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.8: CeDeROM BCI Stm32Primer2 Adapter Board PCB design.

Figure 2.9: CeDeROM BCI Stm32Primer2 Adapter Board, assembled.

with physical joystick capabilities). Also the standard connector contains only 2.8V power
supply signal, that is too low for DC�DC converters implemented in Isolated PWR_BRD

(section 2.2.5), so small modi�cation is necessary to connect 3.3V supply from LCD
Display voltage regulator onboard Stm32Primer2. Presented module has jumper setting
option if the power supply for other CeDeROM BCI modules should have 3.3V to match
standard needs, or 2.8V that will �t other modules without DC�DC converters demanding
3.3V for proper operation.

Figure 2.7 presents schematics of the module, while Figure 2.8 presents PCB layout
and component placement. Figure 2.9 presents photography of assembled circuit boards.

I have also created from scratch a library with Stm32Primer2 DaughterBoard con-
nector, board dimensions and schematic symbol for Eagle CAD [62] and shared it with
user community using central components public repository [64] so it is possible to draw
a schematic and design a PCB with this device that was not possible before.

Page 96 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

2.2.5 PWR_BRD: Isolated 3.3V/5V

Biomedical equipment requires galvanic separation between patient body and the equip-
ment connected to a power network, so in case of malfunction human body remains safe.
This is why Power Board Modules are necessary � to provide safe power supply to mod-
ules directly connected to a human body.

Standard digital connectors of the system provides non�isolated 3.3V from the CPU_BRD,
but there are also separate power supply pins on the analog connectors (DVDD, DGND for
digital circuity and AVDD, AGND, AVSS for bipolar analog circuity) that can provide �safe�
isolated voltage. The PWR_BRD function is to provide safe power supply on the analog pins
if necessary. This safe voltage is converted from digital lines and passed on analog lines
using isolated DC�DC converters, but user can also choose with proper jumpers if he/she
wants to use safe of unsafe voltage as required by experiments they are going to conduct,
or simply to compare power quiality (i.e. noise, stability, etc).

Figure 2.10 presents module schematics, Figure 2.11 presents PCB layout and compo-
nents placement. Figure 2.12 presents photography of assembled circuit board.

I have also created from scratch a library with XP Power/Murata DC�DC converter
modules for Eagle CAD [62] and shared it with user community using central components
public repository [64] so it is possible to draw a schematic and design a PCB with this
device that was not possible before.

Two boards were designed for XP_Power [69] and Murata [70] modules which are
pin�to�pin compatible components so the board layouts are identical. Boards contain two
DC�DC converters that produce 3.3V and 5V out of the 3.3V. The galvanic isolation is
quaranteed for 1kV but 3kV version components are also available. Additionally, boards
can work only with 5V converter as 3.3V LDO Voltage Regulator is included in the
design. Also the simple resistor voltage divider that creates virtual ground on half supply
voltage potential (in this case around 2.5V) is included to be bu�ered by analog board
and generate symmetrical power supply for bipolar design. This approach should be safe
enough for integrated mixed signal solutions (such as ADS1298 or ADS1278 implemented
in ADC_BRDmodules) because not all components allow analog and digital ground potential
to di�er more than 0.3V.

2.2.6 ADC_BRD: ADS1298

Analog�to�Digital Conversion Boards (ADS1298 ADC_BRD) are based on a ADS1298 [77]
integrated circuit from BurrBrown / Texas Instruments [76] is a full frontend for biological
signal measurement with variable�gain input ampli�ers (VGA), advanced multiplexer
(MUX), DRL negative feedback reference potential generator, electrode lead�o� detection
and 8 independent di�erential 24�bit Sigma�Delta analog�to�digital converters with SPI
(Serial Peripheral Interface) for interfacing with control circuit (CPU_BRD in out case).
There is even a special ADS1298R (R su�x) version of the device that allows respiratory
measurement based on body impedance variation. Device contains internal oscillator and
voltage references, so it is a perfect candidate for single chip mobile applications where
no advanced analog circuity is necessary. It is possible to use external analog circuit with

CeDeROM Brain Computer Interface Page 97 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

Figure 2.10: CeDeROM BCI Power Board: 3.3V to isolated 3.3V and 5V Converter.

Page 98 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.11: CeDeROM BCI Power Board PCB design.

Figure 2.12: CeDeROM BCI Power Board: 3.3V to isolated 3.3V and 5V Converter,
assembled.

CeDeROM Brain Computer Interface Page 99 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

Figure 2.13: CeDeROM BCI Analog�To�Digital Conversion Board: ADS1298-IPA
(TQFP footprint).

Page 100 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.14: CeDeROM BCI Analog�To�Digital Conversion Board: ADS1298-IPA (BGA
footprint).

CeDeROM Brain Computer Interface Page 101 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.15: CeDeROM BCI Analog�To�Digital Conversion Board based on TQFP
ADS1209�IPA, PCB design.

additional �lters and ampli�ers but this will decrease some features performance such
as electrode lead-o� detection. This one IC contains all features that I wanted once to
design myself, so even without sophisticated analog frontend it should su�ce for many
experimental and production applications. It is ofcourse possible to attach additional
AMP_BRD analog module or simply use ADS1298 Electrodes EXP_BRD (section 2.2.7) to
connect standard EEG electrodes.

Figure 2.13 presents schematics of ADS1298�IPA based design with TQFP [78] IC
footprint, while Figure 2.14 is based on ADS1298�ZXG version of the IC using BGA [79]
footprint. Figure 2.17 presents photo of assembled circuit boards.

Both designs di�er slightly as BGA version use lower count of additional control pins
� only SPI and PowerDown are available because of small package and limited technology
of PCB manufacturing as well as IPA/TQFP device stock inaccesibility � this is why also
the PCB layout and component placement is also di�erent (Figure 2.19 and 2.16). Both
versions can be powered from �safe� Isolated PWR_BRD but also directly from digital
lines � the con�guration is selectable physically using jumpers. SPI interface is protected
with optocouplers, while less important lines (i.e. !DRDY and !PWDN that are not essential
for SPI operations) are connected directly to the digital IO lines and should be cutt�
o� after initial recognition of ADS1298 behavior is already known to developers, they
are simply unnecessary or the galvanic separation is required (remember that CeDeROM
BCI is targeted for early stage research and prototyping where such features might be
necessary). Please keep in mind that connecting even one line to the other parts of device
powered by mains will break galvanic separation and make whole device potentially unsafe

Page 102 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.16: CeDeROM BCI Analog�To�Digital Conversion Board based on BGA
ADS1209�ZXG, PCB design.

for biomedical applications!

I have also created from scratch advanced library component of ADS1298(IPA/ZXG)
with footprint for Eagle CAD [62] and shared it with user community using central com-
ponents public repository [64] so it is possible to draw a schematic and design a PCB
with this device that was not possible before. The schematic symbol presents abilities
and internal structure of ADS1298 in a very clear way.

2.2.7 EXP_BRD: ADS1298 Electrodes

This module is dedicated to ADS1298 ADC_BRD (section 2.2.6) module providing sockets for
analog EEG inputs and also input/output section for user interaction based on ADS1298's
four GPIO lines. All of four GPIO lines are bu�ered and can act as inputs and/or outputs
� by default all lines are pulled high (as they cannot �oat). When line is set as input
pressing button will force low state, when line is set as output low state will activate the
bu�ered LED, so all lines are �active�low� both for input and output, otherwise pulled
high by a resitor. It is possible to mount buzzer instead of LED to generate an audio tone.
Buttons can be used for testing user interaction such as re�ex or stimuli response. LEDs
and buzzers can be used to generate stimuli, or clean time marker (i.e. audio�video binary
pulse sequence) on video recording for better synchronization and easier result analysis.

Figure 2.18 presents schematics of ADS1298 EEG Electrodes Expansion Board, while
Figure 2.19 presents the PCB layout and component placement. Photography of assem-
bled circuit board is presented on Figure 2.20.

CeDeROM Brain Computer Interface Page 103 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) TQFP (b) TQFP

(c) BGA (d) BGA

Figure 2.17: CeDeROM BCI Analog�To�Digital Conversion Board based on BGA
ADS1209�ZXG, PCB design.

Page 104 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.18: CeDeROM BCI EEG Electrodes Board for ADS1298 Schematics.

CeDeROM Brain Computer Interface Page 105 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.19: CeDeROM BCI ADS1298 EEG Electrodes Board PCB design.

Figure 2.20: CeDeROM BCI ADS1298 EEG Electrodes Board, assembled.

I have also created from scratch a library of Multi�Contact [55] EEG connectors for
Eagle CAD [62] and shared it with user community using central components public
repository [64] so it is possible to draw a schematic and design a PCB with this device
that was not possible before. Connectors are mounted orthogonally to the board surface
through�hole style. Electrodes are not shielded, so there are two electrodes per channel for
di�erential measurement. Additional output electrodes are groupped together for DRL,
WCT and PACE functions if necessary. Board design assumes obligatory microswitch
mount as they also create connections with pair of their pins, so if it is necessary to mount
external button it should be soldered to existing button, or new bridged connection should
be made instead. Board layout is very simple and it can be implemented even with one
layer PCB.

2.2.8 ADC_BRD: ADS1278

Although ADS1298�based module (chapter 2.2.6) is very �exible biological signal acqui-
sition device it might be necessary to measure some other kind of signals or use totaly

Page 106 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

Figure 2.21: CeDeROM BCI General Purpose Analog�To�Digital Conversion Board:
ADS1278-IPA (TQFP footprint).

CeDeROM Brain Computer Interface Page 107 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

(a) Top Layer (b) Bottom Layer (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.22: CeDeROM BCI General Purpose Analog�To�Digital Conversion Board based
on TQFP ADS1278�IPA, PCB design.

Figure 2.23: CeDeROM BCI General Purpose Analog�To�Digital Conversion Board based
on TQFP ADS1278�IPA, assembled boards photos.

di�erent analog front�end that ADS198 could not �t. This is why separate module, a
ADC_BRD: ADS1278, was created using ADS1278 [81] integrated circuit from BurrBrown
/ Texas Instruments [76].

ADS1278 does not use SPI for communications (but can act as SPI�like transmitter�
only) so it requires more control and signal lines, which all of them are also galvanically
separated with optocouplers. Power supply needs to be supplied from PWR_BRD: Isolated

because module has its own ultra�low�noise precission 3.3V and 1.8V voltage regulators.
There are three built�in reference voltage sources for ADC � two precission refernce voltage
source providing 2.048V / 4.096V and the double 16�bit Ultra�Low�Glitch DAC (Digital�
To�Analog Converter) based on DAC8552 [82] device that can provide any given voltage
from available range if properly programmed. Converter use inputs of analog connector,
so it can be connected to another AMP_BRD with dedicated analog front�end of required
design.

Schematics of the module is presented on Figure 2.21 and the PCB layout and com-
ponents placement is presented on Figure 2.22. Figure 2.23 presents a photo of assembled
circuit board.

Page 108 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

This board has fairly complex layout because of number of applied optocouplers on
data and control lines. This is also a test board for separating elements, their charac-
teristics and the controller input/output port performance, because ADS1278 in current
con�guration produce serial bitstream for all eight 24�bit DACs at every conversion cy-
cle with no bu�ering, which turned out to be problematic for simple microcontroller
port to serve (even one channel per conversion) making it perfect candidate to perform
stress�testing. The use of FPGA seems necessary in this case as previous experiments
with ARM7 device (LPC2148) showed it did not have enough computing power and in-
put/output port e�ciency to serve all 24�bit and 8 channels transmission from ADS1278
device.

.

2.2.9 EXP BRD: Atari Joystick

It is important to research and demonstrate possibilities of interaction with external
multimedia and entertainment devices such as gaming platforms as they create market
that is still expanding into new areas of everyday life. It is also important to have fun of
designing and share that joy with others, just as Atari Incorporated [91] and many other
companies did many years ago when we, as young kids, discovered computer world and
videogames long before we could understand how they work.

8�bit Atari Personal Computer System was my �rst computer ever (well after PONG
videogame also invented by Atari, cloned by polish company ELWRO). It was a gift from
my amazing parents back then around 1989 (I was 7 years old) when data was stored
on the magnetic cassete tapes noone even knew what it could be used for because com-
puters were known only from movies for an ordinary people. Months of learning BASIC,
�rst programs, virtual encounters just like in the legendary TRON movie, no other life
problems, fresh and warm meals full of proteins, all this made my computer and geneally
childhood memories often coming back to those good days. Although there are many
modern computer systems and videogame consoles, I have decided to create dedicated
demonstration platform on 8�bit Atari machine running incredible game Yoomp [92] writ-
ten in 2008 by polish group of enthusiasts that shared with me a cartridge containing the
game (thank you guys!). I will be probably the �rst person ever to create Brain Com-
puter Interface device for 8�bit Atari. The good news for other Retro Computer lovers
is that joystick port was a standard so they might use my design on their machines as
well bringing memories back to life again, maybe even showing their kids how computers
looked twenty years ago.

The joystick port is a standard DB-9M port, but the plug should be longer and narrow
to �t into casing. Old computers used 5V logic, so the joystick port had one reference
voltage output, one ground output, and �ve inputs for each direction (up, down, left, right,
�re). There were also two analog inputs for X and Y axis, but standard joysticks used
simple on/o� scheme to send signals. Joystick therefore is a simple module that separates
galvanicaly our BCI system from the target computer with optocouplers producing on/o�
digital signals and making use of biomedical equpiment safe.

CeDeROM Brain Computer Interface Page 109 of 125

http://www.tomek.cedro.info

2.2. MODULES DESCRIPTION SOLUTION APPROACH

Figure 2.24: CeDeROM BCI Expansion Board: Atari Joystick Schematics.

Page 110 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.2. MODULES DESCRIPTION

(a) Top PCB (b) Bottom PCB (mir-
ror)

(c) Top Components (d) Bottom Compo-
nents (mirror)

Figure 2.25: CeDeROM BCI Expansion Board: Atari Joystick PCB design.

Figure 2.26: First steps of joystick interface design and testing on my precious Atari.

Figure 2.27: CeDeROM BCI Joystick Expansion Board, assembled.

CeDeROM Brain Computer Interface Page 111 of 125

http://www.tomek.cedro.info

2.3. EXAMPLE USECASES SOLUTION APPROACH

Figure 2.24 presents joystick board schematics, Figure 2.25 presents PCB layouts and
the component placementi, Figure 2.27 presents assembled circuit board. The �rst steps
of the test circuit and the DB�9 plug modi�cation trick are presented on Figure 2.26.

Joystick module can be used with both Mobile ARM module and stationary FPGA
platform. The FPGA module in default con�guration produces PONG videogame with
VGA output, so joystick signals left�right are directly related with a control signals driving
the movement of PONG player pad up�down. User can choose if he/she wants to play
PONG on FPGA or Yoomp on Atari. It is possible to connect this module to ARM board
and exchange information with Personal Computer running some additional software that
will drive the joystick according to some user de�ned algorithm. When the algotithm is
ready it can be processed and uploaded into FPGA device to work in a real time.

2.3 Example Usecases

This chapter presents example practical usecases that can be implemented with my mod-
ular research system. This chapter shows the biggest advantage of my solution and the
approach to implement it � versatile and rapid system recon�guration that can lead to a
commercial product implemented using low lost (often free of charge) Open�Source appli-
cations that are developed and created along with this project, also making use in other
projects unrelated with this research. The agile and smart approach with open attitude
can bring more bene�t to the resulting system. Its not perfect, its still evolving, its ready
for new feature requests. Existing commercial closed source solutions also have their own
problems and limitations but it is impossible to �x them or extend as required.

2.3.1 Standalone FPGA Application

As mentioned in chapter 2.2.1 FPGA equipment is a perfect solution for research and pro-
totyping of various BCI applications that require realtime and/or computational power
exceeding capabilities of an ordinary microprocessor devices but easily applicable in pro-
gramable logical devices. Device can be used to verify dedicated mixed�signal applications
designed and written on external computers from scratch or using dedicated Matlab Sig-
nal Processing Toolboxes. The possibilities of creating dedicated hardware accelerated
designs seems endless, but also inexpensive functional prototyping of standalone applica-
tions before manufacturing is very important. After successful veri�cation design can be
syntesized for selected silicon technology process and send for ASIC (Application Speci�c
Integrated Circuit [74]) manufacturing.

2.3.2 Standalone BCI�PONG Videogame

Example standalone application of CeDeROMBCI FPGA device contains PONG videogame
with VGA display that is controlled with brainwave activity of the person playing the
game. Simple EEG acquisition can done with use of ADC_BRD: ADS1298 module (section
2.2.6) that transfer bistream into FPGA with hardware FFT implementation (or more

Page 112 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.3. EXAMPLE USECASES

Figure 2.28: CeDeROM BCI FPGA acting as standalone PONG videogame.

sophisticated decomposition) that drives the videogame controls based on signal changes
from selected range of frequencies. Neurofeedback Alpha Training Technique [71] [72] is
a popular method of controlling brainwave activity in range of 8..12Hz so called Alpha
Waves [73] also used in commercial and open�source biofeedback and bci computer appli-
cations such as BCI2000 [85], OpenViBE [86], BrainBay [87], so it probably can be used
to control such videogames action.

It is possible to expand capabilities of such system by implementing di�erent videogames
and more sophisticated algorithms for brain activity pattern detection. Hardware can re-
main unchanged, only the logic will change, so it can become a �rmware or lets say �game
pack� that can be sold separately. This is also great news for scienti�c research as many
di�erent groups can use relatively simple and inexpensive common equipment to test
and veriry their results such as acquisition method, �ltering, decission making, based on
di�erent easily exchangable �rmwares.

2.3.3 Universal Joystick Controller

With use of EXP_BRD: Atari Joystick (section 2.2.9) it is also possible to drive ex-
ternal systems such as videogame consoles, automation systems, etc. This example use
additional hardware module to control external computer, an 8�bit Atari with Yoomp
videogame loaded from cartridge memory after powerup.

Similar implementation can use built�in Ethernel controller to send data over Internet
network to next room or another side of the planet. With dedicated hardware module
system can act as HID (Human Interface Device [75]) to drive mouse cursor or write letters

CeDeROM Brain Computer Interface Page 113 of 125

http://www.tomek.cedro.info

2.3. EXAMPLE USECASES SOLUTION APPROACH

Figure 2.29: CeDeROM BCI FPGA acting as (Atari) videogame controller.

on �mind�keyboard�, using dedicated signal processing and classi�cation algorithms.

Yoomp computer game inspired us so much in the Cybernetic Research Student Group
that we have written dedicated computer game module for BCI2000 [85] system for re-
search purposes on standard Personal Computer with all supported BCI hardware devices.

Because FPGA gives opportunity to include whole computer system in one chip, in
near future I will try to �t whole 8�bit Atari machine inside single FPGA device, so the
solution also becomes standalone.

2.3.4 Modern OpenEEG Replacement

The ARM�based module can provide unprecedented performance and parameters being
still compatible with existing OpenEEG solutions. As reported on OpenEEG project
mailing list there are users for who actual design is not enough and too outdated to use
on modern computers. Implementing Virtual COM Port over USB and P2/P3 simple
protocols will make it compatible with existing OpenEEG platform.

Therefore all parts of this project can serve as modern replacement for open BCI /
Neurofeedback research platform. Final solution can be closed into one small device sold
for small price also serving as funding source for my future research. Free and/or Open�
Source applications that can work with OpenEEG include biofeedback and bci computer
applications such as BCI2000 [85], OpenViBE [86], BrainBay [87] (Figure 2.31).

Page 114 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SOLUTION APPROACH 2.3. EXAMPLE USECASES

Figure 2.30: CeDeROM BCI ARM (left) replacement for OpenEEG (right).

(a) BCI2000 (b) OpenVibe

(c) BrainBay

Figure 2.31: Free applications to work with OpenEEG�like devices.

CeDeROM Brain Computer Interface Page 115 of 125

http://www.tomek.cedro.info

2.3. EXAMPLE USECASES SOLUTION APPROACH

Figure 2.32: GSM/GPS module ready for use with CeDeROM BCI.

2.3.5 Mobile Holter

ARM�based module use Stm32Primer2 development board equipped with ARM�Cortex�
M3 CPU, USB port, graphic display and uSD card slot for result storage. This makes
it perfect candidate for mobile holter�like applications for constant monitoring of patient
EKG, EEG, respiratory and other functions.

Optical Disk attached to the document contains lot of examples on FreeRTOS, USB,
VCOMPort, uSD, FAT32, DSP and many more implemented on Stm32Primer develop-
ment board. They can be treated just as software modules that can be matched with
necessary hardware modules of CeDeROM BCI to create �nal solution.

Stm32Primer2 can be replaced or equipped with additional communication GSM/GPS
module that will allow monitoring of patient location and alarm in case of emergency. The
one presented on Figure 2.32, a Siemens XT75 GSM/GPS module, also features ARM
core with Java VM, so it can even act as standalone CPU BOARD with no need to use
Stm32Primer2 device...

2.3.6 Integrated Solutions

Because ARM is a CPU design, not a silicon itself, it is possible to create and verify
new, dedicated design with my platform, to be then miniaturized, manufactured as ASIC
(Application Speci�c Integrated Circuit), or become a part of bigger system.

Page 116 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

SUMMARY AND CONCLUSIONS

Chapter 3

Summary and Conclusions

Experimental system presented in this document was designed to be a versatile recon-
�gurable modular platform for various research projects aimed at measurement and pro-
cessing of bioelectrical signals, such as EEG, EKG, EMG, speci�cally a Brain Computer
Interface project conducted by Cybernetic Research Student Group, that I am member
and founder, providing low cost hardware and open�source software modules for various
implementation tasks. This manuscript contains history and documentation of my work
on the project. It is divided into two main parts � Know How and Solution Approach.

Know How (section 1) is an introductionary guide for people with no experience in
electronics, biomedical enginering and IT in general, or people that consider taking part
in such project but don't know yet what �eld of research would suit them best. Some
of my own discoveries such as writing device drivers in Matlab (section 1.10), Serial
Wire Debug implementation (section 1.11), or design of Brain Computer Interface Open
Protocol (section 1.13) are documented in this part along with other information and skills
necessary to make such system exist and work from the �logic behind the scenes� point of
view. The secondary purpose of this documentation is to show how much knowledge and
work is necessary in order to create even simplest device of this kind. Please keep in mind
that this system is a work of a one man, so it would not be possible to create everything
from scratch in such short time, but rebranding of existing commercial solutions would not
bring any innovative solution. This is why I have decided to follow the harderst possible
paths of creating new utilities for use in my projects, especially those which did not exist
before, keeping in mind they will be free of charge and freely customizable in future.
Such investment not only allows me to create better, smarter and cheaper solutions, but
also share my results with other people if necessary. For instance implementation of
the LibSWD even with external support took most of my time (unfortunately far more
than planned, leaving no time for other tasks) but this will be the �rst in the world
implementation of Serial Wire Debug Open Framework allowing everyone to program
ARM Cortex devices. Ofcourse I could keep that secret, but I use e�cient and extremely
�exible Open�Source Software solutions in my everyday life, so it would be not fair only
to take results of the others people work and give nothing in return. The �nancial gain is
also possible in this model � it can be obtained by innovative implementation and useful
work made by such solutions. Looters and parasites are everywhere, luckily they cannot

CeDeROM Brain Computer Interface Page 117 of 125

http://www.tomek.cedro.info

SUMMARY AND CONCLUSIONS

steal something that is already free. I am sure this attitude will help creating my own
devices, but also better world that I live in for almost 30 past years of this life, giving
other people opportunity to learn and create high quality things that I may �nd useful
one day.

Solution Approach (section 2) presents physical electronic modules resembling the
system with detailed description and schematics. System consists of control boards based
on STM32 ARM�Cortex M3 (section 2.2.2) for mobile applications and FPGA board
based on Xilinx Spartan 3A�DSP (section 2.2.1) for real time DSP, safe power supply with
galvanic separation (section 2.2.5), general purpose hex 24�bit SigmaDelta ADC based
on ADS1278 IC from BurrBrown / Texas Instruments (section 2.2.8) already tested with
NXP's LPC2148 microcontroller, integrated biological signal acquisition frontend with 24�
bit SigmaDelta ADC and SPI interface based on ADS1298 IC from BurrBrown / Texas
Instruments (section 2.2.6), standard EEG electrodes connector board (section 2.2.7), user
interaction with LED and push�buttons (integrated on electrodes board), and �nally the
demonstration expansion board with computer joystic interface (section 2.2.9) to control
external hardware.

There are few possible commercial applications presented in Example Usecases (section
2.3) that can be implemented with both software and hardware components designed and
identi�ed during this research. Standalone FPGA applications can include mind driven
PONG videogame with VGA output (section 2.3.2) or standalone videogame controller
(section 2.3.3), but most of all it can serve as e�cient realtime DSP or ASIC functional
veri�cation platform. ARM Cortex based example devices include modern OpenEEG [84]
replacement (section 2.3.4) and mobile (Tele) EEG Holter (section 2.3.5). There are many
free and open�source software examples and IP�Cores all over the Internet that makes it
possible to implement such applications almost free of charge.

Not all tasks were successfully �nished to ful�ll requirements of a working commercial
product, but considering limited time and resources, a good start for such platform has
been made with clear direction of further development. Many methods discovered and
presented in this document can be used in other areas of science and engineering, serving
as good start point for interdisciplinary team work. Neural interfacing is a very hard
and wide �eld of research, even highly experienced scienti�c groups around the world
with great deal of commercial support still have problems to �control environment by
thoughts�. I hope my work proved that such system can be built from scratch using low�
cost components, open�source software, skills, commitment and enough patience. Still
there is more to accomplish that already has been done. I also belive that one day my
hobby will turn into pro�table business of useful, peaceful and helpful solutions.

Page 118 of 125 CeDeROM Brain Computer Interface

http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] Tomasz Bolesªaw CEDRO homepage ,
http://www.tomek.cedro.info

[2] Cybernetic Research Student Group, Warsaw University of Technology,
http://cyber.ise.pw.edu.pl

[3] Research Group on Biocybernetic Aparatus, Institute of Electronic Systems, Fac-
ulty of Electronics and Information Technologies, Warsaw University of Technology,
Poland ,
http://www.ise.pw.edu.pl/index.php?id=138

[4] Nuclear and Medical Electronic Division, Institute of Radioelectronic Systems, Fac-
ulty of Electronics and Information Technologies, Warsaw University of Technology,
Poland ,
http://www.ire.pw.edu.pl/zejim/

[5] Institute of Electronic Systems, Faculty of Electronics and Information Technologies,
Warsaw University of Technology, Poland ,
http://www.ise.pw.edu.pl/

[6] Faculty of Electronics and Information Technologies, Warsaw University of Technol-
ogy, Poland ,
http://www.elka.pw.edu.pl

[7] Warsaw University of Technology, Poland ,
http://www.pw.edu.pl

[8] Institute of Electrical and Electronics Engineers ,
http://www.ieee.org/

[9] Design and Development of Medical Electronic Instrumentation: A Practical Perspec-
tive of the Design, Construction, and Test of Medical Devices. David Prutchi (Au-
thor), Michael Norris (Author). Publisher: Wiley-Interscience; 1 edition (November
22, 2004). ISBN-10: 0471676233. ISBN-13: 978-0471676232. ,
http://home.comcast.net/~prutchi/

CeDeROM Brain Computer Interface Page 119 of 125

http://www.tomek.cedro.info
http://cyber.ise.pw.edu.pl
http://www.ise.pw.edu.pl/index.php?id=138
http://www.ire.pw.edu.pl/zejim/
http://www.ise.pw.edu.pl/
http://www.elka.pw.edu.pl
http://www.pw.edu.pl
http://www.ieee.org/
http://home.comcast.net/~prutchi/
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Improving Common-Mode Rejection Using the Right-Leg Drive Ampli�er, Texas In-
struments ,
http://www.ti.com/litv/pdf/sbaa188

[11] High Speed Data Conversion, Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa045

[12] Analog-to-Digital Converter Grounding Practices A�ect System Performance, Texas
Instruments ,
http://www.ti.com/litv/pdf/sbaa052

[13] Interleaving Analog-to-Digital Converters, Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa049

[14] Thermal Noise Analysis in ECG Applications, Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa185

[15] Principles of Data Acquisition and Conversion, Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa051

[16] Analog Front-End Design for ECG Systems Using Delta-Sigma ADCs (Rev. A),
Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa160a

[17] A Glossary of Analog-to-Digital Speci�cations and Performance Characteristics (Rev.
A), Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa147a

[18] What Designers Should Know About Data Converter Drift, Texas Instruments ,
http://www.ti.com/litv/pdf/sbaa046

[19] Power Management for Precision Analog, Texas Instruments ,
http://www.ti.com/litv/pdf/slvt170

[20] Complete Analog Front End for ECG/EEG [WMV], Texas Instruments ,
http://www.ti.com/litv/wmv/sbac102

[21] Respiration Rate Measurement Using Impedance Pneumography, Texas Instruments
,
http://www.ti.com/litv/pdf/sbaa181

[22] Wikipedia, The Free Encyclopedia,
http://www.wikipedia.org

[23] The Free Software Foundation ,
http://www.fsf.org

Page 120 of 125 CeDeROM Brain Computer Interface

http://www.ti.com/litv/pdf/sbaa188
http://www.ti.com/litv/pdf/sbaa045
http://www.ti.com/litv/pdf/sbaa052
http://www.ti.com/litv/pdf/sbaa049
http://www.ti.com/litv/pdf/sbaa185
http://www.ti.com/litv/pdf/sbaa051
http://www.ti.com/litv/pdf/sbaa160a
http://www.ti.com/litv/pdf/sbaa147a
http://www.ti.com/litv/pdf/sbaa046
http://www.ti.com/litv/pdf/slvt170
http://www.ti.com/litv/wmv/sbac102
http://www.ti.com/litv/pdf/sbaa181
http://www.wikipedia.org
http://www.fsf.org
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[24] The GNU Operating System ,
http://www.gnu.org/

[25] GNU ARM Toolchain project ,
http://www.gnuarm.com

[26] Eclipse Integrated Desktop Environment (IDE) ,
http://www.eclipse.org

[27] YAGARTO: Yet another GNU ARM toolchain ,
http://www.yagarto.de/

[28] LibUSB project ,
http://libusb.sourceforge.net

[29] The MathWorks and the MatLab Software ,
http://www.mathworks.com

[30] Octave project, a GNU MatLab clone ,
http://www.gnu.org/software/octave

[31] SciLab project, yet another free MatLab clone ,
http://www.scilab.org

[32] Universal Serial Bus (USB) Speci�cation ,
http://www.usb.org

[33] �USB in a NutShell� introductionary book to USB standard" ,
http://www.beyondlogic.org/usbnutshell

[34] The FreeBSD Operating System ,
http://www.freebsd.org

[35] The BSD License ,
http://www.opensource.org/licenses/bsd-license.php

[36] Open On�Chip�Debugger ,
http://openocd.sf.net

[37] Universal JTAG utility ,
http://urjtag.sf.net

[38] LibSWD, a Serial Wire Debug Open Library ,
http://libswd.sf.net

[39] Stm32Circle, home of Stm32Primer Development Kits ,
http://stm32circle.com/

CeDeROM Brain Computer Interface Page 121 of 125

http://www.gnu.org/
http://www.gnuarm.com
http://www.eclipse.org
http://www.yagarto.de/
http://libusb.sourceforge.net
http://www.mathworks.com
http://www.gnu.org/software/octave
http://www.scilab.org
http://www.usb.org
http://www.beyondlogic.org/usbnutshell
http://www.freebsd.org
http://www.opensource.org/licenses/bsd-license.php
http://openocd.sf.net
http://urjtag.sf.net
http://libswd.sf.net
http://stm32circle.com/
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Raisonance, State-of-the Art Tools for the Microelectronics Industry ,
http://www.raisonance.com/

[41] My scratchpad on �rst in the world open source implementation of SWD for ARM�
Cortex devices ,
http://stm32primer2swd.sf.net

[42] ARM Corporation ,
http://www.arm.com

[43] Serial Wire Debug ,
http://www.arm.com/products/system-ip/debug-trace/

coresight-soc-components/serial-wire-debug.php

[44] ARM Debug Interface version 5 Speci�cation,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/

index.html

[45] ARM�Cortex�M1 Technical Reference Manual ,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/

index.html

[46] ARM Information Center ,
http://infocenter.arm.com/

[47] KrisTech Company ,
http://www.kristech.pl/

[48] Intel Corportation ,
http://www.intel.com

[49] SAMSUNG Semiconductor ,
http://www.samsungsemi.com/

[50] Qualcomm Wireless Technology & Innovation ,
http://www.qualcomm.com/

[51] Texas Instruments Incorporated ,
http://www.ti.com/

[52] STMicroelectronics ,
http://www.st.com/

[53] Future Technology Devices International Ltd. ,
http://www.ftdichip.com/

[54] Samtec Incorporated ,
http://www.samtec.com/

Page 122 of 125 CeDeROM Brain Computer Interface

http://www.raisonance.com/
http://stm32primer2swd.sf.net
http://www.arm.com
http://www.arm.com/products/system-ip/debug-trace/coresight-soc-components/serial-wire-debug.php
http://www.arm.com/products/system-ip/debug-trace/coresight-soc-components/serial-wire-debug.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0413c/index.html
http://infocenter.arm.com/
http://www.kristech.pl/
http://www.intel.com
http://www.samsungsemi.com/
http://www.qualcomm.com/
http://www.ti.com/
http://www.st.com/
http://www.ftdichip.com/
http://www.samtec.com/
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[55] Multi-Contact AG - Advanced Contact Technology ,
http://www.multi-contact.com/

[56] Xilinx Incorporated, leading FPGA designer and manufacturer. ,
http://www.xilinx.com/

[57] Xilinx ISE Design Suite ,
http://www.xilinx.com/products/design-tools/ise-design-suite/

[58] Xilinx User Community Forums ,
http://forums.xilinx.com/

[59] ELF/ABI problem solution ,
http://forums.freebsd.org/showthread.php?t=17776

[60] XC3SProg, Open�Source Xilinx FPGA programming utility ,
http://xc3sprog.sourceforge.net/

[61] Xilinx Forum thread on unsupported SPI Flash memory on o�cial development
board ,
http://forums.xilinx.com/t5/Xilinx-Boards-and-Kits/

program-upload-on-spartan-3a-dsp-1800-board/m-p/60194

[62] Eagle CAD Software, inexpensive and multiplatform Easily Applicable Graphical Lay-
out Editor ,
http://www.cadsoft.de/ , http://www.cadsoftusa.com/

[63] Eagle CAD licensing page ,
https://www.cadsoft.de/buy-eagle/

[64] Eagle CAD free�of�charge components and scripts repository ,
http://www.cadsoftusa.com/downloads/

[65] PCB Industry Standard Gerber Format ,
http://en.wikipedia.org/wiki/Gerber_format

[66] PCB Industry Standard Excellon Format ,
http://en.wikipedia.org/wiki/Excellon

[67] Serial Vector Format description ,
http://en.wikipedia.org/wiki/Serial_Vector_Format

[68] XILINX JTAG tools on Linux without proprietary kernel modules ,
http://rmdir.de/~michael/xilinx/

[69] XP Power, global power supply components for electronics industry ,
http://www.xppower.com/

CeDeROM Brain Computer Interface Page 123 of 125

http://www.multi-contact.com/
http://www.xilinx.com/
http://www.xilinx.com/products/design-tools/ise-design-suite/
http://forums.xilinx.com/
http://forums.freebsd.org/showthread.php?t=17776
http://xc3sprog.sourceforge.net/
http://forums.xilinx.com/t5/Xilinx-Boards-and-Kits/program-upload-on-spartan-3a-dsp-1800-board/m-p/60194
http://forums.xilinx.com/t5/Xilinx-Boards-and-Kits/program-upload-on-spartan-3a-dsp-1800-board/m-p/60194
http://www.cadsoft.de/
http://www.cadsoftusa.com/
https://www.cadsoft.de/buy-eagle/
http://www.cadsoftusa.com/downloads/
http://en.wikipedia.org/wiki/Gerber_format
http://en.wikipedia.org/wiki/Excellon
http://en.wikipedia.org/wiki/Serial_Vector_Format
http://rmdir.de/~michael/xilinx/
http://www.xppower.com/
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Murata Manufacturing Co. Ltd., global components for electronic industry ,
http://www.murata.com/

[71] Neurofeedback reference ,
http://en.wikipedia.org/wiki/Neurofeedback

[72] Hardt, J.V.; Kamiya, J. (1976). "Con�icting results in EEG alpha feedback studies".
Applied Psychophysiology and Biofeedback 1 (1): 63�75. Retrieved 2007-12-05 ,
http://www.springerlink.com/index/Q6XU641775678664.pdf

[73] Alpha Waves reference ,
http://en.wikipedia.org/wiki/Alpha_wave

[74] Application Speci�c Integrated Circuit reference ,
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

[75] Human Interface Device reference ,
http://en.wikipedia.org/wiki/Human_interface_device

[76] Texas Instruments Incorporated ,
http://www.ti.com/

[77] ADS1298, a complete integrated biological signal acquisition IC with 8 24�bit Sig-
maDelta ADC ,
http://focus.ti.com/docs/prod/folders/print/ads1298.html

[78] ADS1298�IPA TQFP Package reference ,
http://www.ti.com/litv/pdf/mtqf006a

[79] ADS1278�ZXG, BGA Package reference ,
http://www.ti.com/litv/pdf/mpbg581

[80] Getting Started With the ADS1298ECGFE-PDK [WMV] ,
http://www.ti.com/litv/wmv/sbac111

[81] ADS1278, octal di�erential input 24�bit SigmaDelta ADC ,
http://focus.ti.com/docs/prod/folders/print/ads1278.html

[82] DAC8552, 16-Bit, Dual-Channel, Ultralow Glitch, Voltage Output, Digital to Analog
Converter ,
http://focus.ti.com/docs/prod/folders/print/dac8552.html

[83] Brain Implant � Science of Fiction? ,
http://en.wikipedia.org/wiki/Brain_implant

[84] The OpenEEG Project ,
http://openeeg.sourceforge.net/

Page 124 of 125 CeDeROM Brain Computer Interface

http://www.murata.com/
http://en.wikipedia.org/wiki/Neurofeedback
http://www.springerlink.com/index/Q6XU641775678664.pdf
http://en.wikipedia.org/wiki/Alpha_wave
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Human_interface_device
http://www.ti.com/
http://focus.ti.com/docs/prod/folders/print/ads1298.html
http://www.ti.com/litv/pdf/mtqf006a
http://www.ti.com/litv/pdf/mpbg581
http://www.ti.com/litv/wmv/sbac111
http://focus.ti.com/docs/prod/folders/print/ads1278.html
http://focus.ti.com/docs/prod/folders/print/dac8552.html
http://en.wikipedia.org/wiki/Brain_implant
http://openeeg.sourceforge.net/
http://www.tomek.cedro.info

BIBLIOGRAPHY BIBLIOGRAPHY

[85] BCI2000 Software Suite ,
http://bci2000.org/

[86] OpenViBE, Software for Brain Computer Interfaces and Real Time Neurosciences ,
http://openvibe.inria.fr/

[87] BrainBay, an OpenSource Biosignal project ,
http://shifz.org/brainbay/

[88] NeuroSky, Brain Wave Sensors for Every Body ,
http://www.neurosky.com/

[89] Emotiv, Brain Computer Interface Technology ,
http://www.emotiv.com

[90] gTec Medical Engineering ,
http://www.gtec.at/

[91] Atari ,
http://www.atari.com/

[92] Yoomp! An 8-bit Atari Game ,
http://yoomp.atari.pl/

[93] Kontakt Chemie Industries ,
http://www.kontaktchemie.dk/

[94] LPKF Laser & Electronics AG ,
http://www.lpkf.de/

CeDeROM Brain Computer Interface Page 125 of 125

http://bci2000.org/
http://openvibe.inria.fr/
http://shifz.org/brainbay/
http://www.neurosky.com/
http://www.emotiv.com
http://www.gtec.at/
http://www.atari.com/
http://yoomp.atari.pl/
http://www.kontaktchemie.dk/
http://www.lpkf.de/
http://www.tomek.cedro.info

	Know-How
	Reasons, Problems, Solutions.
	Biological Signal Amplifiers
	System Configuration and Methodology
	EEG 10--20 system
	OpenEEG and other BCI Platforms
	FreeBSD -- Operating System of a choice
	GNU ARM Toolchain
	Free Real Time Operating System
	Introduction
	API Fundamentals

	Universal Serial Bus
	Introduction
	Standards
	Physical Signalling
	Power Management
	USB Procotol
	USB Transfer Modes
	Bandwidth Mangement
	USB Descriptors

	Device Drivers in Matlab
	Introduction
	How Matlab handles execution
	Dynamic Libraries Matlab Intefrace
	Using Dynamic Libraries
	Example

	Serial Wire Debug
	Serial Wire Debug Technical Reference
	LibSWD -- Serial Wire Debug Open Library
	LibSWD in practice
	LibSWD integration with UrJTAG
	LibSWD integration with OpenOCD

	JTAG / IEEE1149.1
	JTAG Technical Reference
	JTAG Data Register (DR)

	Brain Computer Interface Open Protocol
	Introduction
	BCIOP Overwiew
	BCIOP Packet Details

	Xilinx Software and Hardware
	Introduction to FPGA programming
	Known issues
	Installing Linux version of Xilinx ISE on FreeBSD OS
	Programming the FPGA target device

	Schematics and PCB design with Eagle CAD
	Creating new components and libraries
	Exporting design for manufacturing
	Running Linux Eagle CAD on FreeBSD

	PCB Crafting
	Photo--litography
	Copper Etching
	Drills Metalization
	BGA Soldering

	Solution Approach
	Solution Approach
	Introduction
	Similar solutions
	Block Diagram
	Hardware Implementation
	Software Implementation

	Modules Description
	CPU_BRD: Xilinx Spartan--3A DSP FPGA
	CPU_BRD: Stm32Primer2 (ARM Cortex--M3)
	ADP_BRD: QSE to Goldpin Adapter
	ADP_BRD: Stm32Primer2
	PWR_BRD: Isolated 3.3V/5V
	ADC_BRD: ADS1298
	EXP_BRD: ADS1298 Electrodes
	ADC_BRD: ADS1278
	EXP BRD: Atari Joystick

	Example Usecases
	Standalone FPGA Application
	Standalone BCI--PONG Videogame
	Universal Joystick Controller
	Modern OpenEEG Replacement
	Mobile Holter
	Integrated Solutions

	Summary and Conclusions

